Mercurial > repos > thondeboer > neat_genreads
comparison py/SequenceContainer.py @ 0:6e75a84e9338 draft
planemo upload commit e96b43f96afce6a7b7dfd4499933aad7d05c955e-dirty
| author | thondeboer |
|---|---|
| date | Tue, 15 May 2018 02:39:53 -0400 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:6e75a84e9338 |
|---|---|
| 1 import random | |
| 2 import copy | |
| 3 import re | |
| 4 import os | |
| 5 import bisect | |
| 6 import cPickle as pickle | |
| 7 import numpy as np | |
| 8 | |
| 9 from probability import DiscreteDistribution, poisson_list, quantize_list | |
| 10 from cigar import CigarString | |
| 11 | |
| 12 MAX_ATTEMPTS = 100 # max attempts to insert a mutation into a valid position | |
| 13 MAX_MUTFRAC = 0.3 # the maximum percentage of a window that can contain mutations | |
| 14 | |
| 15 NUCL = ['A','C','G','T'] | |
| 16 TRI_IND = {'AA':0, 'AC':1, 'AG':2, 'AT':3, 'CA':4, 'CC':5, 'CG':6, 'CT':7, | |
| 17 'GA':8, 'GC':9, 'GG':10, 'GT':11, 'TA':12, 'TC':13, 'TG':14, 'TT':15} | |
| 18 NUC_IND = {'A':0, 'C':1, 'G':2, 'T':3} | |
| 19 ALL_TRI = [NUCL[i]+NUCL[j]+NUCL[k] for i in xrange(len(NUCL)) for j in xrange(len(NUCL)) for k in xrange(len(NUCL))] | |
| 20 ALL_IND = {ALL_TRI[i]:i for i in xrange(len(ALL_TRI))} | |
| 21 | |
| 22 # DEBUG | |
| 23 IGNORE_TRINUC = False | |
| 24 | |
| 25 # percentile resolution used for fraglen quantizing | |
| 26 COV_FRAGLEN_PERCENTILE = 10. | |
| 27 LARGE_NUMBER = 9999999999 | |
| 28 | |
| 29 # | |
| 30 # Container for reference sequences, applies mutations | |
| 31 # | |
| 32 class SequenceContainer: | |
| 33 def __init__(self, xOffset, sequence, ploidy, windowOverlap, readLen, mutationModels=[], mutRate=None, onlyVCF=False): | |
| 34 # initialize basic variables | |
| 35 self.onlyVCF = onlyVCF | |
| 36 self.init_basicVars(xOffset, sequence, ploidy, windowOverlap, readLen) | |
| 37 # initialize mutation models | |
| 38 self.init_mutModels(mutationModels, mutRate) | |
| 39 # sample the number of variants that will be inserted into each ploid | |
| 40 self.init_poisson() | |
| 41 self.indelsToAdd = [n.sample() for n in self.ind_pois] | |
| 42 self.snpsToAdd = [n.sample() for n in self.snp_pois] | |
| 43 # initialize trinuc snp bias | |
| 44 self.init_trinucBias() | |
| 45 | |
| 46 def init_basicVars(self, xOffset, sequence, ploidy, windowOverlap, readLen): | |
| 47 self.x = xOffset | |
| 48 self.ploidy = ploidy | |
| 49 self.readLen = readLen | |
| 50 self.sequences = [bytearray(sequence) for n in xrange(self.ploidy)] | |
| 51 self.seqLen = len(sequence) | |
| 52 self.indelList = [[] for n in xrange(self.ploidy)] | |
| 53 self.snpList = [[] for n in xrange(self.ploidy)] | |
| 54 self.allCigar = [[] for n in xrange(self.ploidy)] | |
| 55 self.FM_pos = [[] for n in xrange(self.ploidy)] | |
| 56 self.FM_span = [[] for n in xrange(self.ploidy)] | |
| 57 self.adj = [None for n in xrange(self.ploidy)] | |
| 58 # blackList[ploid][pos] = 0 safe to insert variant here | |
| 59 # blackList[ploid][pos] = 1 indel inserted here | |
| 60 # blackList[ploid][pos] = 2 snp inserted here | |
| 61 # blackList[ploid][pos] = 3 invalid position for various processing reasons | |
| 62 self.blackList = [np.zeros(self.seqLen,dtype='<i4') for n in xrange(self.ploidy)] | |
| 63 | |
| 64 # disallow mutations to occur on window overlap points | |
| 65 self.winBuffer = windowOverlap | |
| 66 for p in xrange(self.ploidy): | |
| 67 self.blackList[p][-self.winBuffer] = 3 | |
| 68 self.blackList[p][-self.winBuffer-1] = 3 | |
| 69 | |
| 70 def init_coverage(self,coverageDat,fragDist=None): | |
| 71 # if we're only creating a vcf, skip some expensive initialization related to coverage depth | |
| 72 if not self.onlyVCF: | |
| 73 (self.windowSize, gc_scalars, targetCov_vals) = coverageDat | |
| 74 gcCov_vals = [[] for n in self.sequences] | |
| 75 trCov_vals = [[] for n in self.sequences] | |
| 76 self.coverage_distribution = [] | |
| 77 avg_out = [] | |
| 78 for i in xrange(len(self.sequences)): | |
| 79 # compute gc-bias | |
| 80 j = 0 | |
| 81 while j+self.windowSize < len(self.sequences[i]): | |
| 82 gc_c = self.sequences[i][j:j+self.windowSize].count('G') + self.sequences[i][j:j+self.windowSize].count('C') | |
| 83 gcCov_vals[i].extend([gc_scalars[gc_c]]*self.windowSize) | |
| 84 j += self.windowSize | |
| 85 gc_c = self.sequences[i][-self.windowSize:].count('G') + self.sequences[i][-self.windowSize:].count('C') | |
| 86 gcCov_vals[i].extend([gc_scalars[gc_c]]*(len(self.sequences[i])-len(gcCov_vals[i]))) | |
| 87 # | |
| 88 trCov_vals[i].append(targetCov_vals[0]) | |
