Mercurial > repos > siyuan > prada
comparison pyPRADA_1.2/prada-fusion @ 0:acc2ca1a3ba4
Uploaded
author | siyuan |
---|---|
date | Thu, 20 Feb 2014 00:44:58 -0500 |
parents | |
children | f17965495ec9 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:acc2ca1a3ba4 |
---|---|
1 #!/usr/bin/env python | |
2 | |
3 #PRADA: Pipeline for RnAseq Data Analysis | |
4 #Fusion detection module, algorithm published by Michael Berger et al (Genome Res, 2010) at Broad Institute. | |
5 #Implemented by Siyuan Zheng, Wandaliz Torres-Garcia and Rahul Vegesna. | |
6 #Copy Right: The Univ of Texas MD Anderson Cancer Center, Department of Bioinformatics and Computational Biology | |
7 #Contact: Roel Verhaak (rverhaak@mdanderson.org) | |
8 #Citation: to be added | |
9 #Tested with Python v2.6 and v2.7 | |
10 #The program requires NM tag and high quality mapping reads with mapping score more than -minmapq. | |
11 #Last modified: 04/11/2013 | |
12 | |
13 ###################################################################################### | |
14 import sys | |
15 import time | |
16 import os | |
17 import os.path | |
18 import subprocess | |
19 import operator | |
20 import pysam | |
21 import bioclass | |
22 import gfclass | |
23 import ioprada | |
24 import privutils | |
25 from Bio import SeqIO,Seq | |
26 | |
27 ###################################################################################### | |
28 args=sys.argv | |
29 | |
30 help_menu='''\nPipeline for RNAseq Data Analaysis - fusion detection (PRADA). | |
31 **Command**: | |
32 prada-fusion -bam XX.bam -conf xx.txt -tag XX -mm 1 -junL XX -minmapq 30 -outdir ./ | |
33 **Parameters**: | |
34 -h print help message | |
35 -bam input BAM file, must has a .bam suffix. BAM is the output from PRADA preprocess module. | |
36 -conf config file for references and parameters. Use conf.txt in py-PRADA installation folder if none specified. | |
37 -tag a tag to describe the sample, used to name output files. Default is ''. | |
38 -mm number of mismatches allowed in discordant pairs and fusion spanning reads.Default is 1. | |
39 -junL length of sequences taken from EACH side of exons when making hypothetical junctions. No default. | |
40 -minmapq minimum read mapping quality to be considered as fusion evidences. Default is 30. | |
41 -outdir output directory. | |
42 -v print version | |
43 ''' | |
44 | |
45 if '-h' in args or '-help' in args or len(args)==1: | |
46 print help_menu | |
47 sys.exit(0) | |
48 | |
49 if '-v' in args: | |
50 import version | |
51 print version.version | |
52 sys.exit(0) | |
53 | |
54 if '-bam' not in args: | |
55 sys.exit('ERROR: BAM file needed') | |
56 i=args.index('-bam') | |
57 bampath=args[i+1] | |
58 bampath=os.path.abspath(bampath) | |
59 bam=os.path.basename(bampath) | |
60 if bam[-4:] != '.bam': | |
61 sys.exit('ERROR: BAM file must have suffix .bam') | |
62 | |
63 #Mismatch allowed. This filter is applied at the very end of the pipeline. | |
64 #I strongly suggest 1. We also record how many junction spanning reads (JSRs) are perfect matched. | |
65 if '-mm' not in args: | |
66 mm=1 | |
67 else: | |
68 i=args.index('-mm') | |
69 mm=int(args[i+1]) | |
70 | |
71 #junL should be less than the read length in the dataset. I suggest it to be read_length*0.8 | |
72 if '-junL' not in args: | |
73 sys.exit('ERROR: junL must be specified') | |
74 i=args.index('-junL') | |
75 overlap=int(args[i+1]) | |
