a
HlX`çã@s dZddlZdgZddd„ZdS)z
Flow Hierarchy.
éNÚflow_hierarchycsFˆ ¡st d¡‚t ˆ¡}dt‡‡fdd„|Dƒƒtˆ ˆ¡ƒS)a‚Returns the flow hierarchy of a directed network.
Flow hierarchy is defined as the fraction of edges not participating
in cycles in a directed graph [1]_.
Parameters
----------
G : DiGraph or MultiDiGraph
A directed graph
weight : key,optional (default=None)
Attribute to use for node weights. If None the weight defaults to 1.
Returns
-------
h : float
Flow hierarchy value
Notes
-----
The algorithm described in [1]_ computes the flow hierarchy through
exponentiation of the adjacency matrix. This function implements an
alternative approach that finds strongly connected components.
An edge is in a cycle if and only if it is in a strongly connected
component, which can be found in $O(m)$ time using Tarjan's algorithm.
References
----------
.. [1] Luo, J.; Magee, C.L. (2011),
Detecting evolving patterns of self-organizing networks by flow
hierarchy measurement, Complexity, Volume 16 Issue 6 53-61.
DOI: 10.1002/cplx.20368
http://web.mit.edu/~cmagee/www/documents/28-DetectingEvolvingPatterns_FlowHierarchy.pdf
z%G must be a digraph in flow_hierarchygð?c3s|]}ˆ |¡ ˆ¡VqdS)N)ZsubgraphÚsize)Ú.0Úc©ÚGÚweight©ú…/Users/cmdms/OneDrive-UOB/Development/Projects/2021/sam-consensus-v3/env/lib/python3.9/site-packages/networkx/algorithms/hierarchy.pyÚ /óz!flow_hierarchy..)Zis_directedÚnxZ
NetworkXErrorZstrongly_connected_componentsÚsumÚfloatr)rrZsccr rr
r s#
)N)Ú__doc__Znetworkxr
Ú__all__rr r r r
Ús