| 89 prevVal = self.FM_pos[i][0] | |
| 90 for j in xrange(1,len(self.sequences[i])-self.readLen): | |
| 91 if self.FM_pos[i][j] == None: | |
| 92 trCov_vals[i].append(targetCov_vals[prevVal]) | |
| 93 else: | |
| 94 trCov_vals[i].append(sum(targetCov_vals[self.FM_pos[i][j]:self.FM_span[i][j]])/float(self.FM_span[i][j]-self.FM_pos[i][j])) | |
| 95 prevVal = self.FM_pos[i][j] | |
| 96 #print (i,j), self.adj[i][j], self.allCigar[i][j], self.FM_pos[i][j], self.FM_span[i][j] | |
| 97 # shift by half of read length | |
| 98 trCov_vals[i] = [0.0]*int(self.readLen/2) + trCov_vals[i][:-int(self.readLen/2.)] | |
| 99 # fill in missing indices | |
| 100 trCov_vals[i].extend([0.0]*(len(self.sequences[i])-len(trCov_vals[i]))) | |
| 101 | |
| 102 # | |
| 103 covvec = np.cumsum([trCov_vals[i][nnn]*gcCov_vals[i][nnn] for nnn in xrange(len(trCov_vals[i]))]) | |
| 104 coverage_vals = [] | |
| 105 for j in xrange(0,len(self.sequences[i])-self.readLen): | |
| 106 coverage_vals.append(covvec[j+self.readLen] - covvec[j]) | |
| 107 avg_out.append(np.mean(coverage_vals)/float(self.readLen)) | |
| 108 | |
| 109 if fragDist == None: | |
| 110 self.coverage_distribution.append(DiscreteDistribution(coverage_vals,range(len(coverage_vals)))) | |
| 111 | |
| 112 # fragment length nightmare | |
| 113 else: | |
| 114 currentThresh = 0. | |
| 115 index_list = [0] | |
| 116 for j in xrange(len(fragDist.cumP)): | |
| 117 if fragDist.cumP[j] >= currentThresh + COV_FRAGLEN_PERCENTILE/100.0: | |
| 118 currentThresh = fragDist.cumP[j] | |
| 119 index_list.append(j) | |
| 120 flq = [fragDist.values[nnn] for nnn in index_list] | |
| 121 if fragDist.values[-1] not in flq: | |
| 122 flq.append(fragDist.values[-1]) | |
| 123 flq.append(LARGE_NUMBER) | |
| 124 | |
| 125 self.fraglens_indMap = {} | |
| 126 for j in fragDist.values: | |
| 127 bInd = bisect.bisect(flq,j) | |
| 128 if abs(flq[bInd-1] - j) <= abs(flq[bInd] - j): | |
| 129 self.fraglens_indMap[j] = flq[bInd-1] | |
| 130 else: | |
| 131 self.fraglens_indMap[j] = flq[bInd] | |
| 132 | |
| 133 self.coverage_distribution.append({}) | |
| 134 for flv in sorted(list(set(self.fraglens_indMap.values()))): | |
| 135 buffer_val = self.readLen | |
| 136 for j in fragDist.values: | |
| 137 if self.fraglens_indMap[j] == flv and j > buffer_val: | |
| 138 buffer_val = j | |
| 139 coverage_vals = [] | |
| 140 for j in xrange(len(self.sequences[i])-buffer_val): | |
| 141 coverage_vals.append(covvec[j+self.readLen] - covvec[j] + covvec[j+flv] - covvec[j+flv-self.readLen]) | |
| 142 | |
| 143 # EXPERIMENTAL | |
| 144 #quantized_covVals = quantize_list(coverage_vals) | |
| 145 #self.coverage_distribution[i][flv] = DiscreteDistribution([n[2] for n in quantized_covVals],[(n[0],n[1]) for n in quantized_covVals]) | |
| 146 | |
| 147 # TESTING | |
| 148 #import matplotlib.pyplot as mpl | |
| 149 #print len(coverage_vals),'-->',len(quantized_covVals) | |
| 150 #mpl.figure(0) | |
| 151 #mpl.plot(range(len(coverage_vals)),coverage_vals) | |
| 152 #for qcv in quantized_covVals: | |
| 153 # mpl.plot([qcv[0],qcv[1]+1],[qcv[2],qcv[2]],'r') | |
| 154 #mpl.show() | |
| 155 #exit(1) | |
| 156 | |
| 157 self.coverage_distribution[i][flv] = DiscreteDistribution(coverage_vals,range(len(coverage_vals))) | |
| 158 | |
| 159 return np.mean(avg_out) | |
| 160 | |
| 161 def init_mutModels(self,mutationModels,mutRate): | |
| 162 if mutationModels == []: | |
| 163 ml = [copy.deepcopy(DEFAULT_MODEL_1) for n in xrange(self.ploidy)] | |
| 164 self.modelData = ml[:self.ploidy] | |
| 165 else: | |
| 166 if len(mutationModels) != self.ploidy: | |
| 167 print '\nError: Number of mutation models recieved is not equal to specified ploidy\n' | |
| 168 exit(1) | |
| 169 self.modelData = copy.deepcopy(mutationModels) | |
| 170 | |
| 171 # do we need to rescale mutation frequencies? | |
| 172 mutRateSum = sum([n[0] for n in self.modelData]) | |
| 173 self.mutRescale = mutRate | |
| 174 if self.mutRescale == None: | |
| 175 self.mutScalar = 1.0 | |
| 176 else: | |
| 177 self.mutScalar = float(self.mutRescale)/(mutRateSum/float(len(self.modelData))) | |
| 178 | |
| 179 # how are mutations spread to each ploid, based on their specified mut rates? | |
| 180 self.ploidMutFrac = [float(n[0])/mutRateSum for n in self.modelData] | |
| 181 self.ploidMutPrior = DiscreteDistribution(self.ploidMutFrac,range(self.ploidy)) | |
| 182 | |
| 183 # init mutation models | |
| 184 # | |
| 185 # self.models[ploid][0] = average mutation rate | |
| 186 # self.models[ploid][1] = p(mut is homozygous | mutation occurs) | |
