Mercurial > repos > shians > shrnaseq
view hairpinTool.R @ 11:c0a76e30d61b
- Removed max on cpm filtering. Really shouldn't have been there in the first
place.
- Added explicit arguments to processHairpinReads in R.
author | shian_su <registertonysu@gmail.com> |
---|---|
date | Tue, 30 Sep 2014 16:36:12 +1000 |
parents | 8923d4ea858b |
children | ebb4cb1e8e35 |
line wrap: on
line source
# ARGS: 1.inputType -String specifying format of input (fastq or table) # IF inputType is "fastQ": # 2*.fastqPath -One or more strings specifying path to fastq files # 2.annoPath -String specifying path to hairpin annotation table # 3.samplePath -String specifying path to sample annotation table # 4.barStart -Integer specifying starting position of barcode # 5.barEnd -Integer specifying ending position of barcode # 6.hpStart -Integer specifying startins position of hairpin # unique region # 7.hpEnd -Integer specifying ending position of hairpin # unique region # ### # IF inputType is "counts": # 2.countPath -String specifying path to count table # 3.annoPath -String specifying path to hairpin annotation table # 4.samplePath -String specifying path to sample annotation table # ### # 8.cpmReq -Float specifying cpm requirement # 9.sampleReq -Integer specifying cpm requirement # 10.fdrThresh -Float specifying the FDR requirement # 11.lfcThresh -Float specifying the log-fold-change requirement # 12.workMode -String specifying exact test or GLM usage # 13.htmlPath -String specifying path to HTML file # 14.folderPath -STring specifying path to folder for output # IF workMode is "classic" (exact test) # 15.pairData[2] -String specifying first group for exact test # 16.pairData[1] -String specifying second group for exact test # ### # IF workMode is "glm" # 15.contrastData -String specifying contrasts to be made # 16.roastOpt -String specifying usage of gene-wise tests # 17.hairpinReq -String specifying hairpin requirement for gene- # wise test # 18.selectOpt -String specifying type of selection for barcode # plots # 19.selectVals -String specifying members selected for barcode # plots # ### # # OUT: Bar Plot of Counts Per Index # Bar Plot of Counts Per Hairpin # MDS Plot # Smear Plot # Barcode Plots (If Genewise testing was selected) # Top Expression Table # Feature Counts Table # HTML file linking to the ouputs # # Author: Shian Su - registertonysu@gmail.com - Jan 2014 # Record starting time timeStart <- as.character(Sys.time()) # Loading and checking required packages library(methods, quietly=TRUE, warn.conflicts=FALSE) library(statmod, quietly=TRUE, warn.conflicts=FALSE) library(splines, quietly=TRUE, warn.conflicts=FALSE) library(edgeR, quietly=TRUE, warn.conflicts=FALSE) library(limma, quietly=TRUE, warn.conflicts=FALSE) if (packageVersion("edgeR") < "3.5.27") { stop("Please update 'edgeR' to version >= 3.5.23 to run this tool") } if (packageVersion("limma")<"3.19.19") { message("Update 'limma' to version >= 3.19.19 to see updated barcode graphs") } ################################################################################ ### Function declarations ################################################################################ # Function to load libaries without messages silentLibrary <- function(...) { list <- c(...) for (package in list){ suppressPackageStartupMessages(library(package, character.only=TRUE)) } } # Function to sanitise contrast equations so there are no whitespaces # surrounding the arithmetic operators, leading or trailing whitespace sanitiseEquation <- function(equation) { equation <- gsub(" *[+] *", "+", equation) equation <- gsub(" *[-] *", "-", equation) equation <- gsub(" *[/] *", "/", equation) equation <- gsub(" *[*] *", "*", equation) equation <- gsub("^\\s+|\\s+$", "", equation) return(equation) } # Function to sanitise group information sanitiseGroups <- function(string) { string <- gsub(" *[,] *", ",", string) string <- gsub("^\\s+|\\s+$", "", string) return(string) } # Function to change periods to whitespace in a string unmake.names <- function(string) { string <- gsub(".", " ", string, fixed=TRUE) return(string) } # Function has string input and generates an output path string makeOut <- function(filename) { return(paste0(folderPath, "/", filename)) } # Function has string input and generates both a pdf and png output strings imgOut <- function(filename) { assign(paste0(filename, "Png"), makeOut(paste0(filename,".png")), envir=.GlobalEnv) assign(paste0(filename, "Pdf"), makeOut(paste0(filename,".pdf")), envir=.GlobalEnv) } # Create cat function default path set, default seperator empty and appending # true by default (Ripped straight from the cat function with altered argument # defaults) cata <- function(..., file=htmlPath, sep="", fill=FALSE, labels=NULL, append=TRUE) { if (is.character(file)) if (file == "") file <- stdout() else if (substring(file, 1L, 1L) == "|") { file <- pipe(substring(file, 2L), "w") on.exit(close(file)) } else { file <- file(file, ifelse(append, "a", "w")) on.exit(close(file)) } .Internal(cat(list(...), file, sep, fill, labels, append)) } # Function to write code for html head and title HtmlHead <- function(title) { cata("<head>\n") cata("<title>", title, "</title>\n") cata("</head>\n") } # Function to write code for html links HtmlLink <- function(address, label=address) { cata("<a href=\"", address, "\" target=\"_blank\">", label, "</a><br />\n") } # Function to write code for html images HtmlImage <- function(source, label=source, height=600, width=600) { cata("<img src=\"", source, "\" alt=\"", label, "\" height=\"", height) cata("\" width=\"", width, "\"/>\n") } # Function to write code for html list items ListItem <- function(...) { cata("<li>", ..., "</li>\n") } TableItem <- function(...) { cata("<td>", ..., "</td>\n") } TableHeadItem <- function(...) { cata("<th>", ..., "</th>\n") } ################################################################################ ### Input Processing ################################################################################ # Grabbing arguments from command line argv <- commandArgs(TRUE) # Remove fastq file paths after collecting from argument vector inputType <- as.character(argv[1]) if (inputType=="fastq") { fastqPath <- as.character(gsub("fastq::", "", argv[grepl("fastq::", argv)], fixed=TRUE)) argv <- argv[!grepl("fastq::", argv, fixed=TRUE)] annoPath <- as.character(argv[2]) samplePath <- as.character(argv[3]) barStart <- as.numeric(argv[4]) barEnd <- as.numeric(argv[5]) hpStart <- as.numeric(argv[6]) hpEnd <- as.numeric(argv[7]) } else if (inputType=="counts") { countPath <- as.character(argv[2]) annoPath <- as.character(argv[3]) samplePath <- as.character(argv[4]) } cpmReq <- as.numeric(argv[8]) sampleReq <- as.numeric(argv[9]) fdrThresh <- as.numeric(argv[10]) lfcThresh <- as.numeric(argv[11]) workMode <- as.character(argv[12]) htmlPath <- as.character(argv[13]) folderPath <- as.character(argv[14]) if (workMode=="classic") { pairData <- character() pairData[2] <- as.character(argv[15]) pairData[1] <- as.character(argv[16]) } else if (workMode=="glm") { contrastData <- as.character(argv[15]) roastOpt <- as.character(argv[16]) hairpinReq <- as.numeric(argv[17]) selectOpt <- as.character(argv[18]) selectVals <- as.character(argv[19]) } # Read in inputs samples <- read.table(samplePath, header=TRUE, sep="\t") anno <- read.table(annoPath, header=TRUE, sep="\t") if (inputType=="counts") { counts <- read.table(countPath, header=TRUE, sep="\t") } ###################### Check inputs for correctness ############################ samples$ID <- make.names(samples$ID) if (!any(grepl("group", names(samples)))) { stop("'group' column not specified in sample annotation file") } # Check if grouping variable has been specified if (any(table(samples$ID)>1)){ tab <- table(samples$ID) offenders <- paste(names(tab[tab>1]), collapse=", ") offenders <- unmake.names(offenders) stop("'ID' column of sample annotation must have unique values, values ", offenders, " are repeated") } # Check that IDs in sample annotation are unique if (inputType=="fastq") { if (any(table(anno$ID)>1)){ tab <- table(anno$ID) offenders <- paste(names(tab[tab>1]), collapse=", ") stop("'ID' column of hairpin annotation must have unique values, values ", offenders, " are repeated") } # Check that IDs in hairpin annotation are unique } else if (inputType=="counts") { if (any(is.na(match(samples$ID, colnames(counts))))) { stop("not all samples have groups specified") } # Check that a group has be specifed for each sample if (any(table(counts$ID)>1)){ tab <- table(counts$ID) offenders <- paste(names(tab[tab>1]), collapse=", ") stop("'ID' column of count table must have unique values, values ", offenders, " are repeated") } # Check that IDs in count table are unique } if (workMode=="glm") { if (roastOpt == "yes") { if (is.na(match("Gene", colnames(anno)))) { tempStr <- paste("Gene-wise tests selected but'Gene' column not", "specified in hairpin annotation file") stop(tempStr) } } } ################################################################################ # Process arguments if (workMode=="glm") { if (roastOpt=="yes") { wantRoast <- TRUE } else { wantRoast <- FALSE } } # Split up contrasts seperated by comma into a vector and replace spaces with # periods if (exists("contrastData")) { contrastData <- unlist(strsplit(contrastData, split=",")) contrastData <- sanitiseEquation(contrastData) contrastData <- gsub(" ", ".", contrastData, fixed=TRUE) } # Replace spaces with periods in pair data if (exists("pairData")) { pairData <- make.names(pairData) } # Generate output folder and paths dir.create(folderPath, showWarnings=FALSE) # Generate links for outputs imgOut("barHairpin") imgOut("barIndex") imgOut("mds") imgOut("bcv") if (workMode == "classic") { smearPng <- makeOut(paste0("smear(", pairData[2], "-", pairData[1],").png")) smearPdf <- makeOut(paste0("smear(", pairData[2], "-", pairData[1],").pdf")) topOut <- makeOut(paste0("toptag(", pairData[2], "-", pairData[1],").tsv")) } else if (workMode=="glm") { smearPng <- character() smearPdf <- character() topOut <- character() roastOut <- character() barcodePng <- character() barcodePdf <- character() for (i in 1:length(contrastData)) { smearPng[i] <- makeOut(paste0("smear(", contrastData[i], ").png")) smearPdf[i] <- makeOut(paste0("smear(", contrastData[i], ").pdf")) topOut[i] <- makeOut(paste0("toptag(", contrastData[i], ").tsv")) roastOut[i] <- makeOut(paste0("gene_level(", contrastData[i], ").tsv")) barcodePng[i] <- makeOut(paste0("barcode(", contrastData[i], ").png")) barcodePdf[i] <- makeOut(paste0("barcode(", contrastData[i], ").pdf")) } } countsOut <- makeOut("counts.tsv") sessionOut <- makeOut("session_info.txt") # Initialise data