view env/lib/python3.9/site-packages/networkx/classes/tests/historical_tests.py @ 0:4f3585e2f14b draft default tip

"planemo upload commit 60cee0fc7c0cda8592644e1aad72851dec82c959"
author shellac
date Mon, 22 Mar 2021 18:12:50 +0000
parents
children
line wrap: on
line source

"""Original NetworkX graph tests"""
import pytest
import networkx as nx
from networkx import convert_node_labels_to_integers as cnlti
from networkx.testing import assert_edges_equal, assert_nodes_equal


class HistoricalTests:
    @classmethod
    def setup_class(cls):
        cls.null = nx.null_graph()
        cls.P1 = cnlti(nx.path_graph(1), first_label=1)
        cls.P3 = cnlti(nx.path_graph(3), first_label=1)
        cls.P10 = cnlti(nx.path_graph(10), first_label=1)
        cls.K1 = cnlti(nx.complete_graph(1), first_label=1)
        cls.K3 = cnlti(nx.complete_graph(3), first_label=1)
        cls.K4 = cnlti(nx.complete_graph(4), first_label=1)
        cls.K5 = cnlti(nx.complete_graph(5), first_label=1)
        cls.K10 = cnlti(nx.complete_graph(10), first_label=1)
        cls.G = nx.Graph

    def test_name(self):
        G = self.G(name="test")
        assert str(G) == "test"
        assert G.name == "test"
        H = self.G()
        assert H.name == ""

    # Nodes

    def test_add_remove_node(self):
        G = self.G()
        G.add_node("A")
        assert G.has_node("A")
        G.remove_node("A")
        assert not G.has_node("A")

    def test_nonhashable_node(self):
        # Test if a non-hashable object is in the Graph.  A python dict will
        # raise a TypeError, but for a Graph class a simple  False should be
        # returned (see Graph __contains__). If it cannot be a node then it is
        # not a node.
        G = self.G()
        assert not G.has_node(["A"])
        assert not G.has_node({"A": 1})

    def test_add_nodes_from(self):
        G = self.G()
        G.add_nodes_from(list("ABCDEFGHIJKL"))
        assert G.has_node("L")
        G.remove_nodes_from(["H", "I", "J", "K", "L"])
        G.add_nodes_from([1, 2, 3, 4])
        assert sorted(G.nodes(), key=str) == [
            1,
            2,
            3,
            4,
            "A",
            "B",
            "C",
            "D",
            "E",
            "F",
            "G",
        ]
        # test __iter__
        assert sorted(G, key=str) == [1, 2, 3, 4, "A", "B", "C", "D", "E", "F", "G"]

    def test_contains(self):
        G = self.G()
        G.add_node("A")
        assert "A" in G
        assert not [] in G  # never raise a Key or TypeError in this test
        assert not {1: 1} in G

    def test_add_remove(self):
        # Test add_node and remove_node acting for various nbunch
        G = self.G()
        G.add_node("m")
        assert G.has_node("m")
        G.add_node("m")  # no complaints
        pytest.raises(nx.NetworkXError, G.remove_node, "j")
        G.remove_node("m")
        assert list(G) == []

    def test_nbunch_is_list(self):
        G = self.G()
        G.add_nodes_from(list("ABCD"))
        G.add_nodes_from(self.P3)  # add nbunch of nodes (nbunch=Graph)
        assert sorted(G.nodes(), key=str) == [1, 2, 3, "A", "B", "C", "D"]
        G.remove_nodes_from(self.P3)  # remove nbunch of nodes (nbunch=Graph)
        assert sorted(G.nodes(), key=str) == ["A", "B", "C", "D"]

    def test_nbunch_is_set(self):
        G = self.G()
        nbunch = set("ABCDEFGHIJKL")
        G.add_nodes_from(nbunch)
        assert G.has_node("L")

    def test_nbunch_dict(self):
        # nbunch is a dict with nodes as keys
        G = self.G()
        nbunch = set("ABCDEFGHIJKL")
        G.add_nodes_from(nbunch)
        nbunch = {"I": "foo", "J": 2, "K": True, "L": "spam"}
        G.remove_nodes_from(nbunch)
        assert sorted(G.nodes(), key=str), ["A", "B", "C", "D", "E", "F", "G", "H"]

