Mercurial > repos > siyuan > prada
diff pyPRADA_1.2/tools/samtools-0.1.16/bcftools/em.c @ 0:acc2ca1a3ba4
Uploaded
author | siyuan |
---|---|
date | Thu, 20 Feb 2014 00:44:58 -0500 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/pyPRADA_1.2/tools/samtools-0.1.16/bcftools/em.c Thu Feb 20 00:44:58 2014 -0500 @@ -0,0 +1,306 @@ +#include <stdlib.h> +#include <string.h> +#include <math.h> +#include "bcf.h" +#include "kmin.h" + +static double g_q2p[256]; + +#define ITER_MAX 50 +#define ITER_TRY 10 +#define EPS 1e-5 + +extern double kf_gammaq(double, double); + +/* + Generic routines + */ +// get the 3 genotype likelihoods +static double *get_pdg3(const bcf1_t *b) +{ + double *pdg; + const uint8_t *PL = 0; + int i, PL_len = 0; + // initialize g_q2p if necessary + if (g_q2p[0] == 0.) + for (i = 0; i < 256; ++i) + g_q2p[i] = pow(10., -i / 10.); + // set PL and PL_len + for (i = 0; i < b->n_gi; ++i) { + if (b->gi[i].fmt == bcf_str2int("PL", 2)) { + PL = (const uint8_t*)b->gi[i].data; + PL_len = b->gi[i].len; + break; + } + } + if (i == b->n_gi) return 0; // no PL + // fill pdg + pdg = malloc(3 * b->n_smpl * sizeof(double)); + for (i = 0; i < b->n_smpl; ++i) { + const uint8_t *pi = PL + i * PL_len; + double *p = pdg + i * 3; + p[0] = g_q2p[pi[2]]; p[1] = g_q2p[pi[1]]; p[2] = g_q2p[pi[0]]; + } + return pdg; +} + +// estimate site allele frequency in a very naive and inaccurate way +static double est_freq(int n, const double *pdg) +{ + int i, gcnt[3], tmp1; + // get a rough estimate of the genotype frequency + gcnt[0] = gcnt[1] = gcnt[2] = 0; + for (i = 0; i < n; ++i) { + const double *p = pdg + i * 3; + if (p[0] != 1. || p[1] != 1. || p[2] != 1.) { + int which = p[0] > p[1]? 0 : 1; + which = p[which] > p[2]? which : 2; + ++gcnt[which]; + } + } + tmp1 = gcnt[0] + gcnt[1] + gcnt[2]; + return (tmp1 == 0)? -1.0 : (.5 * gcnt[1] + gcnt[2]) / tmp1; +} + +/* + Single-locus EM + */ + +typedef struct { + int beg, end; + const double *pdg; +} minaux1_t; + +static double prob1(double f, void *data) +{ + minaux1_t *a = (minaux1_t*)data; + double p = 1., l = 0., f3[3]; + int i; +// printf("brent %lg\n", f); + if (f < 0 || f > 1) return 1e300; + f3[0] = (1.-f)*(1.-f); f3[1] = 2.*f*(1.-f); f3[2] = f*f; + for (i = a->beg; i < a->end; ++i) { + const double *pdg = a->pdg + i * 3; + p *= pdg[0] * f3[0] + pdg[1] * f3[1] + pdg[2] * f3[2]; + if (p < 1e-200) l -= log(p), p = 1.; + } + return l - log(p); +} + +// one EM iteration for allele frequency estimate +static double freq_iter(double *f, const double *_pdg, int beg, int end) +{ + double f0 = *f, f3[3], err; + int i; +// printf("em %lg\n", *f); + f3[0] = (1.-f0)*(1.-f0); f3[1] = 2.*f0*(1.