| 187 # self.models[ploid][2] = p(mut is indel | mut occurs) | |
| 188 # self.models[ploid][3] = p(insertion | indel occurs) | |
| 189 # self.models[ploid][4] = distribution of insertion lengths | |
| 190 # self.models[ploid][5] = distribution of deletion lengths | |
| 191 # self.models[ploid][6] = distribution of trinucleotide SNP transitions | |
| 192 # self.models[ploid][7] = p(trinuc mutates) | |
| 193 self.models = [] | |
| 194 for n in self.modelData: | |
| 195 self.models.append([self.mutScalar*n[0],n[1],n[2],n[3],DiscreteDistribution(n[5],n[4]),DiscreteDistribution(n[7],n[6]),[]]) | |
| 196 for m in n[8]: | |
| 197 self.models[-1][6].append([DiscreteDistribution(m[0],NUCL), | |
| 198 DiscreteDistribution(m[1],NUCL), | |
| 199 DiscreteDistribution(m[2],NUCL), | |
| 200 DiscreteDistribution(m[3],NUCL)]) | |
| 201 self.models[-1].append([m for m in n[9]]) | |
| 202 | |
| 203 def init_poisson(self): | |
| 204 ind_l_list = [self.seqLen*self.models[i][0]*self.models[i][2]*self.ploidMutFrac[i] for i in xrange(len(self.models))] | |
| 205 snp_l_list = [self.seqLen*self.models[i][0]*(1.-self.models[i][2])*self.ploidMutFrac[i] for i in xrange(len(self.models))] | |
| 206 k_range = range(int(self.seqLen*MAX_MUTFRAC)) | |
| 207 self.ind_pois = [poisson_list(k_range,ind_l_list[n]) for n in xrange(len(self.models))] | |
| 208 self.snp_pois = [poisson_list(k_range,snp_l_list[n]) for n in xrange(len(self.models))] | |
| 209 | |
| 210 def init_trinucBias(self): | |
| 211 # compute mutation positional bias given trinucleotide strings of the sequence (ONLY AFFECTS SNPs) | |
| 212 # | |
| 213 # note: since indels are added before snps, it's possible these positional biases aren't correctly utilized | |
| 214 # at positions affected by indels. At the moment I'm going to consider this negligible. | |
| 215 trinuc_snp_bias = [[0. for n in xrange(self.seqLen)] for m in xrange(self.ploidy)] | |
| 216 self.trinuc_bias = [None for n in xrange(self.ploidy)] | |
| 217 for p in xrange(self.ploidy): | |
| 218 for i in xrange(self.winBuffer+1,self.seqLen-1): | |
| 219 trinuc_snp_bias[p][i] = self.models[p][7][ALL_IND[str(self.sequences[p][i-1:i+2])]] | |
| 220 self.trinuc_bias[p] = DiscreteDistribution(trinuc_snp_bias[p][self.winBuffer+1:self.seqLen-1],range(self.winBuffer+1,self.seqLen-1)) | |
| 221 | |
| 222 def update(self, xOffset, sequence, ploidy, windowOverlap, readLen, mutationModels=[], mutRate=None): | |
| 223 # if mutation model is changed, we have to reinitialize it... | |
| 224 if ploidy != self.ploidy or mutRate != self.mutRescale or mutationModels != []: | |
| 225 self.ploidy = ploidy | |
| 226 self.mutRescale = mutRate | |
| 227 self.init_mutModels(mutationModels, mutRate) | |
| 228 # if sequence length is different than previous window, we have to redo snp/indel poissons | |
| 229 if len(sequence) != self.seqLen: | |
| 230 self.seqLen = len(sequence) | |
| 231 self.init_poisson() | |
| 232 # basic vars | |
| 233 self.init_basicVars(xOffset, sequence, ploidy, windowOverlap, readLen) | |
| 234 self.indelsToAdd = [n.sample() for n in self.ind_pois] | |
| 235 self.snpsToAdd = [n.sample() for n in self.snp_pois] | |
| 236 #print (self.indelsToAdd,self.snpsToAdd) | |
| 237 # initialize trinuc snp bias | |
| 238 if not IGNORE_TRINUC: | |
| 239 self.init_trinucBias() | |
| 240 | |
| 241 def insert_mutations(self, inputList): | |
| 242 # | |
| 243 # TODO!!!!!! user-input variants, determine which ploid to put it on, etc.. | |
| 244 # | |
| 245 for inpV in inputList: | |
| 246 whichPloid = [] | |
| 247 wps = inpV[4][0] | |
| 248 if wps == None: # if no genotype given, assume heterozygous and choose a single ploid based on their mut rates | |
| 249 whichPloid.append(self.ploidMutPrior.sample()) | |
| 250 whichAlt = [0] | |
| 251 else: | |
| 252 #if 'WP=' in wps: | |
| 253 # whichPloid = [int(n) for n in inpV[-1][3:].split(',') if n == '1'] | |
| 254 # print 'WHICH:', whichPloid | |
| 255 # whichAlt = [0]*len(whichPloid) | |
| 256 #elif '/' in wps or '|' in wps: | |
| 257 if '/' in wps or '|' in wps: | |
| 258 if '/' in wps: | |
| 259 splt = wps.split('/') | |
| 260 else: | |
| 261 splt = wps.split('|') | |
| 262 whichPloid = [] | |
| 263 whichAlt = [] | |
| 264 for i in xrange(len(splt)): | |
| 265 if splt[i] == '1': | |
| 266 whichPloid.append(i) | |
| 267 #whichAlt.append(int(splt[i])-1) | |
| 268 # assume we're just using first alt for inserted variants? | |
| 269 whichAlt = [0 for n in whichPloid] | |
| 270 else: # otherwise assume monoploidy | |
| 271 whichPloid = [0] | |
| 272 whichAlt = [0] | |
