Mercurial > repos > siyuan > prada
comparison pyPRADA_1.2/tools/bwa-0.5.7-mh/cs2nt.c @ 0:acc2ca1a3ba4
Uploaded
author | siyuan |
---|---|
date | Thu, 20 Feb 2014 00:44:58 -0500 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:acc2ca1a3ba4 |
---|---|
1 #include <string.h> | |
2 #include <stdint.h> | |
3 #include <stdlib.h> | |
4 #include "bwtaln.h" | |
5 #include "stdaln.h" | |
6 | |
7 /* | |
8 Here is a delicate example. ref_nt=ATTAAC(RBRBG), read_cs=RBBOG. If we | |
9 decode as ATTGAC(RBGOG), there are one color change and one nt change; | |
10 if we decode as ATTAAC(RBRBG), there are two color changes. | |
11 | |
12 In DP, if color quality is smaller than COLOR_MM, we will use COLOR_MM | |
13 as the penalty; otherwise, we will use color quality as the | |
14 penalty. This means we always prefer two consistent color changes over | |
15 a nt change, but if a color has high quality, we may prefer one nt | |
16 change. | |
17 | |
18 In the above example, the penalties of the two types of decoding are | |
19 q(B)+25 and q(B)+q(O), respectively. If q(O)>25, we prefer the first; | |
20 otherwise the second. Note that no matter what we choose, the fourth | |
21 base will get a low nt quality. | |
22 */ | |
23 | |
24 #define COLOR_MM 19 | |
25 #define NUCL_MM 25 | |
26 | |
27 static const int nst_ntnt2cs_table[] = { 4, 0, 0, 1, 0, 2, 3, 4, 0, 3, 2, 4, 1, 4, 4, 4 }; | |
28 | |
29 /* | |
30 {A,C,G,T,N} -> {0,1,2,3,4} | |
31 nt_ref[0..size]: nucleotide reference: 0/1/2/3/4 | |
32 cs_read[0..size-1]: color read+qual sequence: base<<6|qual; qual==63 for N | |
33 nt_read[0..size]: nucleotide read sequence: 0/1/2/3 (returned) | |
34 btarray[0..4*size]: backtrack array (working space) | |
35 */ | |
36 void cs2nt_DP(int size, const uint8_t *nt_ref, const uint8_t *cs_read, uint8_t *nt_read, uint8_t *btarray) | |
37 { | |
38 int h[8], curr, last; | |
39 int x, y, xmin, hmin, k; | |
40 | |
41 // h[0..3] and h[4..7] are the current and last best score array, depending on curr and last | |
42 | |
43 // recursion: initial value | |
44 if (nt_ref[0] >= 4) memset(h, 0, sizeof(int) << 2); | |
45 else { | |
46 for (x = 0; x != 4; ++x) h[x] = NUCL_MM; | |
47 h[nt_ref[0]] = 0; | |
48 } | |
49 // recursion: main loop | |
50 curr = 1; last = 0; | |
51 for (k = 1; k <= size; ++k) { | |
52 for (x = 0; x != 4; ++x) { | |
53 int min = 0x7fffffff, ymin = 0; | |
54 for (y = 0; y != 4; ++y) { | |
55 int s = h[last<<2|y]; | |
56 if ((cs_read[k-1]&0x3f) != 63 && cs_read[k-1]>>6 != nst_ntnt2cs_table[1<<x|1<<y]) | |
57 s += ((cs_read[k-1]&0x3f) < COLOR_MM)? COLOR_MM : (cs_read[k-1]&0x3f); // color mismatch | |
58 if (nt_ref[k] < 4 && nt_ref[k] != x) s += NUCL_MM; // nt mismatch | |
59 if (s < min) { | |
60 min = s; ymin = y; | |
61 } | |
62 } | |
63 h[curr<<2|x] = min; btarray[k<<2|x] = ymin; | |
64 } | |
65 last = curr; curr = 1 - curr; // swap | |
66 } | |
67 // back trace | |
68 hmin = 0x7fffffff; xmin = 0; | |
69 for (x = 0; x != 4; ++x) { | |
70 if (h[last<<2|x] < hmin) { | |
71 hmin = h[last<<2|x]; xmin = x; | |
72 } | |
73 } | |
74 nt_read[size] = xmin; | |
75 for (k = size - 1; k >= 0; --k) | |
76 nt_read[k] = btarray[(k+1)<<2 | nt_read[k+1]]; | |
77 } | |
78 /* | |
79 nt_read[0..size]: nucleotide read sequence: 0/1/2/3 | |
80 cs_read[0..size-1]: color read+qual sequence: base<<6|qual; qual==63 for N | |
81 tarray[0..size*2-1]: temporary array | |
82 */ | |
83 uint8_t *cs2nt_nt_qual(int size, const uint8_t *nt_read, const uint8_t *cs_read, uint8_t *tarray) | |
84 { | |
85 int k, c1, c2; | |
86 uint8_t *t2array = tarray + size; | |
87 // get the color sequence of nt_read | |
88 c1 = nt_read[0]; | |