    def test_nbunch_iterator(self):
        G = self.G()
        G.add_nodes_from(["A", "B", "C", "D", "E", "F", "G", "H"])
        n_iter = self.P3.nodes()
        G.add_nodes_from(n_iter)
        assert sorted(G.nodes(), key=str) == [
            1,
            2,
            3,
            "A",
            "B",
            "C",
            "D",
            "E",
            "F",
            "G",
            "H",
        ]
        n_iter = self.P3.nodes()  # rebuild same iterator
        G.remove_nodes_from(n_iter)  # remove nbunch of nodes (nbunch=iterator)
        assert sorted(G.nodes(), key=str) == ["A", "B", "C", "D", "E", "F", "G", "H"]

    def test_nbunch_graph(self):
        G = self.G()
        G.add_nodes_from(["A", "B", "C", "D", "E", "F", "G", "H"])
        nbunch = self.K3
        G.add_nodes_from(nbunch)
        assert sorted(G.nodes(), key=str), [
            1,
            2,
            3,
            "A",
            "B",
            "C",
            "D",
            "E",
            "F",
            "G",
            "H",
        ]

    # Edges

    def test_add_edge(self):
        G = self.G()
        pytest.raises(TypeError, G.add_edge, "A")

        G.add_edge("A", "B")  # testing add_edge()
        G.add_edge("A", "B")  # should fail silently
        assert G.has_edge("A", "B")
        assert not G.has_edge("A", "C")
        assert G.has_edge(*("A", "B"))
        if G.is_directed():
            assert not G.has_edge("B", "A")
        else:
            # G is undirected, so B->A is an edge
            assert G.has_edge("B", "A")

        G.add_edge("A", "C")  # test directedness
        G.add_edge("C", "A")
        G.remove_edge("C", "A")
        if G.is_directed():
            assert G.has_edge("A", "C")
        else:
            assert not G.has_edge("A", "C")
        assert not G.has_edge("C", "A")

    def test_self_loop(self):
        G = self.G()
        G.add_edge("A", "A")  # test self loops
        assert G.has_edge("A", "A")
        G.remove_edge("A", "A")
        G.add_edge("X", "X")
        assert G.has_node("X")
        G.remove_node("X")
        G.add_edge("A", "Z")  # should add the node silently
        assert G.has_node("Z")

    def test_add_edges_from(self):
        G = self.G()
        G.add_edges_from([("B", "C")])  # test add_edges_from()
        assert G.has_edge("B", "C")
        if G.is_directed():
            assert not G.has_edge("C", "B")
        else:
            assert G.has_edge("C", "B")  # undirected

        G.add_edges_from([("D", "F"), ("B", "D")])
        assert G.has_edge("D", "F")
        assert G.has_edge("B", "D")

        if G.is_directed():
            assert not G.has_edge("D", "B")
        else:
            assert G.has_edge("D", "B")  # undirected

    def test_add_edges_from2(self):
        G = self.G()
        # after failing silently, should add 2nd edge
        G.add_edges_from([tuple("IJ"), list("KK"), tuple("JK")])
        assert G.has_edge(*("I", "J"))
        assert G.has_edge(*("K", "K"))
        assert G.has_edge(*("J", "K"))
        if G.is_directed():
            assert not G.has_edge(*("K", "J"))
        else:
            assert G.has_edge(*("K", "J"))

    def test_add_edges_from3(self):
        G = self.G()
        G.add_edges_from(zip(list("ACD"), list("CDE")))
        assert G.has_edge("D", "E")
        assert not G.has_edge("E", "C")

    def test_remove_edge(self):
        G = self.G()
        G.add_nodes_from([1, 2, 3, "A", "B", "C", "D", "E", "F", "G", "H"])

        G.add_edges_from(zip(list("MNOP"), list("NOPM")))
        assert G.has_edge("O", "P")
        assert G.has_edge("P", "M")
        G.remove_node("P")  # tests remove_node()'s handling of edges.
        assert not G.has_edge("P", "M")
        pytest.raises(TypeError, G.remove_edge, "M")

        G.add_edge("N", "M")
        assert G.has_edge("M", "N")
        G.remove_edge("M", "N")
        assert not G.has_edge("M", "N")