76 | |
77 #minimum mapping quality for reads as fusion evidences | |
78 if '-minmapq' not in args: | |
79 minmapq=30 | |
80 else: | |
81 i=args.index('-minmapq') | |
82 minmapq=int(args[i+1]) | |
83 | |
84 if '-outdir' not in args: | |
85 outpath=os.path.abspath('./') | |
86 else: | |
87 i=args.index('-outdir') | |
88 outpath=os.path.abspath(args[i+1]) | |
89 if os.path.exists(outpath): | |
90 print 'WARNING: outdir %s exists'%outpath | |
91 else: | |
92 os.mkdir(outpath) | |
93 | |
94 if '-tag' not in args: | |
95 docstring='prada' | |
96 else: | |
97 i=args.index('-tag') | |
98 docstring=args[i+1] | |
99 | |
100 #by default, search conf.txt in the prada folder | |
101 prada_path=os.path.dirname(os.path.abspath(__file__)) #path to find libraries and executives. | |
102 ref_search_path=[prada_path,os.getcwd()] #search path for conf file if not specified in command line | |
103 | |
104 if '-conf' in args: | |
105 i=args.index('-ref') | |
106 reffile=args[i+1] | |
107 if os.path.exists(reffile): | |
108 pass | |
109 else: | |
110 for pth in ref_search_path: | |
111 new_reffile='%s/%s'%(pth, os.path.basename(reffile)) | |
112 if os.path.exists(new_reffile): | |
113 reffile=new_reffile | |
114 break | |
115 else: | |
116 sys.exit('ERROR: conf file %s not found'%reffile) | |
117 else: | |
118 reffile='%s/conf.txt'%prada_path | |
119 if not os.path.exists(reffile): | |
120 sys.exit('ERROR: No default conf.txt found and none specified') | |
121 | |
122 #Now print all input parameters | |
123 print 'CMD: %s'%('\t'.join(args)) | |
124 | |
125 #reference files pointing to the annotation files. | |
126 refdict=ioprada.read_conf(reffile) | |
127 featurefile=refdict['--REF--']['feature_file'] | |
128 txseqfile=refdict['--REF--']['tx_seq_file'] | |
129 txcatfile=refdict['--REF--']['txcat_file'] | |
130 cdsfile=refdict['--REF--']['cds_file'] | |
131 | |
132 #underlying utilities, automatically detected | |
133 #these are customized tools. update is needed. | |
134 samtools='%s/tools/samtools-0.1.16/samtools'%prada_path | |
135 bwa='%s/tools/bwa-0.5.7-mh/bwa'%prada_path | |
136 blastn='%s/tools/blastn'%prada_path | |
137 | |
138 ###################################################################################### | |
139 print 'step 0: loading gene annotations @ %s'%time.ctime() | |
140 #call functions in ioprada module // | |
141 txdb,genedb=ioprada.read_feature(featurefile,verbose=True) | |
142 tx_primary=ioprada.read_tx_cat(txcatfile) | |
143 tx_cds=ioprada.read_cds(cdsfile) | |
144 | |
145 ###################################################################################### | |
146 print 'step 1: finding discordant pairs @ %s'%time.ctime() | |
147 | |
148 #We sift through all exons of protein coding genes and get the mapping reads. | |
149 #Within, we exclude low mapping quality reads and PCR duplicates. For pairs that the two ends | |
150 #map to different genes, we all it a discordant pair. | |
151 #This is a step for finding all possible candidate fusions. | |
152 | |
153 samfile=pysam.Samfile(bampath,'rb') | |
154 | |
155 read1_ab={} | |
156 read2_ab={} | |
157 db1={} | |
158 db2={} | |
159 | |
160 i,N=0,len(genedb) | |
161 for gene in genedb: | |
162 i+=1 | |
163 if i%200==0: | |
164 print '%d/%d genes processed for discordant pairs'%(i,N) | |
165 g=genedb[gene] | |
166 exons=g.get_exons() | |
167 for e in exons.values(): | |
168 for rd in samfile.fetch(e.chr,e.start-1,e.end): | |