for html links and images, table with the link label and # link address linkData <- data.frame(Label=character(), Link=character(), stringsAsFactors=FALSE) imageData <- data.frame(Label=character(), Link=character(), stringsAsFactors=FALSE) # Initialise vectors for storage of up/down/neutral regulated counts upCount <- numeric() downCount <- numeric() flatCount <- numeric() ################################################################################ ### Data Processing ################################################################################ # Transform gene selection from string into index values for mroast if (workMode=="glm") { if (selectOpt=="rank") { selectVals <- gsub(" ", "", selectVals, fixed=TRUE) selectVals <- unlist(strsplit(selectVals, ",")) for (i in 1:length(selectVals)) { if (grepl(":", selectVals[i], fixed=TRUE)) { temp <- unlist(strsplit(selectVals[i], ":")) selectVals <- selectVals[-i] a <- as.numeric(temp[1]) b <- as.numeric(temp[2]) selectVals <- c(selectVals, a:b) } } selectVals <- as.numeric(unique(selectVals)) } else { selectVals <- gsub(" ", "", selectVals, fixed=TRUE) selectVals <- unlist(strsplit(selectVals, ",")) } } if (inputType=="fastq") { # Use EdgeR hairpin process and capture outputs hpReadout <- capture.output( data <- processHairpinReads(readfile=fastqPath, barcodefile=samplePath, hairpinfile=annoPath, barcodeStart=barStart, barcodeEnd=barEnd, hairpinStart=hpStart, hairpinEnd=hpEnd, verbose=TRUE) ) # Remove function output entries that show processing data or is empty hpReadout <- hpReadout[hpReadout!=""] hpReadout <- hpReadout[!grepl("Processing", hpReadout)] hpReadout <- hpReadout[!grepl("in file", hpReadout)] hpReadout <- gsub(" -- ", "", hpReadout, fixed=TRUE) # Make the names of groups syntactically valid (replace spaces with periods) data$samples$group <- make.names(data$samples$group) } else if (inputType=="counts") { # Process counts information, set ID column to be row names rownames(counts) <- counts$ID counts <- counts[ , !(colnames(counts)=="ID")] countsRows <- nrow(counts) # Process group information factors <- samples$group[match(samples$ID, colnames(counts))] annoRows <- nrow(anno) anno <- anno[match(rownames(counts), anno$ID), ] annoMatched <- sum(!is.na(anno$ID)) if (any(is.na(anno$ID))) { warningStr <- paste("count table contained more hairpins than", "specified in hairpin annotation file") warning(warningStr) } # Filter out rows with zero counts sel <- rowSums(counts)!=0 counts <- counts[sel, ] anno <- anno[sel, ] # Create DGEList data <- DGEList(counts=counts, lib.size=colSums(counts), norm.factors=rep(1,ncol(counts)), genes=anno, group=factors) # Make the names of groups syntactically valid (replace spaces with periods) data$samples$group <- make.names(data$samples$group) } # Filter out any samples with zero counts if (any(data$samples$lib.size == 0)) { sampleSel <- data$samples$lib.size != 0 filteredSamples <- paste(data$samples$ID[!sampleSel], collapse=", ") data$counts <- data$counts[, sampleSel] data$samples <- data$samples[sampleSel, ] } # Filter hairpins with low counts preFilterCount <- nrow(data) sel <- rowSums(cpm(data$counts) > cpmReq) >= sampleReq data <- data[sel, ] postFilterCount <- nrow(data) filteredCount <- preFilterCount-postFilterCount # Estimate dispersions data <- estimateDisp(data) commonBCV <- sqrt(data$common.dispersion) ################################################################################ ### Output Processing ################################################################################ # Plot number of