        # self loop fails silently
        G.remove_edges_from([list("HI"), list("DF"), tuple("KK"), tuple("JK")])
        assert not G.has_edge("H", "I")
        assert not G.has_edge("J", "K")
        G.remove_edges_from([list("IJ"), list("KK"), list("JK")])
        assert not G.has_edge("I", "J")
        G.remove_nodes_from(set("ZEFHIMNO"))
        G.add_edge("J", "K")

    def test_edges_nbunch(self):
        # Test G.edges(nbunch) with various forms of nbunch
        G = self.G()
        G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")])
        # node not in nbunch should be quietly ignored
        pytest.raises(nx.NetworkXError, G.edges, 6)
        assert list(G.edges("Z")) == []  # iterable non-node
        # nbunch can be an empty list
        assert list(G.edges([])) == []
        if G.is_directed():
            elist = [("A", "B"), ("A", "C"), ("B", "D")]
        else:
            elist = [("A", "B"), ("A", "C"), ("B", "C"), ("B", "D")]
        # nbunch can be a list
        assert_edges_equal(list(G.edges(["A", "B"])), elist)
        # nbunch can be a set
        assert_edges_equal(G.edges({"A", "B"}), elist)
        # nbunch can be a graph
        G1 = self.G()
        G1.add_nodes_from("AB")
        assert_edges_equal(G.edges(G1), elist)
        # nbunch can be a dict with nodes as keys
        ndict = {"A": "thing1", "B": "thing2"}
        assert_edges_equal(G.edges(ndict), elist)
        # nbunch can be a single node
        assert_edges_equal(list(G.edges("A")), [("A", "B"), ("A", "C")])
        assert_nodes_equal(sorted(G), ["A", "B", "C", "D"])

        # nbunch can be nothing (whole graph)
        assert_edges_equal(
            list(G.edges()),
            [("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")],
        )

    def test_degree(self):
        G = self.G()
        G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")])
        assert G.degree("A") == 2

        # degree of single node in iterable container must return dict
        assert list(G.degree(["A"])) == [("A", 2)]
        assert sorted(d for n, d in G.degree(["A", "B"])) == [2, 3]
        assert sorted(d for n, d in G.degree()) == [2, 2, 3, 3]

    def test_degree2(self):
        H = self.G()
        H.add_edges_from([(1, 24), (1, 2)])
        assert sorted(d for n, d in H.degree([1, 24])) == [1, 2]

    def test_degree_graph(self):
        P3 = nx.path_graph(3)
        P5 = nx.path_graph(5)
        # silently ignore nodes not in P3
        assert dict(d for n, d in P3.degree(["A", "B"])) == {}
        # nbunch can be a graph
        assert sorted(d for n, d in P5.degree(P3)) == [1, 2, 2]
        # nbunch can be a graph that's way too big
        assert sorted(d for n, d in P3.degree(P5)) == [1, 1, 2]
        assert list(P5.degree([])) == []
        assert dict(P5.degree([])) == {}

    def test_null(self):
        null = nx.null_graph()
        assert list(null.degree()) == []
        assert dict(null.degree()) == {}

    def test_order_size(self):
        G = self.G()
        G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")])
        assert G.order() == 4
        assert G.size() == 5
        assert G.number_of_edges() == 5
        assert G.number_of_edges("A", "B") == 1
        assert G.number_of_edges("A", "D") == 0

    def test_copy(self):
        G = self.G()
        H = G.copy()  # copy
        assert H.adj == G.adj
        assert H.name == G.name
        assert H != G

    def test_subgraph(self):
        G = self.G()
        G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")])
        SG = G.subgraph(["A", "B", "D"])
        assert_nodes_equal(list(SG), ["A", "B", "D"])
        assert_edges_equal(list(SG.edges()), [("A", "B"), ("B", "D")])

    def test_to_directed(self):
        G = self.G()
        if not G.is_directed():
            G.add_edges_from(
                [("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")]
            )