169 if rd.mapq < minmapq: | |
170 continue | |
171 if rd.is_duplicate: | |
172 continue | |
173 if rd.mate_is_unmapped: #at this point, only consider pairs | |
174 continue | |
175 if rd.rnext == rd.tid and rd.mpos <= g.end and rd.mpos >= g.start-1: #remove reads that fall into the same gene range | |
176 continue | |
177 if rd.is_read1: | |
178 if read1_ab.has_key(rd.qname): | |
179 read1_ab[rd.qname].add(gene) | |
180 else: | |
181 read1_ab[rd.qname]=set([gene]) | |
182 db1[rd.qname]=rd | |
183 if rd.is_read2: | |
184 if read2_ab.has_key(rd.qname): | |
185 read2_ab[rd.qname].add(gene) | |
186 else: | |
187 read2_ab[rd.qname]=set([gene]) | |
188 db2[rd.qname]=rd | |
189 | |
190 ##output the discordant pairs and determine the orientation of candidate fusions | |
191 discordant={} #catalogue all discordant pairs, using gene pairs as keys | |
192 outfile=open('%s/%s.discordant.txt'%(outpath,docstring),'w') | |
193 title=['read','gene1','gene1_chr','read1_pos','read1_mm','read1_strand','read1_orient','gene2',\ | |
194 'gene2_chr','read2_pos','read2_mm','read2_strand','read2_orient'] | |
195 outfile.write('%s\n'%('\t'.join(title))) | |
196 i=0 | |
197 for rdid in read1_ab: | |
198 i+=1 | |
199 if i%10000==0: | |
200 print '%d discordant pairs processed'%i | |
201 if not read2_ab.has_key(rdid): #skip if not all ends are catalogued | |
202 continue | |
203 g1set=read1_ab[rdid] #consider all combinations if a read maps to multiple genes | |
204 g2set=read2_ab[rdid] #consider all combinations if a read maps to multiple genes | |
205 r1,r2=db1[rdid],db2[rdid] | |
206 read1strd='-1' if r1.is_reverse else '1' | |
207 read2strd='-1' if r2.is_reverse else '1' | |
208 for g1 in g1set: | |
209 for g2 in g2set: | |
210 if g1==g2: #for some uncasual cases | |
211 continue | |
212 g1obj,g2obj=genedb[g1],genedb[g2] | |
213 read1orient='F' if read1strd == g1obj.strand else 'R' #read1 --> gene1 | |
214 read2orient='F' if read2strd == g2obj.strand else 'R' #read2 --> gene2 | |
215 fkey='' | |
216 if read1orient=='F' and read2orient=='R': ##scenario I, gene1-gene2 | |
217 fkey=g1+'_'+g2 | |
218 if read1orient=='R' and read2orient=='F': ##scenario II, gene2-gene1 | |
219 fkey=g2+'_'+g1 | |
220 if fkey: | |
221 if discordant.has_key(fkey): | |
222 discordant[fkey].update({rdid:'%s:%s'%(read1orient,read2orient)}) | |
223 else: | |
224 discordant[fkey]={rdid:'%s:%s'%(read1orient,read2orient)} | |
225 ##output | |
226 nm1=str([x[1] for x in r1.tags if x[0]=='NM'][0]) #output mismatch, but does not consider it at this point | |
227 nm2=str([x[1] for x in r2.tags if x[0]=='NM'][0]) | |
228 uvec=[rdid,g1,g1obj.chr,str(r1.pos+1),nm1,read1strd,read1orient,g2,g2obj.chr,str(r2.pos+1),nm2,read2strd,read2orient] | |
229 outfile.write('%s\n'%('\t'.join(uvec))) | |
230 outfile.close() | |
231 | |
232 ########################################################################## | |
233 print 'step 2: finding recurrent pairs (candidates) @ %s'%time.ctime() | |
234 | |
235 #step 2 finds all candidates that have at least 2 discordant pairs. Meanwhile, filter out potential | |
236 #read through events. read through is defined as reads with mapping position less than 1M, while meeting | |
237 #the strand expectation. | |
238 | |
239 guess=[] | |
240 outfile=open('%s/%s.recurrent.txt'%(outpath,docstring),'w') | |
241 title=['geneA','geneA_chr','geneB','geneB_chr','num_pairs','IDs'] | |