hairpins that could be matched per sample png(barIndexPng, width=600, height=600) barplot(height<-colSums(data$counts), las=2, main="Counts per index", cex.names=1.0, cex.axis=0.8, ylim=c(0, max(height)*1.2)) imageData[1, ] <- c("Counts per Index", "barIndex.png") invisible(dev.off()) pdf(barIndexPdf) barplot(height<-colSums(data$counts), las=2, main="Counts per index", cex.names=1.0, cex.axis=0.8, ylim=c(0, max(height)*1.2)) linkData[1, ] <- c("Counts per Index Barplot (.pdf)", "barIndex.pdf") invisible(dev.off()) # Plot per hairpin totals across all samples png(barHairpinPng, width=600, height=600) if (nrow(data$counts)<50) { barplot(height<-rowSums(data$counts), las=2, main="Counts per hairpin", cex.names=0.8, cex.axis=0.8, ylim=c(0, max(height)*1.2)) } else { barplot(height<-rowSums(data$counts), las=2, main="Counts per hairpin", cex.names=0.8, cex.axis=0.8, ylim=c(0, max(height)*1.2), names.arg=FALSE) } imageData <- rbind(imageData, c("Counts per Hairpin", "barHairpin.png")) invisible(dev.off()) pdf(barHairpinPdf) if (nrow(data$counts)<50) { barplot(height<-rowSums(data$counts), las=2, main="Counts per hairpin", cex.names=0.8, cex.axis=0.8, ylim=c(0, max(height)*1.2)) } else { barplot(height<-rowSums(data$counts), las=2, main="Counts per hairpin", cex.names=0.8, cex.axis=0.8, ylim=c(0, max(height)*1.2), names.arg=FALSE) } newEntry <- c("Counts per Hairpin Barplot (.pdf)", "barHairpin.pdf") linkData <- rbind(linkData, newEntry) invisible(dev.off()) # Make an MDS plot to visualise relationships between replicate samples png(mdsPng, width=600, height=600) plotMDS(data, labels=data$samples$group, col=as.numeric(data$samples$group), main="MDS Plot") imageData <- rbind(imageData, c("MDS Plot", "mds.png")) invisible(dev.off()) pdf(mdsPdf) plotMDS(data, labels=data$samples$group, col=as.numeric(data$samples$group), main="MDS Plot") newEntry <- c("MDS Plot (.pdf)", "mds.pdf") linkData <- rbind(linkData, newEntry) invisible(dev.off()) # BCV Plot png(bcvPng, width=600, height=600) plotBCV(data, main="BCV Plot") imageData <- rbind(imageData, c("BCV Plot", "bcv.png")) invisible(dev.off()) pdf(bcvPdf) plotBCV(data, main="BCV Plot") newEntry <- c("BCV Plot (.pdf)", "bcv.pdf") invisible(dev.off()) if (workMode=="classic") { # Assess differential representation using classic exact testing methodology # in edgeR testData <- exactTest(data, pair=pairData) top <- topTags(testData, n=Inf) topIDs <- top$table[(top$table$FDR < fdrThresh) & (abs(top$table$logFC) > lfcThresh), 1] write.table(top, file=topOut, row.names=FALSE, sep="\t") linkName <- paste0("Top Tags Table(", pairData[2], "-", pairData[1], ") (.tsv)") linkAddr <- paste0("toptag(", pairData[2], "-", pairData[1], ").tsv") linkData <- rbind(linkData, c(linkName, linkAddr)) upCount[1] <- sum(top$table$FDR < fdrThresh & top$table$logFC > lfcThresh) downCount[1] <- sum(top$table$FDR < fdrThresh & top$table$logFC < -lfcThresh) flatCount[1] <- sum(top$table$FDR > fdrThresh | abs(top$table$logFC) < lfcThresh) # Select hairpins with FDR < 0.05 to highlight on plot png(smearPng, width=600, height=600) plotTitle <- gsub(".", " ", paste0("Smear Plot: ", pairData[2], "-", pairData[1]), fixed=TRUE) plotSmear(testData, de.tags=topIDs, pch=20, cex=1.0, main=plotTitle) abline(h=c(-1, 0, 1), col=c("dodgerblue", "yellow", "dodgerblue"), lty=2) imgName <- paste0("Smear Plot(", pairData[2], "-", pairData[1], ")") imgAddr <- paste0("smear(", pairData[2], "-", pairData[1],").png") imageData <- rbind(imageData, c(imgName, imgAddr)) invisible(dev.off()) pdf(smearPdf) plotTitle <- gsub(".", " ", paste0("Smear