| 273 | |
| 274 # ignore invalid ploids | |
| 275 for i in xrange(len(whichPloid)-1,-1,-1): | |
| 276 if whichPloid[i] >= self.ploidy: | |
| 277 del whichPloid[i] | |
| 278 | |
| 279 for i in xrange(len(whichPloid)): | |
| 280 p = whichPloid[i] | |
| 281 myAlt = inpV[2][whichAlt[i]] | |
| 282 myVar = (inpV[0]-self.x,inpV[1],myAlt) | |
| 283 inLen = max([len(inpV[1]),len(myAlt)]) | |
| 284 #print myVar, chr(self.sequences[p][myVar[0]]) | |
| 285 if myVar[0] < 0 or myVar[0] >= len(self.blackList[p]): | |
| 286 print '\nError: Attempting to insert variant out of window bounds:' | |
| 287 print myVar, '--> blackList[0:'+str(len(self.blackList[p]))+']\n' | |
| 288 exit(1) | |
| 289 if len(inpV[1]) == 1 and len(myAlt) == 1: | |
| 290 if self.blackList[p][myVar[0]]: | |
| 291 continue | |
| 292 self.snpList[p].append(myVar) | |
| 293 self.blackList[p][myVar[0]] = 2 | |
| 294 else: | |
| 295 for k in xrange(myVar[0],myVar[0]+inLen+1): | |
| 296 if self.blackList[p][k]: | |
| 297 continue | |
| 298 for k in xrange(myVar[0],myVar[0]+inLen+1): | |
| 299 self.blackList[p][k] = 1 | |
| 300 self.indelList[p].append(myVar) | |
| 301 | |
| 302 def random_mutations(self): | |
| 303 | |
| 304 # add random indels | |
| 305 all_indels = [[] for n in self.sequences] | |
| 306 for i in xrange(self.ploidy): | |
| 307 for j in xrange(self.indelsToAdd[i]): | |
| 308 if random.random() <= self.models[i][1]: # insert homozygous indel | |
| 309 whichPloid = range(self.ploidy) | |
| 310 else: # insert heterozygous indel | |
| 311 whichPloid = [self.ploidMutPrior.sample()] | |
| 312 | |
| 313 # try to find suitable places to insert indels | |
| 314 eventPos = -1 | |
| 315 for attempt in xrange(MAX_ATTEMPTS): | |
| 316 eventPos = random.randint(self.winBuffer,self.seqLen-1) | |
| 317 for p in whichPloid: | |
| 318 if self.blackList[p][eventPos]: | |
| 319 eventPos = -1 | |
| 320 if eventPos != -1: | |
| 321 break | |
| 322 if eventPos == -1: | |
| 323 continue | |
| 324 | |
| 325 if random.random() <= self.models[i][3]: # insertion | |
| 326 inLen = self.models[i][4].sample() | |
| 327 # sequence content of random insertions is uniformly random (change this later) | |
| 328 inSeq = ''.join([random.choice(NUCL) for n in xrange(inLen)]) | |
| 329 refNucl = chr(self.sequences[i][eventPos]) | |
| 330 myIndel = (eventPos,refNucl,refNucl+inSeq) | |
| 331 else: # deletion | |
| 332 inLen = self.models[i][5].sample() | |
| 333 if eventPos+inLen+1 >= len(self.sequences[i]): # skip if deletion too close to boundary | |
| 334 continue | |
| 335 if inLen == 1: | |
| 336 inSeq = chr(self.sequences[i][eventPos+1]) | |
| 337 else: | |
| 338 inSeq = str(self.sequences[i][eventPos+1:eventPos+inLen+1]) | |
| 339 refNucl = chr(self.sequences[i][eventPos]) | |
| 340 myIndel = (eventPos,refNucl+inSeq,refNucl) | |
| 341 | |
| 342 # if event too close to boundary, skip. if event conflicts with other indel, skip. | |
| 343 skipEvent = False | |
| 344 if eventPos+len(myIndel[1]) >= self.seqLen-self.winBuffer-1: | |
| 345 skipEvent = True | |
| 346 if skipEvent: | |
| 347 continue | |
| 348 for p in whichPloid: | |
| 349 for k in xrange(eventPos,eventPos+inLen+1): | |
| 350 if self.blackList[p][k]: | |
| 351 skipEvent = True | |
| 352 if skipEvent: | |
| 353 continue | |
| 354 | |
| 355 for p in whichPloid: | |
| 356 for k in xrange(eventPos,eventPos+inLen+1): | |
| 357 self.blackList[p][k] = 1 | |
| 358 all_indels[p].append(myIndel) | |
| 359 | |
| 360 for i in xrange(len(all_indels)): | |
| 361 all_indels[i].extend(self.indelList[i]) | |
| 362 all_indels = [sorted(n,reverse=True) for n in all_indels] | |
| 363 #print all_indels | |
| 364 | |
| 365 # add random snps | |
| 366 all_snps = [[] for n in self.sequences] | |
| 367 for i in xrange(self.ploidy): | |
| 368 for j in xrange(self.snpsToAdd[i]): | |
| 369 if random.random() <= self.models[i][1]: # insert homozygous SNP | |
| 370 whichPloid = range(self.ploidy) | |
| 371 else: # insert heterozygous SNP | |
| 372 whichPloid = [self.ploidMutPrior.sample()] | |
| 373 | |
| 374 # try to find suitable places to insert snps | |
| 375 eventPos = -1 | |
| 376 for attempt in xrange(MAX_ATTEMPTS): | |
| 377 # based on the mutation model for the specified ploid, choose a SNP location based on trinuc bias | |
| 378 # (if there are multiple ploids, choose one at random) | |
| 379 if IGNORE_TRINUC: | |
| 380 eventPos = random.randint(self.winBuffer+1,self.seqLen-2) | |
| 381 else: | |
| 382 ploid_to_use = whichPloid[random.randint(0,len(whichPloid)-1)] | |