-f0); f3[2] = f0*f0; + for (i = beg, f0 = 0.; i < end; ++i) { + const double *pdg = _pdg + i * 3; + f0 += (pdg[1] * f3[1] + 2. * pdg[2] * f3[2]) + / (pdg[0] * f3[0] + pdg[1] * f3[1] + pdg[2] * f3[2]); + } + f0 /= (end - beg) * 2; + err = fabs(f0 - *f); + *f = f0; + return err; +} + +/* The following function combines EM and Brent's method. When the signal from + * the data is strong, EM is faster but sometimes, EM may converge very slowly. + * When this happens, we switch to Brent's method. The idea is learned from + * Rasmus Nielsen. + */ +static double freqml(double f0, int beg, int end, const double *pdg) +{ + int i; + double f; + for (i = 0, f = f0; i < ITER_TRY; ++i) + if (freq_iter(&f, pdg, beg, end) < EPS) break; + if (i == ITER_TRY) { // haven't converged yet; try Brent's method + minaux1_t a; + a.beg = beg; a.end = end; a.pdg = pdg; + kmin_brent(prob1, f0 == f? .5*f0 : f0, f, (void*)&a, EPS, &f); + } + return f; +} + +// one EM iteration for genotype frequency estimate +static double g3_iter(double g[3], const double *_pdg, int beg, int end) +{ + double err, gg[3]; + int i; + gg[0] = gg[1] = gg[2] = 0.; +// printf("%lg,%lg,%lg\n", g[0], g[1], g[2]); + for (i = beg; i < end; ++i) { + double sum, tmp[3]; + const double *pdg = _pdg + i * 3; + tmp[0] = pdg[0] * g[0]; tmp[1] = pdg[1] * g[1]; tmp[2] = pdg[2] * g[2]; + sum = (tmp[0] + tmp[1] + tmp[2]) * (end - beg); + gg[0] += tmp[0] / sum; gg[1] += tmp[1] / sum; gg[2] += tmp[2] / sum; + } + err = fabs(gg[0] - g[0]) > fabs(gg[1] - g[1])? fabs(gg[0] - g[0]) : fabs(gg[1] - g[1]); + err = err > fabs(gg[2] - g[2])? err : fabs(gg[2] - g[2]); + g[0] = gg[0]; g[1] = gg[1]; g[2] = gg[2]; + return err; +} + +// perform likelihood ratio test +static double lk_ratio_test(int n, int n1, const double *pdg, double f3[3][3]) +{ + double r; + int i; + for (i = 0, r = 1.; i < n1; ++i) { + const double *p = pdg + i * 3; + r *= (p[0] * f3[1][0] + p[1] * f3[1][1] + p[2] * f3[1][2]) + / (p[0] * f3[0][0] + p[1] * f3[0][1] + p[2] * f3[0][2]); + } + for (; i < n; ++i) { + const double *p = pdg + i * 3; + r *= (p[0] * f3[2][0] + p[1] * f3[2][1] + p[2] * f3[2][2]) + / (p[0] * f3[0][0] + p[1] * f3[0][1] + p[2] * f3[0][2]); + } + return r; +} + +// x[0]: ref frequency +// x[1..3]: alt-alt, alt-ref, ref-ref frequenc +// x[4]: HWE P-value +// x[5..6]: group1 freq, group2 freq +// x[7]: 1-degree P-value +// x[8]: 2-degree P-value +int bcf_em1(const bcf1_t *b, int n1, int flag, double x[9]) +{ + double *pdg; + int i, n, n2; + if (b->n_alleles < 2) return -1; // one allele only + // initialization + if (n1 < 0 || n1 > b->n_smpl) n1 = 0; + if (flag & 1<<7) flag |= 7<<5; // compute group freq if LRT is required + if (flag & 0xf<<1) flag |= 0xf<<1; + n = b->n_smpl; n2 = n - n1; + pdg = get_pdg3(b); + if (pdg == 0) return -1; + for (i = 0; i < 9; ++i) x[i] = -1.; + { + if ((x[0] = est_freq(n, pdg)) < 0.) { + free(pdg); + return -1; // no data + } + x[0] = freqml(x[0], 0, n, pdg); + } + if (flag & (0xf<<1|1<<8)) { // estimate the genotype frequency and test HWE + double *g = x + 1, f3[3], r; + f3[0] = g[0] = (1 - x[0]) * (1 - x[0]); + f3[1] = g[1] = 2 * x[0] * (1 - x[0]); + f3[2] = g[2] = x[0] * x[0]; + for (i = 0; i < ITER_MAX; ++i) + if (g3_iter(g, pdg, 0, n) < EPS) break; + // Hardy-Weinberg equilibrium (HWE) + for (i = 0, r = 1.; i < n; ++i) { + double *p = pdg + i * 3; + r *= (p[0] * g[0] + p[1] * g[1] + p[2] * g[2]) / (p[0] * f3[0] + p[1] * f3[1] + p[2] * f3[2]); + } + x[4] = kf_gammaq(.5, log(r)); + } + if ((flag & 7<<5) && n1 > 0 && n1 < n) { // group frequency + x[5] = freqml(x[0], 