0
|
1 <tool id="coVennTree" name="CoVennTree (Comparative weighted Venn Tree) - Rooted Tree" version="1.6.0">
|
|
2 <description>Comparative rooted tree analysis for files in dsv format</description>
|
|
3 <requirements>
|
|
4 <requirement type="package" version="1.6">coVennTree</requirement>
|
|
5 <requirement type="package" version="5.18.1">perl</requirement>
|
|
6 </requirements>
|
|
7 <command interpreter="perl">
|
|
8 coVennTree.pl
|
|
9 $infile
|
|
10 $color_mode
|
|
11 $trans_func
|
|
12 $leafs_allInformation
|
|
13 $outfile_network
|
|
14 $outfile_attribute
|
|
15 </command>
|
|
16
|
|
17 <inputs>
|
|
18 <param name="infile" type="data" format="tabular" label="Path File" help="Tabular file containing the paths and values"/>
|
|
19
|
|
20
|
|
21 <param name="color_mode" multiple="false" type="select" label="Select color mode for Venn diagrams">
|
|
22 <option value="0">(1) Set1: blue Set2: red Set3: yellow</option>
|
|
23 <option value="1">(2) Set1: red Set2: green Set3: blue</option>
|
|
24 <option value="2">(3) Set1: green Set2: magenta Set3: blue</option>
|
|
25 <option value="3">(4) Set1: green Set2: purple Set3: red</option>
|
|
26 <option value="4">(5) Set1: dark gray Set2: mid-grey Set3: light gray</option>
|
|
27 </param>
|
|
28
|
|
29
|
|
30 <param name="trans_func" multiple="false" type="select" label="Select transformation function">
|
|
31 <option value="0">(1) datasets max: 3,000 data points in sum</option>
|
|
32 <option value="1">(2) datasets max: 30,000 data points in sum</option>
|
|
33 <option value="2">(3) datasets max: 300,000 data points in sum</option>
|
|
34 <option value="3">(4) datasets max: 3,000,000 data points in sum</option>
|
|
35 <option value="4">(5) datasets max: 30,000,000 data points in sum</option>
|
|
36 <option value="5">(6) datasets max: 300,000,000 data points in sum</option>
|
|
37 <option value="6">(7) datasets max: 3,000,000,000 data points in sum</option>
|
|
38 </param>
|
|
39
|
|
40
|
|
41 <param name="leafs_allInformation" multiple="false" type="select" label="Select tree analyzes function">
|
|
42 <option value="1">(1) leaf + inner nodes informations</option>
|
|
43 <option value="0">(2) only leaf information</option>
|
|
44 </param>
|
|
45
|
|
46 </inputs>
|
|
47
|
|
48 <outputs>
|
|
49 <data format="tabular" name="outfile_network" label="Network" />
|
|
50 <data format="tabular" name="outfile_attribute" label="Attributes" />
|
|
51 </outputs>
|
|
52
|
|
53 <tests>
|
|
54 <test>
|
|
55 </test>
|
|
56 </tests>
|
|
57
|
|
58 <help>
|
|
59 .. class:: infomark
|
|
60
|
|
61 CoVennTree compares up to three rooted trees at the same time.
|
|
62
|
|
63 CoVennTree (Comparative weighted Venn Tree) is a software to analyze and compare up to three datasets. Unlike other
|
|
64 methods, CoVennTree correlates data on the leaf level and transfers this information to the root node. CoVennTree works with numbers to compute weighted
|
|
65 Venn diagrams for each node in the graph (rooted tree). Therefore any kind of input data can be processed as long as the data structure will be taken into account.
|
|
66
|
|
67
|
|
68
|
|
69 **Input**
|
|
70
|
|
71 *Input example*
|
|
72
|
|
73
|
|
74 .. image:: $PATH_TO_IMAGES/example1.png
|
|
75 :height: 430
|
|
76 :width: 600
|
|
77
|
|
78
|
|
79 *dsv-format: The following table represents the graph.*
|
|
80
|
|
81
|
|
82 =========== ====== ====== ======
|
|
83 #Datasets set1 set2 set3
|
|
84 =========== ====== ====== ======
|
|
85 "root;" 0 0 0
|
|
86 "root;A;" 10000 0 0
|
|
87 "root;A;C;" 600000 300000 500000
|
|
88 "root;A;D;" 0 100000 200000
|
|
89 "root;A;E;" 800000 0 100000
|
|
90 "root;B;" 10000 20000 50000
|
|
91 =========== ====== ====== ======
|
|
92
|
|
93
|
|
94 -------
|
|
95
|
|
96
|
|
97 **Results**
|
|
98
|
|
99 A specific color is assigned to each dataset in five optional color schemes (see parameter "Select color mode for weighted Venn diagrams").
|
|
100 In this example set1 corresponds to color blue, set2 to red and set3 to yellow.
|
|
101 In order to cover a wide numerical range a non linear transformation function is used.
|
|
102
|
|
103
|
|
104 *Data format \*.sif*
|
|
105
|
|
106 [parent_node] [connected_with] [child_node]
|
|
107
|
|
108
|
|
109 *Data format \*.venn*
|
|
110
|
|
111 [id] [google_url] [id_vds] [Venn_abs_values]
|
|
112
|
|
113
|
|
114 *Output example "leaf information and not assigned information"*
|
|
115
|
|
116 By selecting "leaf information + not assigned information" artificial nodes can be inserted.
|
|
117 Artificial nodes will be inserted if inner nodes have values larger than zero.
|
|
118
|
|
119 .. image:: $PATH_TO_IMAGES/venn-graph-off.png
|
|
120 :height: 358
|
|
121 :width: 425
|
|
122
|
|
123
|
|
124 -------
|
|
125
|
|
126
|
|
127 *Output example "only leaf information"*
|
|
128
|
|
129 By selecting "only leaf information" only leaf nodes are considered for the computation of weighted Venn diagrams.
|
|
130
|
|
131 .. image:: $PATH_TO_IMAGES/venn-graph-on.png
|
|
132 :height: 358
|
|
133 :width: 400
|
|
134
|
|
135
|
|
136
|
|
137 </help>
|
|
138 <citations>
|
|
139 <citation type="doi">
|
|
140
|
|
141 </citation>>
|
|
142 </citations>
|
|
143 </tool>
|