| 383 eventPos = self.trinuc_bias[ploid_to_use].sample() | |
| 384 for p in whichPloid: | |
| 385 if self.blackList[p][eventPos]: | |
| 386 eventPos = -1 | |
| 387 if eventPos != -1: | |
| 388 break | |
| 389 if eventPos == -1: | |
| 390 continue | |
| 391 | |
| 392 refNucl = chr(self.sequences[i][eventPos]) | |
| 393 context = str(chr(self.sequences[i][eventPos-1])+chr(self.sequences[i][eventPos+1])) | |
| 394 # sample from tri-nucleotide substitution matrices to get SNP alt allele | |
| 395 newNucl = self.models[i][6][TRI_IND[context]][NUC_IND[refNucl]].sample() | |
| 396 mySNP = (eventPos,refNucl,newNucl) | |
| 397 | |
| 398 for p in whichPloid: | |
| 399 all_snps[p].append(mySNP) | |
| 400 self.blackList[p][mySNP[0]] = 2 | |
| 401 | |
| 402 # combine random snps with inserted snps, remove any snps that overlap indels | |
| 403 for p in xrange(len(all_snps)): | |
| 404 all_snps[p].extend(self.snpList[p]) | |
| 405 all_snps[p] = [n for n in all_snps[p] if self.blackList[p][n[0]] != 1] | |
| 406 | |
| 407 # modify reference sequences | |
| 408 for i in xrange(len(all_snps)): | |
| 409 for j in xrange(len(all_snps[i])): | |
| 410 # sanity checking (for debugging purposes) | |
| 411 vPos = all_snps[i][j][0] | |
| 412 if all_snps[i][j][1] != chr(self.sequences[i][vPos]): | |
| 413 print '\nError: Something went wrong!\n', all_snps[i][j], chr(self.sequences[i][vPos]),'\n' | |
| 414 exit(1) | |
| 415 else: | |
| 416 self.sequences[i][vPos] = all_snps[i][j][2] | |
| 417 | |
| 418 adjToAdd = [[] for n in xrange(self.ploidy)] | |
| 419 for i in xrange(len(all_indels)): | |
| 420 for j in xrange(len(all_indels[i])): | |
| 421 # sanity checking (for debugging purposes) | |
| 422 vPos = all_indels[i][j][0] | |
| 423 vPos2 = vPos + len(all_indels[i][j][1]) | |
| 424 #print all_indels[i][j], str(self.sequences[i][vPos:vPos2]) | |
| 425 #print len(self.sequences[i]),'-->', | |
| 426 if all_indels[i][j][1] != str(self.sequences[i][vPos:vPos2]): | |
| 427 print '\nError: Something went wrong!\n', all_indels[i][j], str(self.sequences[i][vPos:vPos2]),'\n' | |
| 428 exit(1) | |
| 429 else: | |
| 430 self.sequences[i] = self.sequences[i][:vPos] + bytearray(all_indels[i][j][2]) + self.sequences[i][vPos2:] | |
| 431 adjToAdd[i].append((all_indels[i][j][0],len(all_indels[i][j][2])-len(all_indels[i][j][1]))) | |
| 432 #print len(self.sequences[i]) | |
| 433 adjToAdd[i].sort() | |
| 434 #print adjToAdd[i] | |
| 435 | |
| 436 self.adj[i] = np.zeros(len(self.sequences[i]),dtype='<i4') | |
| 437 indSoFar = 0 | |
| 438 valSoFar = 0 | |
| 439 for j in xrange(len(self.adj[i])): | |
| 440 if indSoFar < len(adjToAdd[i]) and j >= adjToAdd[i][indSoFar][0]+1: | |
| 441 valSoFar += adjToAdd[i][indSoFar][1] | |
| 442 indSoFar += 1 | |
| 443 self.adj[i][j] = valSoFar | |
| 444 | |
| 445 # precompute cigar strings (we can skip this is going for only vcf output) | |
| 446 if not self.onlyVCF: | |
| 447 tempSymbolString = ['M'] | |
| 448 prevVal = self.adj[i][0] | |
| 449 j = 1 | |
| 450 while j < len(self.adj[i]): | |
| 451 diff = self.adj[i][j] - prevVal | |
| 452 prevVal = self.adj[i][j] | |
| 453 if diff > 0: # insertion | |
| 454 tempSymbolString.extend(['I']*abs(diff)) | |
| 455 j += abs(diff) | |
| 456 elif diff < 0: # deletion | |
| 457 tempSymbolString.append('D'*abs(diff)+'M') | |
| 458 j += 1 | |
| 459 else: | |
| 460 tempSymbolString.append('M') | |
| 461 j += 1 | |
| 462 | |
| 463 for j in xrange(len(tempSymbolString)-self.readLen): | |
| 464 self.allCigar[i].append(CigarString(listIn=tempSymbolString[j:j+self.readLen]).getString()) | |
| 465 # pre-compute reference position of first matching base | |
| 466 my_fm_pos = None | |
| 467 for k in xrange(self.readLen): | |
| 468 if 'M' in tempSymbolString[j+k]: | |
| 469 my_fm_pos = j+k | |
| 470 break | |
| 471 if my_fm_pos == None: | |
| 472 self.FM_pos[i].append(None) | |
| 473 self.FM_span[i].append(None) | |
| 474 else: | |
| 475 self.FM_pos[i].append(my_fm_pos-self.adj[i][my_fm_pos]) | |
| 476 span_dif = len([nnn for nnn in tempSymbolString[j:j+self.readLen] if 'M' in nnn]) | |
| 477 self.FM_span[i].append(self.FM_pos[i][-1] + span_dif) | |
| 478 | |
| 479 # tally up variants implemented | |
| 480 countDict = {} | |
| 481 all_variants = [sorted(all_snps[i]+all_indels[i]) for i in xrange(self.ploidy)] | |
| 482 for i in xrange(len(all_variants)): | |
| 483 for j in xrange(len(all_variants[i])): | |
| 484 all_variants[i][j] = tuple([all_variants[i][j][0]+self.x])+all_variants[i][j][1:] | |
| 485 t = tuple(all_variants[i][j]) | |
| 486 if t not in countDict: | |