Plot: ", pairData[2], "-", pairData[1]), fixed=TRUE) plotSmear(testData, de.tags=topIDs, pch=20, cex=1.0, main=plotTitle) abline(h=c(-1, 0, 1), col=c("dodgerblue", "yellow", "dodgerblue"), lty=2) imgName <- paste0("Smear Plot(", pairData[2], "-", pairData[1], ") (.pdf)") imgAddr <- paste0("smear(", pairData[2], "-", pairData[1], ").pdf") linkData <- rbind(linkData, c(imgName, imgAddr)) invisible(dev.off()) } else if (workMode=="glm") { # Generating design information factors <- factor(data$sample$group) design <- model.matrix(~0+factors) colnames(design) <- gsub("factors", "", colnames(design), fixed=TRUE) # Split up contrasts seperated by comma into a vector contrastData <- unlist(strsplit(contrastData, split=",")) for (i in 1:length(contrastData)) { # Generate contrasts information contrasts <- makeContrasts(contrasts=contrastData[i], levels=design) # Fit negative bionomial GLM fit <- glmFit(data, design) # Carry out Likelihood ratio test testData <- glmLRT(fit, contrast=contrasts) # Select hairpins with FDR < 0.05 to highlight on plot top <- topTags(testData, n=Inf) topIDs <- top$table[(top$table$FDR < fdrThresh) & (abs(top$table$logFC) > lfcThresh), 1] write.table(top, file=topOut[i], row.names=FALSE, sep="\t") linkName <- paste0("Top Tags Table(", contrastData[i], ") (.tsv)") linkAddr <- paste0("toptag(", contrastData[i], ").tsv") linkData <- rbind(linkData, c(linkName, linkAddr)) # Collect counts for differential representation upCount[i] <- sum(top$table$FDR < fdrThresh & top$table$logFC > lfcThresh) downCount[i] <- sum(top$table$FDR < fdrThresh & top$table$logFC < -lfcThresh) flatCount[i] <- sum(top$table$FDR > fdrThresh | abs(top$table$logFC) < lfcThresh) # Make a plot of logFC versus logCPM png(smearPng[i], height=600, width=600) plotTitle <- paste("Smear Plot:", gsub(".", " ", contrastData[i], fixed=TRUE)) plotSmear(testData, de.tags=topIDs, pch=20, cex=0.8, main=plotTitle) abline(h=c(-1, 0, 1), col=c("dodgerblue", "yellow", "dodgerblue"), lty=2) imgName <- paste0("Smear Plot(", contrastData[i], ")") imgAddr <- paste0("smear(", contrastData[i], ").png") imageData <- rbind(imageData, c(imgName, imgAddr)) invisible(dev.off()) pdf(smearPdf[i]) plotTitle <- paste("Smear Plot:", gsub(".", " ", contrastData[i], fixed=TRUE)) plotSmear(testData, de.tags=topIDs, pch=20, cex=0.8, main=plotTitle) abline(h=c(-1, 0, 1), col=c("dodgerblue", "yellow", "dodgerblue"), lty=2) linkName <- paste0("Smear Plot(", contrastData[i], ") (.pdf)") linkAddr <- paste0("smear(", contrastData[i], ").pdf") linkData <- rbind(linkData, c(linkName, linkAddr)) invisible(dev.off()) genes <- as.character(data$genes$Gene) unq <- unique(genes) unq <- unq[!is.na(unq)] geneList <- list() for (gene in unq) { if (length(which(genes==gene)) >= hairpinReq) { geneList[[gene]] <- which(genes==gene) } } if (wantRoast) { # Input preparaton for roast nrot <- 9999 set.seed(602214129) roastData <- mroast(data, index=geneList, design=design, contrast=contrasts, nrot=nrot) roastData <- cbind(GeneID=rownames(roastData), roastData) write.table(roastData, file=roastOut[i], row.names=FALSE, sep="\t") linkName <- paste0("Gene Level Analysis Table(", contrastData[i], ") (.tsv)") linkAddr <- paste0("gene_level(", contrastData[i], ").tsv") linkData <- rbind(linkData, c(linkName, linkAddr)) if (selectOpt=="rank") { selectedGenes <- rownames(roastData)[selectVals] } else { selectedGenes <- selectVals } if (packageVersion("limma")<"3.19.19") { png(barcodePng[i], width=600, height=length(selectedGenes)*150) } else { png(barcodePng[i], width=600, height=length(selectedGenes)*300) } par(mfrow=c(length(selectedGenes), 1)) for (gene in selectedGenes) { barcodeplot(testData$table$logFC, index=geneList[[gene]], main=paste("Barcode Plot for", gene, "(logFCs)", gsub(".", " ", contrastData[i])), labels=c("Positive logFC", "Negative logFC")) } imgName <- paste0("Barcode Plot(", contrastData[i], ")") imgAddr <- paste0("barcode(", contrastData[i], ").png") imageData <- rbind(imageData, c(imgName, imgAddr)) dev.off() if (packageVersion("limma")<"3.19.19") { pdf(barcodePdf[i], width=8, height=2) } else { pdf(barcodePdf[i], width=8, height=4) } for (gene in selectedGenes) { barcodeplot(testData$table$logFC, index=geneList[[gene]], main=paste("Barcode Plot for", gene, "(logFCs)", gsub(".", " ", contrastData[i])), labels=c("Positive logFC", "Negative logFC")) } linkName <- paste0("Barcode Plot(", contrastData[i], ") (.pdf)") linkAddr <- paste0("barcode(", contrastData[i], ").pdf") linkData <- rbind(linkData, c(linkName, linkAddr)) dev.off() } } } # Generate data frame of the significant differences sigDiff <- data.frame(Up=upCount, Flat=flatCount, Down=downCount) if (workMode == "glm") { row.names(sigDiff) <- contrastData } else if (workMode == "classic") { row.names(sigDiff) <- paste0(pairData[2], "-", pairData[1]) } # Output table of summarised counts ID <- rownames(data$counts) outputCounts <- cbind(ID, data$counts) write.table(outputCounts, file=countsOut, row.names=FALSE, sep="\t", quote=FALSE) linkName <- "Counts table (.tsv)" linkAddr <- "counts.tsv" linkData <- rbind(linkData, c(linkName, linkAddr)) # Record session info writeLines(capture.output(sessionInfo()), sessionOut) linkData <- rbind(linkData, c("Session Info", "session_info.txt")) # Record ending time and calculate total run time timeEnd <- as.character(Sys.time()) timeTaken <- capture.output(round(difftime(timeEnd,timeStart), digits=3)) timeTaken <- gsub("Time difference of ", "", timeTaken, fixed=TRUE) ################################################################################ ### HTML Generation ################################################################################ # Clear file cat("", file=htmlPath) cata("<html>\n") HtmlHead("EdgeR Output") cata("<body>\n") cata("<h3>EdgeR Analysis Output:</h3>\n") cata("<h4>Input Summary:</h4>\n") if (inputType=="fastq") { cata("<ul>\n") ListItem(hpReadout[1]) ListItem(hpReadout[2]) cata("</ul>\n") cata(hpReadout[3], "<br />\n") cata("<ul>\n") ListItem(hpReadout[4]) ListItem(hpReadout[7]) cata("</ul>\n") cata(hpReadout[8:11], sep="<br />\n") cata("<br />\n") cata("<b>Please check that read percentages are consistent with ") cata("expectations.</b><br >\n") } else if (inputType=="counts") { cata("<ul>\n") ListItem("Number of Samples: ", ncol(data$counts)) ListItem("Number of Hairpins: ", countsRows) ListItem("Number of annotations provided: ", annoRows) ListItem("Number of annotations matched to hairpin: ", annoMatched) cata("</ul>\n") } cata("The estimated common biological coefficient of variation (BCV) is: ", commonBCV, "<br />\n") cata("<h4>Output:</h4>\n") cata("PDF copies of JPEGS available in 'Plots' section.