0, n1, pdg); + x[6] = freqml(x[0], n1, n, pdg); + } + if ((flag & 1<<7) && n1 > 0 && n1 < n) { // 1-degree P-value + double f[3], f3[3][3]; + f[0] = x[0]; f[1] = x[5]; f[2] = x[6]; + for (i = 0; i < 3; ++i) + f3[i][0] = (1-f[i])*(1-f[i]), f3[i][1] = 2*f[i]*(1-f[i]), f3[i][2] = f[i]*f[i]; + x[7] = kf_gammaq(.5, log(lk_ratio_test(n, n1, pdg, f3))); + } + if ((flag & 1<<8) && n1 > 0 && n1 < n) { // 2-degree P-value + double g[3][3]; + for (i = 0; i < 3; ++i) memcpy(g[i], x + 1, 3 * sizeof(double)); + for (i = 0; i < ITER_MAX; ++i) + if (g3_iter(g[1], pdg, 0, n1) < EPS) break; + for (i = 0; i < ITER_MAX; ++i) + if (g3_iter(g[2], pdg, n1, n) < EPS) break; + x[8] = kf_gammaq(1., log(lk_ratio_test(n, n1, pdg, g))); + } + // free + free(pdg); + return 0; +} + +/* + Two-locus EM (LD) + */ + +#define _G1(h, k) ((h>>1&1) + (k>>1&1)) +#define _G2(h, k) ((h&1) + (k&1)) + +// 0: the previous site; 1: the current site +static int pair_freq_iter(int n, double *pdg[2], double f[4]) +{ + double ff[4]; + int i, k, h; +// printf("%lf,%lf,%lf,%lf\n", f[0], f[1], f[2], f[3]); + memset(ff, 0, 4 * sizeof(double)); + for (i = 0; i < n; ++i) { + double *p[2], sum, tmp; + p[0] = pdg[0] + i * 3; p[1] = pdg[1] + i * 3; + for (k = 0, sum = 0.; k < 4; ++k) + for (h = 0; h < 4; ++h) + sum += f[k] * f[h] * p[0][_G1(k,h)] * p[1][_G2(k,h)]; + for (k = 0; k < 4; ++k) { + tmp = f[0] * (p[0][_G1(0,k)] * p[1][_G2(0,k)] + p[0][_G1(k,0)] * p[1][_G2(k,0)]) + + f[1] * (p[0][_G1(1,k)] * p[1][_G2(1,k)] + p[0][_G1(k,1)] * p[1][_G2(k,1)]) + + f[2] * (p[0][_G1(2,k)] * p[1][_G2(2,k)] + p[0][_G1(k,2)] * p[1][_G2(k,2)]) + + f[3] * (p[0][_G1(3,k)] * p[1][_G2(3,k)] + p[0][_G1(k,3)] * p[1][_G2(k,3)]); + ff[k] += f[k] * tmp / sum; + } + } + for (k = 0; k < 4; ++k) f[k] = ff[k] / (2 * n); + return 0; +} + +double bcf_pair_freq(const bcf1_t *b0, const bcf1_t *b1, double f[4]) +{ + const bcf1_t *b[2]; + int i, j, n_smpl; + double *pdg[2], flast[4], r, f0[2]; + // initialize others + if (b0->n_smpl != b1->n_smpl) return -1; // different number of samples + n_smpl = b0->n_smpl; + b[0] = b0; b[1] = b1; + f[0] = f[1] = f[2] = f[3] = -1.; + if (b[0]->n_alleles < 2 || b[1]->n_alleles < 2) return -1; // one allele only + pdg[0] = get_pdg3(b0); pdg[1] = get_pdg3(b1); + if (pdg[0] == 0 || pdg[1] == 0) { + free(pdg[0]); free(pdg[1]); + return -1; + } + // set the initial value + f0[0] = est_freq(n_smpl, pdg[0]); + f0[1] = est_freq(n_smpl, pdg[1]); + f[0] = (1 - f0[0]) * (1 - f0[1]); f[3] = f0[0] * f0[1]; + f[1] = (1 - f0[0]) * f0[1]; f[2] = f0[0] * (1 - f0[1]); + // iteration + for (j = 0; j < ITER_MAX; ++j) { + double eps = 0; + memcpy(flast, f, 4 * sizeof(double)); + pair_freq_iter(n_smpl, pdg, f); + for (i = 0; i < 4; ++i) { + double x = fabs(f[i] - flast[i]); + if (x > eps) eps = x; + } + if (eps < EPS) break; + } + // free + free(pdg[0]); free(pdg[1]); + { // calculate r^2 + double p[2], q[2], D; + p[0] = f[0] + f[1]; q[0] = 1 - p[0]; + p[1] = f[0] + f[2]; q[1] = 1 - p[1]; + D = f[0] * f[3] - f[1] * f[2]; + r = sqrt(D * D / (p[0] * p[1] * q[0] * q[1])); +// printf("R(%lf,%lf,%lf,%lf)=%lf\n", f[0], f[1], f[2], f[3], r); + if (isnan(r)) r = -1.; + } + return r; +}