| 487 countDict[t] = [] | |
| 488 countDict[t].append(i) | |
| 489 | |
| 490 # | |
| 491 # TODO: combine multiple variants that happened to occur at same position into single vcf entry | |
| 492 # | |
| 493 | |
| 494 output_variants = [] | |
| 495 for k in sorted(countDict.keys()): | |
| 496 output_variants.append(k+tuple([len(countDict[k])/float(self.ploidy)])) | |
| 497 ploid_string = ['0' for n in xrange(self.ploidy)] | |
| 498 for k2 in [n for n in countDict[k]]: | |
| 499 ploid_string[k2] = '1' | |
| 500 output_variants[-1] += tuple(['WP='+'/'.join(ploid_string)]) | |
| 501 return output_variants | |
| 502 | |
| 503 | |
| 504 def sample_read(self, sequencingModel, fragLen=None): | |
| 505 | |
| 506 # choose a ploid | |
| 507 myPloid = random.randint(0,self.ploidy-1) | |
| 508 | |
| 509 # stop attempting to find a valid position if we fail enough times | |
| 510 MAX_READPOS_ATTEMPTS = 100 | |
| 511 attempts_thus_far = 0 | |
| 512 | |
| 513 # choose a random position within the ploid, and generate quality scores / sequencing errors | |
| 514 readsToSample = [] | |
| 515 if fragLen == None: | |
| 516 rPos = self.coverage_distribution[myPloid].sample() | |
| 517 #####rPos = random.randint(0,len(self.sequences[myPloid])-self.readLen-1) # uniform random | |
| 518 #### | |
| 519 ##### decide which subsection of the sequence to sample from using coverage probabilities | |
| 520 ####coords_bad = True | |
| 521 ####while coords_bad: | |
| 522 #### attempts_thus_far += 1 | |
| 523 #### if attempts_thus_far > MAX_READPOS_ATTEMPTS: | |
| 524 #### return None | |
| 525 #### myBucket = max([self.which_bucket.sample() - self.win_per_read, 0]) | |
| 526 #### coords_to_select_from = [myBucket*self.windowSize,(myBucket+1)*self.windowSize] | |
| 527 #### if coords_to_select_from[0] >= len(self.adj[myPloid]): # prevent going beyond region boundaries | |
| 528 #### continue | |
| 529 #### coords_to_select_from[0] += self.adj[myPloid][coords_to_select_from[0]] | |
| 530 #### coords_to_select_from[1] += self.adj[myPloid][coords_to_select_from[0]] | |
| 531 #### if max(coords_to_select_from) <= 0: # prevent invalid negative coords due to adj | |
| 532 #### continue | |
| 533 #### if coords_to_select_from[1] - coords_to_select_from[0] <= 2: # we don't span enough coords to sample | |
| 534 #### continue | |
| 535 #### if coords_to_select_from[1] < len(self.sequences[myPloid])-self.readLen: | |
| 536 #### coords_bad = False | |
| 537 ####rPos = random.randint(coords_to_select_from[0],coords_to_select_from[1]-1) | |
| 538 | |
| 539 # sample read position and call function to compute quality scores / sequencing errors | |
| 540 rDat = self.sequences[myPloid][rPos:rPos+self.readLen] | |
| 541 (myQual, myErrors) = sequencingModel.getSequencingErrors(rDat) | |
| 542 readsToSample.append([rPos,myQual,myErrors,rDat]) | |
| 543 | |
| 544 else: | |
| 545 rPos1 = self.coverage_distribution[myPloid][self.fraglens_indMap[fragLen]].sample() | |
| 546 | |
| 547 # EXPERIMENTAL | |
| 548 #coords_to_select_from = self.coverage_distribution[myPloid][self.fraglens_indMap[fragLen]].sample() | |
| 549 #rPos1 = random.randint(coords_to_select_from[0],coords_to_select_from[1]) | |
| 550 | |
| 551 #####rPos1 = random.randint(0,len(self.sequences[myPloid])-fragLen-1) # uniform random | |
| 552 #### | |
| 553 ##### decide which subsection of the sequence to sample from using coverage probabilities | |
| 554 ####coords_bad = True | |
| 555 ####while coords_bad: | |
| 556 #### attempts_thus_far += 1 | |
| 557 #### if attempts_thus_far > MAX_READPOS_ATTEMPTS: | |
| 558 #### #print coords_to_select_from | |
| 559 #### return None | |
| 560 #### myBucket = max([self.which_bucket.sample() - self.win_per_read, 0]) | |
| 561 #### coords_to_select_from = [myBucket*self.windowSize,(myBucket+1)*self.windowSize] | |
| 562 #### if coords_to_select_from[0] >= len(self.adj[myPloid]): # prevent going beyond region boundaries | |
| 563 #### continue | |
| 564 #### coords_to_select_from[0] += self.adj[myPloid][coords_to_select_from[0]] | |
| 565 #### coords_to_select_from[1] += self.adj[myPloid][coords_to_select_from[0]] # both ends use index of starting position to avoid issues with reads spanning breakpoints of large events | |
| 566 #### if max(coords_to_select_from) <= 0: # prevent invalid negative coords due to adj | |
| 567 #### continue | |
| 568 #### if coords_to_select_from[1] - coords_to_select_from[0] <= 2: # we don't span enough coords to sample | |
| 569 #### continue | |
| 570 #### rPos1 = random.randint(coords_to_select_from[0],coords_to_select_from[1]-1) | |