242 outfile.write('%s\n'%('\t'.join(title))) | |
243 for pp in discordant: | |
244 if len(discordant[pp]) < 2: #consider only "recurrent" (more than 1 pair support) cases | |
245 continue | |
246 gene1,gene2=pp.split('_') | |
247 g1obj,g2obj=genedb[gene1],genedb[gene2] | |
248 rdset=discordant[pp].keys() | |
249 #filter read-through | |
250 #readthrough is defined at read level, regardless of mapping genes | |
251 for rd in rdset: | |
252 r1,r2=db1[rd],db2[rd] | |
253 read1strd='-1' if r1.is_reverse else '1' | |
254 read2strd='-1' if r2.is_reverse else '1' | |
255 readthrough=False | |
256 if db1[rd].tid == db2[rd].tid and abs(db1[rd].pos - db2[rd].pos) <= 1000000: | |
257 if discordant[pp][rd]=='F:R': | |
258 if read1strd=='1' and read2strd=='-1' and db1[rd].pos < db2[rd].pos: | |
259 readthrough=True | |
260 if read1strd=='-1' and read2strd=='1' and db1[rd].pos > db2[rd].pos: | |
261 readthrough=True | |
262 if discordant[pp][rd]=='R:F': | |
263 if read2strd=='1' and read1strd=='-1' and db2[rd].pos < db1[rd].pos: | |
264 readthrough=True | |
265 if read2strd=='-1' and read1strd=='1' and db2[rd].pos > db1[rd].pos: | |
266 readthrough=True | |
267 if readthrough: | |
268 del discordant[pp][rd] #in-place deletion!!!! Change the discordant variable in place! | |
269 if len(discordant[pp]) < 2: #skip all that have less than 2 supporting discordant read pairs after readthrough filter | |
270 continue | |
271 guess.append(pp) | |
272 #output | |
273 uvec2=[gene1,g1obj.chr,gene2,g2obj.chr,str(len(discordant[pp])),'|'.join(discordant[pp])] | |
274 outfile.write('%s\n'%('\t'.join(uvec2))) | |
275 outfile.close() | |
276 | |
277 ########################################################################## | |
278 print 'step 3: finding potential junction spanning reads @ %s'%time.ctime() | |
279 | |
280 #For all candidates, find potential junction spanning reads (JSRs). A JSR is defined as a unmapped read but with the mate mapping | |
281 #to either F or R partner, with high mapping quality. Since the JSR is unmapped, it is not practical to consider PCR duplicate | |
282 #because they are not properly marked. | |
283 | |
284 Fpartners=set() | |
285 Rpartners=set() | |
286 for pp in guess: | |
287 gs=pp.split('_') | |
288 Fpartners.add(gs[0]) | |
289 Rpartners.add(gs[1]) | |
290 AllPartners=Fpartners|Rpartners | |
291 | |
292 samfile.reset() | |
293 posjun={} ##catalogue all JSRs, with track of the mate mapping genes and orientation. | |
294 i,N=0,len(AllPartners) | |
295 for gene in AllPartners: | |
296 i+=1 | |
297 if i%200==0: | |
298 print '%d/%d genes processed for potential junc reads'%(i,N) | |
299 g=genedb[gene] | |
300 exons=g.get_exons().values() | |
301 for e in exons: | |
302 for rd in samfile.fetch(e.chr,e.start-1,e.end): | |
303 if rd.mapq < minmapq: | |
304 continue | |
305 if not rd.mate_is_unmapped: | |
306 continue | |
307 readstrd='-1' if rd.is_reverse else '1' | |
308 orient='F' if readstrd == g.strand else 'R' #mapping info of mate read. JSR per se is unmapped in BAM | |
309 posjun[rd.qname]={'gene':gene,'orient':orient} | |
310 | |
311 samfile.reset() | |
312 outfile=open('%s/%s.pos_junc_unmapped.fastq'%(outpath,docstring),'w') | |
313 i,N=0,len(posjun) | |
314 for rd in samfile: | |
315 if rd.mate_is_unmapped: #since the read is potential jun spanning read, all mate map to A or B | |
316 continue | |
317 if rd.is_unmapped: | |