<br />\n") for (i in 1:nrow(imageData)) { if (grepl("barcode", imageData$Link[i])) { if (packageVersion("limma")<"3.19.19") { HtmlImage(imageData$Link[i], imageData$Label[i], height=length(selectedGenes)*150) } else { HtmlImage(imageData$Link[i], imageData$Label[i], height=length(selectedGenes)*300) } } else { HtmlImage(imageData$Link[i], imageData$Label[i]) } } cata("<br />\n") cata("<h4>Differential Representation Counts:</h4>\n") cata("<table border=\"1\" cellpadding=\"4\">\n") cata("<tr>\n") TableItem() for (i in colnames(sigDiff)) { TableHeadItem(i) } cata("</tr>\n") for (i in 1:nrow(sigDiff)) { cata("<tr>\n") TableHeadItem(unmake.names(row.names(sigDiff)[i])) for (j in 1:ncol(sigDiff)) { TableItem(as.character(sigDiff[i, j])) } cata("</tr>\n") } cata("</table>") cata("<h4>Plots:</h4>\n") for (i in 1:nrow(linkData)) { if (grepl(".pdf", linkData$Link[i])) { HtmlLink(linkData$Link[i], linkData$Label[i]) } } cata("<h4>Tables:</h4>\n") for (i in 1:nrow(linkData)) { if (grepl(".tsv", linkData$Link[i])) { HtmlLink(linkData$Link[i], linkData$Label[i]) } } cata("<p>Alt-click links to download file.</p>\n") cata("<p>Click floppy disc icon associated history item to download ") cata("all files.</p>\n") cata("<p>.tsv files can be viewed in Excel or any spreadsheet program.</p>\n") cata("<h4>Additional Information:</h4>\n") if (inputType == "fastq") { ListItem("Data was gathered from fastq raw read file(s).") } else if (inputType == "counts") { ListItem("Data was gathered from a table of counts.") } if (cpmReq!=0 && sampleReq!=0) { tempStr <- paste("Hairpins without more than", cpmReq, "CPM in at least", sampleReq, "samples are insignificant", "and filtered out.") ListItem(tempStr) filterProp <- round(filteredCount/preFilterCount*100, digits=2) tempStr <- paste0(filteredCount, " of ", preFilterCount," (", filterProp, "%) hairpins were filtered out for low count-per-million.") ListItem(tempStr) } if (exists("filteredSamples")) { tempStr <- paste("The following samples were filtered out for having zero", "library size: ", filteredSamples) ListItem(tempStr) } if (workMode == "classic") { ListItem("An exact test was performed on each hairpin.") } else if (workMode == "glm") { ListItem("A generalised linear model was fitted to each hairpin.") } cit <- character() link <-character() link[1] <- paste0("<a href=\"", "http://www.bioconductor.org/packages/release/bioc/", "vignettes/limma/inst/doc/usersguide.pdf", "\">", "limma User's Guide", "</a>.") link[2] <- paste0("<a href=\"", "http://www.bioconductor.org/packages/release/bioc/", "vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf", "\">", "edgeR User's Guide", "</a>") cit[1] <- paste("Robinson MD, McCarthy DJ and Smyth GK (2010).", "edgeR: a Bioconductor package for differential", "expression analysis of digital gene expression", "data. Bioinformatics 26, 139-140") cit[2] <- paste("Robinson MD and Smyth GK (2007). Moderated statistical tests", "for assessing differences in tag abundance. Bioinformatics", "23, 2881-2887") cit[3] <- paste("Robinson MD and Smyth GK (2008). Small-sample estimation of", "negative binomial dispersion, with applications to SAGE data.", "Biostatistics, 9, 321-332") cit[4] <- paste("McCarthy DJ, Chen Y and Smyth GK (2012). Differential", "expression analysis of multifactor RNA-Seq experiments with", "respect to biological variation. Nucleic Acids Research 40,", "4288-4297") cata("<h4>Citations</h4>") cata("<ol>\n") ListItem(cit[1]) ListItem(cit[2]) ListItem(cit[3]) ListItem(cit[4]) cata("</ol>\n") cata("<p>Report problems to: su.s@wehi.edu.au</p>\n") for (i in 1:nrow(linkData)) { if (grepl("session_info", linkData$Link[i])) { HtmlLink(linkData$Link[i], linkData$Label[i]) } } cata("<table border=\"0\">\n") cata("<tr>\n") TableItem("Task started at:"); TableItem(timeStart) cata("</tr>\n") cata("<tr>\n") TableItem("Task ended at:"); TableItem(timeEnd) cata("</tr>\n") cata("<tr>\n") TableItem("Task run time:"); TableItem(timeTaken) cata("<tr>\n") cata("</table>\n") cata("</body>\n") cata("</html>")