            DG = G.to_directed()
            assert DG != G  # directed copy or copy

            assert DG.is_directed()
            assert DG.name == G.name
            assert DG.adj == G.adj
            assert sorted(DG.out_edges(list("AB"))) == [
                ("A", "B"),
                ("A", "C"),
                ("B", "A"),
                ("B", "C"),
                ("B", "D"),
            ]
            DG.remove_edge("A", "B")
            assert DG.has_edge("B", "A")  # this removes B-A but not  A-B
            assert not DG.has_edge("A", "B")

    def test_to_undirected(self):
        G = self.G()
        if G.is_directed():
            G.add_edges_from(
                [("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")]
            )
            UG = G.to_undirected()  # to_undirected
            assert UG != G
            assert not UG.is_directed()
            assert G.is_directed()
            assert UG.name == G.name
            assert UG.adj != G.adj
            assert sorted(UG.edges(list("AB"))) == [
                ("A", "B"),
                ("A", "C"),
                ("B", "C"),
                ("B", "D"),
            ]
            assert sorted(UG.edges(["A", "B"])) == [
                ("A", "B"),
                ("A", "C"),
                ("B", "C"),
                ("B", "D"),
            ]
            UG.remove_edge("A", "B")
            assert not UG.has_edge("B", "A")
            assert not UG.has_edge("A", "B")

    def test_neighbors(self):
        G = self.G()
        G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")])
        G.add_nodes_from("GJK")
        assert sorted(G["A"]) == ["B", "C"]
        assert sorted(G.neighbors("A")) == ["B", "C"]
        assert sorted(G.neighbors("A")) == ["B", "C"]
        assert sorted(G.neighbors("G")) == []
        pytest.raises(nx.NetworkXError, G.neighbors, "j")

    def test_iterators(self):
        G = self.G()
        G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")])
        G.add_nodes_from("GJK")
        assert sorted(G.nodes()) == ["A", "B", "C", "D", "G", "J", "K"]
        assert_edges_equal(
            G.edges(), [("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")]
        )

        assert sorted([v for k, v in G.degree()]) == [0, 0, 0, 2, 2, 3, 3]
        assert sorted(G.degree(), key=str) == [
            ("A", 2),
            ("B", 3),
            ("C", 3),
            ("D", 2),
            ("G", 0),
            ("J", 0),
            ("K", 0),
        ]
        assert sorted(G.neighbors("A")) == ["B", "C"]
        pytest.raises(nx.NetworkXError, G.neighbors, "X")
        G.clear()
        assert nx.number_of_nodes(G) == 0
        assert nx.number_of_edges(G) == 0

    def test_null_subgraph(self):
        # Subgraph of a null graph is a null graph
        nullgraph = nx.null_graph()
        G = nx.null_graph()
        H = G.subgraph([])
        assert nx.is_isomorphic(H, nullgraph)

    def test_empty_subgraph(self):
        # Subgraph of an empty graph is an empty graph. test 1
        nullgraph = nx.null_graph()
        E5 = nx.empty_graph(5)
        E10 = nx.empty_graph(10)
        H = E10.subgraph([])
        assert nx.is_isomorphic(H, nullgraph)
        H = E10.subgraph([1, 2, 3, 4, 5])
        assert nx.is_isomorphic(H, E5)

    def test_complete_subgraph(self):
        # Subgraph of a complete graph is a complete graph
        K1 = nx.complete_graph(1)
        K3 = nx.complete_graph(3)
        K5 = nx.complete_graph(5)
        H = K5.subgraph([1, 2, 3])
        assert nx.is_isomorphic(H, K3)

    def test_subgraph_nbunch(self):
        nullgraph = nx.null_graph()
        K1 = nx.complete_graph(1)
        K3 = nx.complete_graph(3)
        K5 = nx.complete_graph(5)
        # Test G.subgraph(nbunch), where nbunch is a single node
        H = K5.subgraph(1)
        assert nx.is_isomorphic(H, K1)
        # Test G.subgraph(nbunch), where nbunch is a set
        H = K5.subgraph({1})
        assert nx.is_isomorphic(H, K1)
        # Test G.subgraph(nbunch), where nbunch is an iterator
        H = K5.subgraph(iter(K3))
        assert nx.is_isomorphic(H, K3)
        # Test G.subgraph(nbunch), where nbunch is another graph
        H = K5.subgraph(K3)
        assert nx.is_isomorphic(H, K3)
        H = K5.subgraph([9])
        assert nx.is_isomorphic(H, nullgraph)

    def test_node_tuple_issue(self):
        H = self.G()
        # Test error handling of tuple as a node
        pytest.raises(nx.NetworkXError, H.remove_node, (1, 2))
        H.remove_nodes_from([(1, 2)])  # no error
        pytest.raises(nx.NetworkXError, H.neighbors, (1, 2))