view env/lib/python3.9/site-packages/networkx/algorithms/flow/ @ 0:4f3585e2f14b draft default tip

"planemo upload commit 60cee0fc7c0cda8592644e1aad72851dec82c959"
author shellac
date Mon, 22 Mar 2021 18:12:50 +0000
line wrap: on
line source

Utility classes and functions for network flow algorithms.

from collections import deque
import networkx as nx

__all__ = [

class CurrentEdge:
    """Mechanism for iterating over out-edges incident to a node in a circular
    manner. StopIteration exception is raised when wraparound occurs.

    __slots__ = ("_edges", "_it", "_curr")

    def __init__(self, edges):
        self._edges = edges
        if self._edges:

    def get(self):
        return self._curr

    def move_to_next(self):
            self._curr = next(self._it)
        except StopIteration:

    def _rewind(self):
        self._it = iter(self._edges.items())
        self._curr = next(self._it)

class Level:
    """Active and inactive nodes in a level.

    __slots__ = ("active", "inactive")

    def __init__(self): = set()
        self.inactive = set()

class GlobalRelabelThreshold:
    """Measurement of work before the global relabeling heuristic should be

    def __init__(self, n, m, freq):
        self._threshold = (n + m) / freq if freq else float("inf")
        self._work = 0

    def add_work(self, work):
        self._work += work

    def is_reached(self):
        return self._work >= self._threshold

    def clear_work(self):
        self._work = 0

def build_residual_network(G, capacity):
    """Build a residual network and initialize a zero flow.

    The residual network :samp:`R` from an input graph :samp:`G` has the
    same nodes as :samp:`G`. :samp:`R` is a DiGraph that contains a pair
    of edges :samp:`(u, v)` and :samp:`(v, u)` iff :samp:`(u, v)` is not a
    self-loop, and at least one of :samp:`(u, v)` and :samp:`(v, u)` exists
    in :samp:`G`.

    For each edge :samp:`(u, v)` in :samp:`R`, :samp:`R[u][v]['capacity']`
    is equal to the capacity of :samp:`(u, v)` in :samp:`G` if it exists
    in :samp:`G` or zero otherwise. If the capacity is infinite,
    :samp:`R[u][v]['capacity']` will have a high arbitrary finite value
    that does not affect the solution of the problem. This value is stored in
    :samp:`R.graph['inf']`. For each edge :samp:`(u, v)` in :samp:`R`,
    :samp:`R[u][v]['flow']` represents the flow function of :samp:`(u, v)` and
    satisfies :samp:`R[u][v]['flow'] == -R[v][u]['flow']`.

    The flow value, defined as the total flow into :samp:`t`, the sink, is
    stored in :samp:`R.graph['flow_value']`. If :samp:`cutoff` is not
    specified, reachability to :samp:`t` using only edges :samp:`(u, v)` such
    that :samp:`R[u][v]['flow'] < R[u][v]['capacity']` induces a minimum
    :samp:`s`-:samp:`t` cut.

    if G.is_multigraph():
        raise nx.NetworkXError("MultiGraph and MultiDiGraph not supported (yet).")

    R = nx.DiGraph()

    inf = float("inf")
    # Extract edges with positive capacities. Self loops excluded.
    edge_list = [
        (u, v, attr)
        for u, v, attr in G.edges(data=True)
        if u != v and attr.get(capacity, inf) > 0
    # Simulate infinity with three times the sum of the finite edge capacities
    # or any positive value if the sum is zero. This allows the
    # infinite-capacity edges to be distinguished for unboundedness detection
    # and directly participate in residual capacity calculation. If the maximum
    # flow is finite, these edges cannot appear in the minimum cut and thus
    # guarantee correctness. Since the residual capacity of an
    # infinite-capacity edge is always at least 2/3 of inf, while that of an
    # finite-capacity edge is at most 1/3 of inf, if an operation moves more
    # than 1/3 of inf units of flow to t, there must be an infinite-capacity
    # s-t path in G.
    inf = (
        * sum(
            for u, v, attr in edge_list
            if capacity in attr and attr[capacity] != inf
        or 1
    if G.is_directed():
        for u, v, attr in edge_list:
            r = min(attr.get(capacity, inf), inf)
            if not R.has_edge(u, v):
                # Both (u, v) and (v, u) must be present in the residual
                # network.
                R.add_edge(u, v, capacity=r)
                R.add_edge(v, u, capacity=0)
                # The edge (u, v) was added when (v, u) was visited.
                R[u][v]["capacity"] = r
        for u, v, attr in edge_list:
            # Add a pair of edges with equal residual capacities.
            r = min(attr.get(capacity, inf), inf)
            R.add_edge(u, v, capacity=r)
            R.add_edge(v, u, capacity=r)

    # Record the value simulating infinity.
    R.graph["inf"] = inf

    return R

def detect_unboundedness(R, s, t):
    """Detect an infinite-capacity s-t path in R.
    q = deque([s])
    seen = {s}
    inf = R.graph["inf"]
    while q:
        u = q.popleft()
        for v, attr in R[u].items():
            if attr["capacity"] == inf and v not in seen:
                if v == t:
                    raise nx.NetworkXUnbounded(
                        "Infinite capacity path, flow unbounded above."

def build_flow_dict(G, R):
    """Build a flow dictionary from a residual network.
    flow_dict = {}
    for u in G:
        flow_dict[u] = {v: 0 for v in G[u]}
            (v, attr["flow"]) for v, attr in R[u].items() if attr["flow"] > 0
    return flow_dict