89 for (k = 1; k <= size; ++k) { | |
90 c2 = nt_read[k]; // in principle, there is no 'N' in nt_read[]; just in case | |
91 tarray[k-1] = (c1 >= 4 || c2 >= 4)? 4 : nst_ntnt2cs_table[1<<c1 | 1<<c2]; | |
92 c1 = c2; | |
93 } | |
94 for (k = 1; k != size; ++k) { | |
95 int q = 0; | |
96 if (tarray[k-1] == cs_read[k-1]>>6 && tarray[k] == cs_read[k]>>6) { | |
97 q = (int)(cs_read[k-1]&0x3f) + (int)(cs_read[k]&0x3f) + 10; | |
98 } else if (tarray[k-1] == cs_read[k-1]>>6) { | |
99 q = (int)(cs_read[k-1]&0x3f) - (int)(cs_read[k]&0x3f); | |
100 } else if (tarray[k] == cs_read[k]>>6) { | |
101 q = (int)(cs_read[k]&0x3f) - (int)(cs_read[k-1]&0x3f); | |
102 } // else, q = 0 | |
103 if (q < 0) q = 0; | |
104 if (q > 60) q = 60; | |
105 t2array[k] = nt_read[k]<<6 | q; | |
106 if ((cs_read[k-1]&0x3f) == 63 || (cs_read[k]&0x3f) == 63) t2array[k] = 0; | |
107 } | |
108 return t2array + 1; // of size-2 | |
109 } | |
110 | |
111 // this function will be called when p->seq has been reversed by refine_gapped() | |
112 void bwa_cs2nt_core(bwa_seq_t *p, bwtint_t l_pac, ubyte_t *pac) | |
113 { | |
114 uint8_t *ta, *nt_read, *btarray, *tarray, *nt_ref, *cs_read, *new_nt_read; | |
115 int i, len; | |
116 uint8_t *seq; | |
117 | |
118 // set temporary arrays | |
119 if (p->type == BWA_TYPE_NO_MATCH) return; | |
120 len = p->len + p->n_gapo + p->n_gape + 100; // leave enough space | |
121 ta = (uint8_t*)malloc(len * 7); | |
122 nt_ref = ta; | |
123 cs_read = nt_ref + len; | |
124 nt_read = cs_read + len; | |
125 btarray = nt_read + len; | |
126 tarray = nt_read + len; | |
127 | |
128 #define __gen_csbase(_cs, _i, _seq) do { \ | |
129 int q = p->qual[p->strand? p->len - 1 - (_i) : (_i)] - 33; \ | |
130 if (q > 60) q = 60; \ | |
131 if (_seq[_i] > 3) q = 63; \ | |
132 (_cs) = _seq[_i]<<6 | q; \ | |
133 } while (0) | |
134 | |
135 // generate len, nt_ref[] and cs_read | |
136 seq = p->strand? p->rseq : p->seq; | |
137 nt_ref[0] = p->pos? bns_pac(pac, p->pos-1) : 4; | |
138 if (p->cigar == 0) { // no gap or clipping | |
139 len = p->len; | |
140 for (i = 0; i < p->len; ++i) { | |
141 __gen_csbase(cs_read[i], i, seq); | |
142 nt_ref[i+1] = bns_pac(pac, p->pos + i); | |
143 } | |
144 } else { | |
145 int k, z; | |
146 bwtint_t x, y; | |
147 x = p->pos; y = 0; | |
148 for (k = z = 0; k < p->n_cigar; ++k) { | |
149 int l = __cigar_len(p->cigar[k]); | |
150 if (__cigar_op(p->cigar[k]) == FROM_M) { | |
151 for (i = 0; i < l; ++i, ++x, ++y) { | |
152 __gen_csbase(cs_read[z], y, seq); | |
153 nt_ref[z+1] = bns_pac(pac, x); | |
154 ++z; | |
155 } | |
156 } else if (__cigar_op(p->cigar[k]) == FROM_I) { | |
157 for (i = 0; i < l; ++i, ++y) { | |
158 __gen_csbase(cs_read[z], y, seq); | |
159 nt_ref[z+1] = 4; | |
160 ++z; | |
161 } | |
162 } else if (__cigar_op(p->cigar[k]) == FROM_S) y += l; | |
163 else x += l; | |
164 } | |
165 len = z; | |
166 } | |
167 | |
168 cs2nt_DP(len, nt_ref, cs_read, nt_read, btarray); | |
169 new_nt_read = cs2nt_nt_qual(len, nt_read, cs_read, tarray); | |
170 | |
171 // update p | |
172 p->len = p->full_len = len - 1; | |
173 for (i = 0; i < p->len; ++i) { | |
174 if ((new_nt_read[i]&0x3f) == 63) { | |
175 p->qual[i] = 33; seq[i] = 4; | |
176 } else { | |
177 p->qual[i] = (new_nt_read[i]&0x3f) + 33; | |
178 seq[i] = new_nt_read[i]>>6; | |
179 } | |
180 } | |
181 p->qual[p->len] = seq[p->len] = 0; | |
182 if (p->strand) { | |
183 memcpy(p->seq, seq, p->len); | |
184 seq_reverse(p->len, p->seq, 1); | |
185 seq_reverse(p->len, p->qual, 0); | |
186 } else { | |
187 memcpy(p->rseq, seq, p->len); | |
188 seq_reverse(p->len, p->rseq, 1); | |
189 } | |
190 free(ta); | |
191 } |