318 if posjun.has_key(rd.qname): | |
319 i+=1 | |
320 if i%10000==0: | |
321 print 'extracted %d/%d potential junc reads'%(i,N) | |
322 rdname='%s_prada_%s_prada_%s'%(rd.qname,posjun[rd.qname]['gene'],posjun[rd.qname]['orient']) #_prada_ as split | |
323 outfile.write('@%s\n'%rdname) | |
324 outfile.write('%s\n'%rd.seq) | |
325 outfile.write('+\n') | |
326 outfile.write('%s\n'%rd.qual) | |
327 outfile.close() | |
328 | |
329 ###################################################################################### | |
330 print 'step 4: building junction database @ %s'%time.ctime() | |
331 | |
332 #Make hypothetical junctions between candidate fusion partners. To improve speed, we make a big junction database comprising | |
333 #exons of all candidates, instead of by candidate individually. This also gives the possibility to assess the JSR mapping ambiguity | |
334 #across many junctions. It turned out very useful in filtering out false positives. | |
335 #Note that in PRADA transcript sequence file, all sequences are + strand sequences. For - strand transcript, one need to | |
336 #reverse complement the sequence to get the real transcript sequences. | |
337 | |
338 seqdb={} | |
339 for record in SeqIO.parse(txseqfile,'fasta'): | |
340 seqdb[record.name]=record | |
341 | |
342 outfile=open('%s/%s.junction.fasta'%(outpath,docstring),'w') | |
343 i,N=0,len(guess) | |
344 for pp in guess: | |
345 i+=1 | |
346 if i%100==0: | |
347 print 'building junction for %d/%d pairs'%(i,N) | |
348 gene1,gene2=pp.split('_') | |
349 g1obj,g2obj=genedb[gene1],genedb[gene2] | |
350 eset1=g1obj.get_exons() #unique exons in gene 1 | |
351 eset2=g2obj.get_exons() #unique exons in gene 2 | |
352 #collect unique junctions | |
353 juncseqdict={} #save junction sequences | |
354 for e1 in eset1.values(): | |
355 for e2 in eset2.values(): | |
356 e1_jun_name='%s:%s:%s'%(gene1,e1.chr,e1.end) if e1.strand=='1' else '%s:%s:%s'%(gene1,e1.chr,e1.start) | |
357 e2_jun_name='%s:%s:%s'%(gene2,e2.chr,e2.start) if e2.strand=='1' else '%s:%s:%s'%(gene2,e2.chr,e2.end) | |
358 jun_name=e1_jun_name+'_'+e2_jun_name | |
359 tx1,tx2=txdb[e1.transcript],txdb[e2.transcript] | |
360 max_a=tx1.exon_relative_pos()[e1.name][1] | |
361 min_a=0 if max_a - overlap < 0 else max_a - overlap | |
362 min_b=tx2.exon_relative_pos()[e2.name][0]-1 | |
363 max_b=tx2.length if min_b + overlap > tx2.length else min_b + overlap | |
364 #reverse complementary when necessary | |
365 try: | |
366 tx1seq=seqdb[tx1.name].seq.tostring() if tx1.strand=='1' else seqdb[tx1.name].reverse_complement().seq.tostring() | |
367 tx2seq=seqdb[tx2.name].seq.tostring() if tx2.strand=='1' else seqdb[tx2.name].reverse_complement().seq.tostring() | |
368 except KeyError: #in case transcript not found in sequence file | |
369 continue | |
370 jun_seq=tx1seq[min_a:max_a]+tx2seq[min_b:max_b] | |
371 juncseqdict[jun_name]=jun_seq | |
372 for junc in juncseqdict: | |
373 outfile.write('>%s\n'%junc) | |
374 outfile.write('%s\n'%juncseqdict[junc]) | |
375 outfile.close() | |
376 samfile.close() | |
377 | |
378 #for memory efficiecy, del seqdb | |
379 del seqdb | |
380 | |
381 ######################################################################################## | |
382 print 'step 5: aligning potential junction reads to junction database @ %s'%time.ctime() | |
383 | |
384 #Mapping potential JSRs to hypothetical junction database. | |
