view env/lib/python3.9/site-packages/networkx/algorithms/tests/test_structuralholes.py @ 0:4f3585e2f14b draft default tip

"planemo upload commit 60cee0fc7c0cda8592644e1aad72851dec82c959"
author shellac
date Mon, 22 Mar 2021 18:12:50 +0000
parents
children
line wrap: on
line source

"""Unit tests for the :mod:`networkx.algorithms.structuralholes` module."""
import math
import networkx as nx
from networkx.testing import almost_equal


class TestStructuralHoles:
    """Unit tests for computing measures of structural holes.

    The expected values for these functions were originally computed using the
    proprietary software `UCINET`_ and the free software `IGraph`_ , and then
    computed by hand to make sure that the results are correct.

    .. _UCINET: https://sites.google.com/site/ucinetsoftware/home
    .. _IGraph: http://igraph.org/

    """

    def setup(self):
        self.D = nx.DiGraph()
        self.D.add_edges_from([(0, 1), (0, 2), (1, 0), (2, 1)])
        self.D_weights = {(0, 1): 2, (0, 2): 2, (1, 0): 1, (2, 1): 1}
        # Example from http://www.analytictech.com/connections/v20(1)/holes.htm
        self.G = nx.Graph()
        self.G.add_edges_from(
            [
                ("A", "B"),
                ("A", "F"),
                ("A", "G"),
                ("A", "E"),
                ("E", "G"),
                ("F", "G"),
                ("B", "G"),
                ("B", "D"),
                ("D", "G"),
                ("G", "C"),
            ]
        )
        self.G_weights = {
            ("A", "B"): 2,
            ("A", "F"): 3,
            ("A", "G"): 5,
            ("A", "E"): 2,
            ("E", "G"): 8,
            ("F", "G"): 3,
            ("B", "G"): 4,
            ("B", "D"): 1,
            ("D", "G"): 3,
            ("G", "C"): 10,
        }

    def test_constraint_directed(self):
        constraint = nx.constraint(self.D)
        assert almost_equal(constraint[0], 1.003, places=3)
        assert almost_equal(constraint[1], 1.003, places=3)
        assert almost_equal(constraint[2], 1.389, places=3)

    def test_effective_size_directed(self):
        effective_size = nx.effective_size(self.D)
        assert almost_equal(effective_size[0], 1.167, places=3)
        assert almost_equal(effective_size[1], 1.167, places=3)
        assert almost_equal(effective_size[2], 1, places=3)

    def test_constraint_weighted_directed(self):
        D = self.D.copy()
        nx.set_edge_attributes(D, self.D_weights, "weight")
        constraint = nx.constraint(D, weight="weight")
        assert almost_equal(constraint[0], 0.840, places=3)
        assert almost_equal(constraint[1], 1.143, places=3)
        assert almost_equal(constraint[2], 1.378, places=3)

    def test_effective_size_weighted_directed(self):
        D = self.D.copy()
        nx.set_edge_attributes(D, self.D_weights, "weight")
        effective_size = nx.effective_size(D, weight="weight")
        assert almost_equal(effective_size[0], 1.567, places=3)
        assert almost_equal(effective_size[1], 1.083, places=3)
        assert almost_equal(effective_size[2], 1, places=3)

    def test_constraint_undirected(self):
        constraint = nx.constraint(self.G)
        assert almost_equal(constraint["G"], 0.400, places=3)
        assert almost_equal(constraint["A"], 0.595, places=3)
        assert almost_equal(constraint["C"], 1, places=3)

    def test_effective_size_undirected_borgatti(self):
        effective_size = nx.effective_size(self.G)
        assert almost_equal(effective_size["G"], 4.67, places=2)
        assert almost_equal(effective_size["A"], 2.50, places=2)
        assert almost_equal(effective_size["C"], 1, places=2)

    def test_effective_size_undirected(self):
        G = self.G.copy()
        nx.set_edge_attributes(G, 1, "weight")
        effective_size = nx.effective_size(G, weight="weight")
        assert almost_equal(effective_size["G"], 4.67, places=2)
        assert almost_equal(effective_size["A"], 2.50, places=2)
        assert almost_equal(effective_size["C"], 1, places=2)

    def test_constraint_weighted_undirected(self):
        G = self.G.copy()
        nx.set_edge_attributes(G, self.G_weights, "weight")
        constraint = nx.constraint(G, weight="weight")
        assert almost_equal(constraint["G"], 0.299, places=3)
        assert almost_equal(constraint["A"], 0.795, places=3)
        assert almost_equal(constraint["C"], 1, places=3)

    def test_effective_size_weighted_undirected(self):
        G = self.G.copy()
        nx.set_edge_attributes(G, self.G_weights, "weight")
        effective_size = nx.effective_size(G, weight="weight")
        assert almost_equal(effective_size["G"], 5.47, places=2)
        assert almost_equal(effective_size["A"], 2.47, places=2)
        assert almost_equal(effective_size["C"], 1, places=2)

    def test_constraint_isolated(self):
        G = self.G.copy()
        G.add_node(1)
        constraint = nx.constraint(G)
        assert math.isnan(constraint[1])

    def test_effective_size_isolated(self):
        G = self.G.copy()
        G.add_node(1)
        nx.set_edge_attributes(G, self.G_weights, "weight")
        effective_size = nx.effective_size(G, weight="weight")
        assert math.isnan(effective_size[1])

    def test_effective_size_borgatti_isolated(self):
        G = self.G.copy()
        G.add_node(1)
        effective_size = nx.effective_size(G)
        assert math.isnan(effective_size[1])