| 571 #### # for PE-reads, flip a coin to decide if R1 or R2 will be the "covering" read | |
| 572 #### if random.randint(1,2) == 1 and rPos1 > fragLen - self.readLen: | |
| 573 #### rPos1 -= fragLen - self.readLen | |
| 574 #### if rPos1 < len(self.sequences[myPloid])-fragLen: | |
| 575 #### coords_bad = False | |
| 576 | |
| 577 rPos2 = rPos1 + fragLen - self.readLen | |
| 578 rDat1 = self.sequences[myPloid][rPos1:rPos1+self.readLen] | |
| 579 rDat2 = self.sequences[myPloid][rPos2:rPos2+self.readLen] | |
| 580 #print len(rDat1), rPos1, len(self.sequences[myPloid]) | |
| 581 (myQual1, myErrors1) = sequencingModel.getSequencingErrors(rDat1) | |
| 582 (myQual2, myErrors2) = sequencingModel.getSequencingErrors(rDat2,isReverseStrand=True) | |
| 583 readsToSample.append([rPos1,myQual1,myErrors1,rDat1]) | |
| 584 readsToSample.append([rPos2,myQual2,myErrors2,rDat2]) | |
| 585 | |
| 586 # error format: | |
| 587 # myError[i] = (type, len, pos, ref, alt) | |
| 588 | |
| 589 # examine sequencing errors to-be-inserted. | |
| 590 # - remove deletions that don't have enough bordering sequence content to "fill in" | |
| 591 # if error is valid, make the changes to the read data | |
| 592 rOut = [] | |
| 593 for r in readsToSample: | |
| 594 try: | |
| 595 myCigar = self.allCigar[myPloid][r[0]] | |
| 596 except IndexError: | |
| 597 print 'Index error when attempting to find cigar string.' | |
| 598 print len(self.allCigar[myPloid]), r[0] | |
| 599 if fragLen != None: | |
| 600 print (rPos1, rPos2) | |
| 601 print myPloid, fragLen, self.fraglens_indMap[fragLen] | |
| 602 exit(1) | |
| 603 totalD = sum([error[1] for error in r[2] if error[0] == 'D']) | |
| 604 totalI = sum([error[1] for error in r[2] if error[0] == 'I']) | |
| 605 availB = len(self.sequences[myPloid]) - r[0] - self.readLen - 1 | |
| 606 # add buffer sequence to fill in positions that get deleted | |
| 607 r[3] += self.sequences[myPloid][r[0]+self.readLen:r[0]+self.readLen+totalD] | |
| 608 expandedCigar = [] | |
| 609 extraCigar = [] | |
| 610 adj = 0 | |
| 611 sse_adj = [0 for n in xrange(self.readLen + max(sequencingModel.errP[3]))] | |
| 612 anyIndelErr = False | |
| 613 | |
| 614 # sort by letter (D > I > S) such that we introduce all indel errors before substitution errors | |
| 615 # secondarily, sort by index | |
| 616 arrangedErrors = {'D':[],'I':[],'S':[]} | |
| 617 for error in r[2]: | |
| 618 arrangedErrors[error[0]].append((error[2],error)) | |
| 619 sortedErrors = [] | |
| 620 for k in sorted(arrangedErrors.keys()): | |
| 621 sortedErrors.extend([n[1] for n in sorted(arrangedErrors[k])]) | |
| 622 | |
| 623 skipIndels = False | |
| 624 | |
| 625 for error in sortedErrors: | |
| 626 #print '-se-',r[0], error | |
| 627 #print sse_adj | |
| 628 eLen = error[1] | |
| 629 ePos = error[2] | |
| 630 if error[0] == 'D' or error[0] == 'I': | |
| 631 anyIndelErr = True | |
| 632 extraCigarVal = [] | |
| 633 if totalD > availB: # if not enough bases to fill-in deletions, skip all indel erors | |
| 634 continue | |
| 635 if expandedCigar == []: | |
| 636 expandedCigar = CigarString(stringIn=myCigar).getList() | |
| 637 fillToGo = totalD - totalI + 1 | |
| 638 if fillToGo > 0: | |
| 639 try: | |
| 640 extraCigarVal = CigarString(stringIn=self.allCigar[myPloid][r[0]+fillToGo]).getList()[-fillToGo:] | |
| 641 except IndexError: # applying the deletions we want requires going beyond region boundaries. skip all indel errors | |
| 642 skipIndels = True | |
| 643 | |
| 644 if skipIndels: | |
| 645 continue | |
| 646 | |
| 647 # insert deletion error into read and update cigar string accordingly | |
| 648 if error[0] == 'D': | |
| 649 myadj = sse_adj[ePos] | |
| 650 pi = ePos+myadj | |
| 651 pf = ePos+myadj+eLen+1 | |
| 652 if str(r[3][pi:pf]) == str(error[3]): | |
| 653 r[3] = r[3][:pi+1] + r[3][pf:] | |
| 654 expandedCigar = expandedCigar[:pi+1] + expandedCigar[pf:] | |
| 655 if pi+1 == len(expandedCigar): # weird edge case with del at very end of region. Make a guess and add a "M" | |
| 656 expandedCigar.append('M') | |
| 657 expandedCigar[pi+1] = 'D'*eLen + expandedCigar[pi+1] | |
| 658 else: | |
| 659 print '\nError, ref does not match alt while attempting to insert deletion error!\n' | |
| 660 exit(1) | |
| 661 adj -= eLen | |
| 662 for i in xrange(ePos,len(sse_adj)): | |
| 663 sse_adj[i] -= eLen | |
| 664 | |
| 665 # insert insertion error into read and update cigar string accordingly | |
| 666 else: | |
| 667 myadj = sse_adj[ePos] | |
| 668 if chr(r[3][ePos+myadj]) == error[3]: | |