385 #Allow 4 mismatches at the beginning. | |
386 | |
387 idx_cmd='%s index %s/%s.junction.fasta'%(bwa,outpath,docstring) | |
388 os.system(idx_cmd) | |
389 aln_cmd='%s aln -n 4 -R 100 %s/%s.junction.fasta %s/%s.pos_junc_unmapped.fastq > %s/%s.juncmap.sai'%(bwa,outpath,docstring,outpath,docstring,outpath,docstring) | |
390 os.system(aln_cmd) | |
391 samse_cmd='%s samse -n 1000 -s %s/%s.junction.fasta %s/%s.juncmap.sai %s/%s.pos_junc_unmapped.fastq > %s/%s.juncmap.sam'%(bwa,outpath,docstring,outpath,docstring,outpath,docstring,outpath,docstring) | |
392 os.system(samse_cmd) | |
393 sam2bam_cmd='%s view -bS %s/%s.juncmap.sam -o %s/%s.juncmap.bam'%(samtools,outpath,docstring,outpath,docstring) | |
394 os.system(sam2bam_cmd) | |
395 | |
396 jsam=pysam.Samfile('%s/%s.juncmap.bam'%(outpath,docstring),'rb') | |
397 #get the junction name directory | |
398 junctions=jsam.references | |
399 junname=dict(zip(range(0,len(junctions)),junctions)) #this is essential for quick speed. | |
400 junc_align={} | |
401 | |
402 #go through the BAM file for meaningful (meeting fusion orientation etc) reads | |
403 strd_right_reads={} | |
404 rdb={} #collect all junction spanning reads | |
405 i=0 | |
406 for rd in jsam: | |
407 i+=1 | |
408 if i%100000==0: | |
409 print '%d junction alignments parsed'%i | |
410 if rd.is_unmapped: | |
411 continue | |
412 read,mate_gene,mate_orient=rd.qname.split('_prada_') | |
413 junc=junname[rd.tid] | |
414 tmp=junc.split('_') | |
415 gene1,gene2=[x.split(':')[0] for x in tmp] | |
416 if gene1==mate_gene: | |
417 if mate_orient=='F': | |
418 if rd.is_reverse: | |
419 if strd_right_reads.has_key(rd.qname): | |
420 strd_right_reads[rd.qname]+=1 #count how many times the read maps | |
421 else: | |
422 strd_right_reads[rd.qname]=1 | |
423 rdb[rd.qname]={'read':rd,'gene1':gene1,'gene2':gene2,'junc':junc} #will overwrite, but it is OK since we only look at unique ones | |
424 elif gene2==mate_gene: | |
425 if mate_orient == 'R': | |
426 if not rd.is_reverse: | |
427 if strd_right_reads.has_key(rd.qname): | |
428 strd_right_reads[rd.qname]+=1 | |
429 else: | |
430 strd_right_reads[rd.qname]=1 | |
431 rdb[rd.qname]={'read':rd,'gene1':gene1,'gene2':gene2,'junc':junc} #will overwrite, but it is OK since we only look at unique ones | |
432 | |
433 #find uniquely mapped reads and their gene pairs | |
434 junc_map={} #a dictionary from junction to mapping reads | |
435 for rdname in strd_right_reads: | |
436 if strd_right_reads[rdname] > 1: #remove non-unique junction spanning reads | |
437 continue | |
438 infodict=rdb[rdname] | |
439 pp=infodict['gene1']+'_'+infodict['gene2'] | |
440 if junc_map.has_key(pp): | |
441 junc_map[pp].add(rdname) | |
442 else: | |
443 junc_map[pp]=set([rdname]) | |
444 | |
445 ######################################################################################## | |
446 print 'step 6: summarizing fusion evidences @ %s'%time.ctime() | |
447 | |
448 #Now, time to apply mismatch filter and summarize the results | |
449 #Candidate fusions --> guess | |
450 #Discordant pairs --> discordant, db1, db2 | |
451 #Junction reads --> junc_map, rdb | |
452 #Gene info --> genedb | |
453 | |
454 outfile_s=open('%s/%s.fus.candidates.txt'%(outpath,docstring),'w') | |
455 outfile_d=open('%s/%s.fus.evidences.txt'%(outpath,docstring),'w') | |
456 | |
457 title=['Gene_A','Gene_B','A_chr','B_chr','A_strand','B_strand','Discordant_n','JSR_n','perfectJSR_n','Junc_n','Position_Consist','Junction'] | |
