Mercurial > repos > steffen > covenntree
comparison coVennTree/coVennTree.xml @ 0:745aede829e9 draft default tip
Imported from capsule None
author | steffen |
---|---|
date | Fri, 30 Jan 2015 09:55:45 -0500 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:745aede829e9 |
---|---|
1 <tool id="coVennTree" name="CoVennTree (Comparative weighted Venn Tree) - Rooted Tree" version="1.6.0"> | |
2 <description>Comparative rooted tree analysis for files in dsv format</description> | |
3 <requirements> | |
4 <requirement type="package" version="1.6">coVennTree</requirement> | |
5 <requirement type="package" version="5.18.1">perl</requirement> | |
6 </requirements> | |
7 <command interpreter="perl"> | |
8 coVennTree.pl | |
9 $infile | |
10 $color_mode | |
11 $trans_func | |
12 $leafs_allInformation | |
13 $outfile_network | |
14 $outfile_attribute | |
15 </command> | |
16 | |
17 <inputs> | |
18 <param name="infile" type="data" format="tabular" label="Path File" help="Tabular file containing the paths and values"/> | |
19 | |
20 | |
21 <param name="color_mode" multiple="false" type="select" label="Select color mode for Venn diagrams"> | |
22 <option value="0">(1) Set1: blue Set2: red Set3: yellow</option> | |
23 <option value="1">(2) Set1: red Set2: green Set3: blue</option> | |
24 <option value="2">(3) Set1: green Set2: magenta Set3: blue</option> | |
25 <option value="3">(4) Set1: green Set2: purple Set3: red</option> | |
26 <option value="4">(5) Set1: dark gray Set2: mid-grey Set3: light gray</option> | |
27 </param> | |
28 | |
29 | |
30 <param name="trans_func" multiple="false" type="select" label="Select transformation function"> | |
31 <option value="0">(1) datasets max: 3,000 data points in sum</option> | |
32 <option value="1">(2) datasets max: 30,000 data points in sum</option> | |
33 <option value="2">(3) datasets max: 300,000 data points in sum</option> | |
34 <option value="3">(4) datasets max: 3,000,000 data points in sum</option> | |
35 <option value="4">(5) datasets max: 30,000,000 data points in sum</option> | |
36 <option value="5">(6) datasets max: 300,000,000 data points in sum</option> | |
37 <option value="6">(7) datasets max: 3,000,000,000 data points in sum</option> | |
38 </param> | |
39 | |
40 | |
41 <param name="leafs_allInformation" multiple="false" type="select" label="Select tree analyzes function"> | |
42 <option value="1">(1) leaf + inner nodes informations</option> | |
43 <option value="0">(2) only leaf information</option> | |
44 </param> | |
45 | |
46 </inputs> | |
47 | |
48 <outputs> | |
49 <data format="tabular" name="outfile_network" label="Network" /> | |
50 <data format="tabular" name="outfile_attribute" label="Attributes" /> | |
51 </outputs> | |
52 | |
53 <tests> | |
54 <test> | |
55 </test> | |
56 </tests> | |
57 | |
58 <help> | |
59 .. class:: infomark | |
60 | |
61 CoVennTree compares up to three rooted trees at the same time. | |
62 | |
63 CoVennTree (Comparative weighted Venn Tree) is a software to analyze and compare up to three datasets. Unlike other | |
64 methods, CoVennTree correlates data on the leaf level and transfers this information to the root node. CoVennTree works with numbers to compute weighted | |
65 Venn diagrams for each node in the graph (rooted tree). Therefore any kind of input data can be processed as long as the data structure will be taken into account. | |
66 | |
67 | |
68 | |
69 **Input** | |
70 | |
71 *Input example* | |
72 | |
73 | |
74 .. image:: $PATH_TO_IMAGES/example1.png | |
75 :height: 430 | |
76 :width: 600 | |
77 | |
78 | |
79 *dsv-format: The following table represents the graph.* | |
80 | |
81 | |
82 =========== ====== ====== ====== | |
83 #Datasets set1 set2 set3 | |
84 =========== ====== ====== ====== | |
85 "root;" 0 0 0 | |
86 "root;A;" 10000 0 0 | |
87 "root;A;C;" 600000 300000 500000 | |
88 "root;A;D;" 0 100000 200000 | |
89 "root;A;E;" 800000 0 100000 | |
90 "root;B;" 10000 20000 50000 | |
91 =========== ====== ====== ====== | |
92 | |
93 | |
94 ------- | |
95 | |
96 | |
97 **Results** | |
98 | |
99 A specific color is assigned to each dataset in five optional color schemes (see parameter "Select color mode for weighted Venn diagrams"). | |
100 In this example set1 corresponds to color blue, set2 to red and set3 to yellow. | |
101 In order to cover a wide numerical range a non linear transformation function is used. | |
102 | |
103 | |
104 *Data format \*.sif* | |
105 | |
106 [parent_node] [connected_with] [child_node] | |
107 | |
108 | |
109 *Data format \*.venn* | |
110 | |
111 [id] [google_url] [id_vds] [Venn_abs_values] | |
112 | |
113 | |
114 *Output example "leaf information and not assigned information"* | |
115 | |
116 By selecting "leaf information + not assigned information" artificial nodes can be inserted. | |
117 Artificial nodes will be inserted if inner nodes have values larger than zero. | |
118 | |
119 .. image:: $PATH_TO_IMAGES/venn-graph-off.png | |
120 :height: 358 | |
121 :width: 425 | |
122 | |
123 | |
124 ------- | |
125 | |
126 | |
127 *Output example "only leaf information"* | |
128 | |
129 By selecting "only leaf information" only leaf nodes are considered for the computation of weighted Venn diagrams. | |
130 | |
131 .. image:: $PATH_TO_IMAGES/venn-graph-on.png | |
132 :height: 358 | |
133 :width: 400 | |
134 | |
135 | |
136 | |
137 </help> | |
138 <citations> | |
139 <citation type="doi"> | |
140 | |
141 </citation>> | |
142 </citations> | |
143 </tool> |