Mercurial > repos > thomaswollmann > projective_transformation_points
diff projective_transformation_points.py @ 0:470fd1c1c10c draft default tip
planemo upload for repository https://github.com/BMCV/galaxy-image-analysis/tools/projective_transformation_points/ commit 787ebcc8daa1834214bc92c201c921c704ef2d1f
author | thomaswollmann |
---|---|
date | Mon, 07 Jan 2019 05:39:27 -0500 (2019-01-07) |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/projective_transformation_points.py Mon Jan 07 05:39:27 2019 -0500 @@ -0,0 +1,35 @@ +from skimage.transform import ProjectiveTransform +import numpy as np +import pandas as pd +import argparse + + +def warp_coords_batch(coord_map, coords, dtype=np.float64, batch_size=1000000): + tf_coords = coords.astype(np.float32) + + for i in range(0, (tf_coords.shape[0]//batch_size+1)): + tf_coords[batch_size*i:batch_size*(i+1)] = coord_map(tf_coords[batch_size*i:batch_size*(i+1)]) + + return np.unique(np.round(tf_coords).astype(coords.dtype),axis=0) + + +def transform(coords, warp_matrix, out): + indices = np.array(pd.read_csv(coords, delimiter="\t")) + a_matrix = np.array(pd.read_csv(warp_matrix, delimiter=",", header=None)) + + trans = ProjectiveTransform(matrix=a_matrix) + warped_coords = warp_coords_batch(trans, indices) + + df = pd.DataFrame() + df['x'] = warped_coords[:,0] + df['y'] = warped_coords[:,1] + df.to_csv(out, index = False, sep="\t") + + +if __name__ == "__main__": + parser = argparse.ArgumentParser(description="Transform coordinates") + parser.add_argument("coords", help="Paste path to .csv with coordinates to transform (tab separated)") + parser.add_argument("warp_matrix", help="Paste path to .csv that should be used for transformation (, separated)") + parser.add_argument("out", help="Paste path to file in which transformed coords should be saved (tab separated)") + args = parser.parse_args() + transform(args.coords, args.warp_matrix, args.out)