458 outfile_s.write('%s\n'%('\t'.join(title))) | |
459 | |
460 for pp in junc_map: #all pairs with junc reads | |
461 gene1,gene2=pp.split('_') | |
462 g1obj,g2obj=genedb[gene1],genedb[gene2] | |
463 fus_disc=[] #collecting discordant pairs | |
464 for rdname in discordant[pp]: | |
465 #arrange read1/read2 into F/R so it will be easier for GeneFusion obj to handle | |
466 r1,r2=db1[rdname],db2[rdname] | |
467 orient=discordant[pp][rdname] | |
468 if orient=='F:R': | |
469 fus_disc.append((r1,r2)) | |
470 elif orient=='R:F': | |
471 fus_disc.append((r2,r1)) | |
472 fus_jsr=[] | |
473 if junc_map.has_key(pp): | |
474 for rdname in junc_map[pp]: | |
475 r=rdb[rdname]['read'] | |
476 junc=rdb[rdname]['junc'] | |
477 jsr=gfclass.JSR(r,junc) | |
478 fus_jsr.append(jsr) | |
479 gf=gfclass.GeneFusion(gene1,gene2,fus_disc,fus_jsr) | |
480 gf_new=gf.update(mm=mm) ##apply the mismatch parameter, default is 1 | |
481 #output the results | |
482 disc_n=str(len(gf_new.discordantpairs)) | |
483 junctions=sorted(gf_new.get_junction_freq(),key=operator.itemgetter(1),reverse=True) #sort junc by # of JSRs | |
484 junc_n=str(len(junctions)) | |
485 junc_str='|'.join([','.join([x[0],str(x[1])]) for x in junctions]) | |
486 jsr_n=str(len(gf_new.fusionreads)) | |
487 pjsr_n=str(len(gf_new.get_perfect_JSR())) | |
488 pos_consist=gf_new.positioncheck() | |
489 svec=[gene1,gene2,g1obj.chr,g2obj.chr,g1obj.strand,g2obj.strand,disc_n,jsr_n,pjsr_n,junc_n,pos_consist,junc_str] | |
490 outfile_s.write('%s\n'%('\t'.join(svec))) | |
491 outfile_d.write('@@\t%s,%s,%s\t%s,%s,%s\n'%(gene1,g1obj.chr,g1obj.strand,gene2,g2obj.chr,g2obj.strand)) | |
492 outfile_d.write('\n') | |
493 outfile_d.write('>discordant\n') | |
494 for rp in gf_new.discordantpairs: | |
495 rf,rr=rp | |
496 nm1=[x[1] for x in rf.tags if x[0]=='NM'][0] | |
497 nm2=[x[1] for x in rr.tags if x[0]=='NM'][0] | |
498 outfile_d.write('%s\tF\t%s.%s.mm%d\n'%(rf.qname,gene1,rf.pos+1,nm1)) ##0-based coordinates | |
499 outfile_d.write('%s\tR\t%s.%s.mm%d\n'%(rr.qname,gene2,rr.pos+1,nm2)) ##0-based coordinates | |
500 outfile_d.write('\n') | |
501 outfile_d.write('>spanning\n') | |
502 for jsr in gf_new.fusionreads: | |
503 r=jsr.read | |
504 nm=[x[1] for x in r.tags if x[0]=='NM'][0] | |
505 outfile_d.write('%s\t%s.mm%d\n'%(r.qname,jsr.junction,nm)) | |
506 outfile_d.write('\n') | |
507 outfile_d.write('>junction\n') | |
508 for junc_info in junctions: | |
509 outfile_d.write('%s\t%d\n'%(junc_info[0],junc_info[1])) | |
510 outfile_d.write('\n') | |
511 outfile_d.write('>summary\n') | |
512 outfile_d.write('Number of Discordant Pairs = %s\n'%disc_n) | |
513 outfile_d.write('Number of Fusion Reads = %s\n'%jsr_n) | |
514 outfile_d.write('Number of Perfect Fusion Reads = %s\n'%pjsr_n) | |
515 outfile_d.write('Number of Distinct Junctions = %s\n'%junc_n) | |
516 outfile_d.write('Position Consistency = %s\n'%pos_consist) | |
517 outfile_d.write('\n') | |
518 | |
519 outfile_s.close() | |
520 outfile_d.close() | |
521 | |
522 ######################################################################################## | |
523 print 'step 7: generating fusion lists @ %s'%time.ctime() | |
524 | |
525 #For convenience, filter the lists to candidates with | |
526 # 1) at least 2 discordant pairs | |
527 # 2) at least 1 perfect JSR | |
528 #meanwhile, calculate sequence similarity for each pair | |
529 #user may need to manually filter the lists per this measure. | |
530 | |
531 #The following code is a copy of prada-homology | |
532 outfile_o=open('%s/%s.fus.summary.txt'%(outpath,docstring),'w') | |
533 ifname='%s/%s.fus.candidates.txt'%(outpath,docstring) | |
534 if not os.path.exists(ifname): | |
535 sys.exit('ERROR: %s was not found'%ifname) | |
536 | |
537 blastseq_tmp_dir='%s/blast_tmp/'%outpath | |
538 if not os.path.exists(blastseq_tmp_dir): | |
539 os.mkdir(blastseq_tmp_dir) | |
540 | |
541 flists=[] | |
542 infile=open(ifname) | |
543 iN=0 | |
544 for line in open(ifname): | |
545 info=line.strip().split('\t') | |
546 if iN==0: | |
547 iN+=1 #skip title | |
548 flists.append(info) | |
549 continue | |
550 else: | |
551 if int(info[6])>=2 and int(info[8])>=1 and info[10] in ['PARTIALLY','YES']: | |
552 flists.append(info) | |
553 infile.close() | |
554 | |
555 if len(flists)==1: #if no candidate passes the filters | |
556 outfile_o.write('%s\n'%'\t'.join(flists[0])) | |
557 outfile_o.close() | |
558 print 'step done @ %s'%time.ctime() | |
559 sys.exit(0) | |
560 | |
561 candidates={} | |
562 for line in flists[1:]: | |
563 geneA,geneB=line[0],line[1] | |
564 key='%s_%s'%(geneA,geneB) | |
565 candidates[key]='' | |
566 | |
567 selecttranscript={} | |
568 for gene in genedb: | |
569 txs=genedb[gene].transcript | |
570 stx=txs[0] | |
571 initlen=stx.length | |
572 for tx in txs: | |
573 if tx.length >= initlen: | |
574 stx=tx | |
575 initlen=stx.length | |
576 selecttranscript[gene]=stx.name | |
577 | |
578 allpartners=set() | |
579 for item in candidates: | |
580 sset=set(item.split('_')) | |
581 allpartners=allpartners.union(sset) | |
582 | |
583 presenttxs=[] #tx that is present in our annotation | |
584 absent=[] #tx that is not in our annotation | |
585 for gene in allpartners: | |
586 if selecttranscript.has_key(gene): | |
587 presenttxs.append(selecttranscript[gene]) | |
588 else: | |
589 absent.append(gene) | |
590 | |
591 for seq_record in SeqIO.parse(txseqfile,'fasta'): | |
592 sid=seq_record.id | |
593 seq=seq_record.seq | |
594 if sid in presenttxs: | |
595 g=txdb[sid].gene | |
596 fastafile=open('%s/%s.fasta'%(blastseq_tmp_dir,g),'w') | |
597 SeqIO.write(seq_record,fastafile,'fasta') | |
598 fastafile.close() | |
599 | |
600 for gp in candidates: | |
601 geneA,geneB=gp.split('_') | |
602 if geneA in absent or geneB in absent: | |
603 candidates[gp]=['NA']*4 | |
604 else: | |
605 gaseq='%s/%s.fasta'%(blastseq_tmp_dir,geneA) | |
606 gaobj=SeqIO.parse(gaseq,'fasta').next() | |
607 gbseq='%s/%s.fasta'%(blastseq_tmp_dir,geneB) | |
608 gbobj=SeqIO.parse(gbseq,'fasta').next() | |
609 ga_len,gb_len=str(len(gaobj.seq)),str(len(gbobj.seq)) | |
610 a=privutils.seqblast(gaseq,gbseq,blastn) | |
611 if a==None: | |
612 candidates[gp]=['NA','NA','100','0'] | |
613 else: | |
614 candidates[gp]=a | |
615 | |
616 header=flists[0][:] | |
617 header.extend(['Identity','Align_Len','Evalue','BitScore']) | |
618 outfile_o.write('%s\n'%('\t'.join(header))) | |
619 | |
620 for info in flists[1:]: | |
621 geneA,geneB=info[0],info[1] | |
622 key='%s_%s'%(geneA,geneB) | |
623 vv=candidates[key] | |
624 row=info[:] | |
625 row.extend(vv) | |
626 outfile_o.write('%s\n'%('\t'.join(row))) | |
627 outfile_o.close() | |
628 | |
629 ######################################################################################## | |
630 print 'step done @ %s'%time.ctime() |