| 669 r[3] = r[3][:ePos+myadj] + error[4] + r[3][ePos+myadj+1:] | |
| 670 expandedCigar = expandedCigar[:ePos+myadj] + ['I']*eLen + expandedCigar[ePos+myadj:] | |
| 671 else: | |
| 672 print '\nError, ref does not match alt while attempting to insert insertion error!\n' | |
| 673 print '---',chr(r[3][ePos+myadj]), '!=', error[3] | |
| 674 exit(1) | |
| 675 adj += eLen | |
| 676 for i in xrange(ePos,len(sse_adj)): | |
| 677 sse_adj[i] += eLen | |
| 678 | |
| 679 else: # substitution errors, much easier by comparison... | |
| 680 if chr(r[3][ePos+sse_adj[ePos]]) == error[3]: | |
| 681 r[3][ePos+sse_adj[ePos]] = error[4] | |
| 682 else: | |
| 683 print '\nError, ref does not match alt while attempting to insert substitution error!\n' | |
| 684 exit(1) | |
| 685 | |
| 686 if anyIndelErr: | |
| 687 if len(expandedCigar): | |
| 688 relevantCigar = (expandedCigar+extraCigarVal)[:self.readLen] | |
| 689 myCigar = CigarString(listIn=relevantCigar).getString() | |
| 690 | |
| 691 r[3] = r[3][:self.readLen] | |
| 692 | |
| 693 rOut.append([self.FM_pos[myPloid][r[0]],myCigar,str(r[3]),str(r[1])]) | |
| 694 | |
| 695 # rOut[i] = (pos, cigar, read_string, qual_string) | |
| 696 return rOut | |
| 697 | |
| 698 | |
| 699 # | |
| 700 # Container for read data, computes quality scores and positions to insert errors | |
| 701 # | |
| 702 class ReadContainer: | |
| 703 def __init__(self, readLen, errorModel, reScaledError): | |
| 704 | |
| 705 self.readLen = readLen | |
| 706 | |
| 707 errorDat = pickle.load(open(errorModel,'rb')) | |
| 708 self.UNIFORM = False | |
| 709 if len(errorDat) == 4: # uniform-error SE reads (e.g. PacBio) | |
| 710 self.UNIFORM = True | |
| 711 [Qscores,offQ,avgError,errorParams] = errorDat | |
| 712 self.uniform_qscore = int(-10.*np.log10(avgError)+0.5) | |
| 713 print 'Using uniform sequencing error model. (q='+str(self.uniform_qscore)+'+'+str(offQ)+', p(err)={0:0.2f}%)'.format(100.*avgError) | |
| 714 if len(errorDat) == 6: # only 1 q-score model present, use same model for both strands | |
| 715 [initQ1,probQ1,Qscores,offQ,avgError,errorParams] = errorDat | |
| 716 self.PE_MODELS = False | |
| 717 elif len(errorDat) == 8: # found a q-score model for both forward and reverse strands | |
| 718 #print 'Using paired-read quality score profiles...' | |
| 719 [initQ1,probQ1,initQ2,probQ2,Qscores,offQ,avgError,errorParams] = errorDat | |
| 720 self.PE_MODELS = True | |
| 721 if len(initQ1) != len(initQ2) or len(probQ1) != len(probQ2): | |
| 722 print '\nError: R1 and R2 quality score models are of different length.\n' | |
| 723 exit(1) | |
| 724 | |
| 725 | |
| 726 self.qErrRate = [0.]*(max(Qscores)+1) | |
| 727 for q in Qscores: | |
| 728 self.qErrRate[q] = 10.**(-q/10.) | |
| 729 self.offQ = offQ | |
| 730 | |
| 731 # errorParams = [SSE_PROB, SIE_RATE, SIE_PROB, SIE_VAL, SIE_INS_FREQ, SIE_INS_NUCL] | |
| 732 self.errP = errorParams | |
| 733 self.errSSE = [DiscreteDistribution(n,NUCL) for n in self.errP[0]] | |
| 734 self.errSIE = DiscreteDistribution(self.errP[2],self.errP[3]) | |
| 735 self.errSIN = DiscreteDistribution(self.errP[5],NUCL) | |
| 736 | |
| 737 # adjust sequencing error frequency to match desired rate | |
| 738 if reScaledError == None: | |
| 739 self.errorScale = 1.0 | |
| 740 else: | |
| 741 self.errorScale = reScaledError/avgError | |
| 742 print 'Warning: Quality scores no longer exactly representative of error probability. Error model scaled by {0:.3f} to match desired rate...'.format(self.errorScale) | |
| 743 | |
| 744 if self.UNIFORM == False: | |
| 745 # adjust length to match desired read length | |
| 746 if self.readLen == len(initQ1): | |
| 747 self.qIndRemap = range(self.readLen) | |
| 748 else: | |
| 749 print 'Warning: Read length of error model ('+str(len(initQ1))+') does not match -R value ('+str(self.readLen)+'), rescaling model...' | |
| 750 self.qIndRemap = [max([1,len(initQ1)*n/readLen]) for n in xrange(readLen)] | |
| 751 | |
| 752 # initialize probability distributions | |
| 753 self.initDistByPos1 = [DiscreteDistribution(initQ1[i],Qscores) for i in xrange(len(initQ1))] | |
| 754 self.probDistByPosByPrevQ1 = [None] | |
| 755 for i in xrange(1,len(initQ1)): | |
| 756 self.probDistByPosByPrevQ1.append([]) | |
| 757 for j in xrange(len(initQ1[0])): | |
| 758 if np.sum(probQ1[i][j]) <= 0.: # if we don't have sufficient data for a transition, use the previous qscore | |
| 759 self.probDistByPosByPrevQ1[-1].append(DiscreteDistribution([1],[Qscores[j]],degenerateVal=Qscores[j])) | |
| 760 else: | |
| 761 self.probDistByPosByPrevQ1[-1].append(DiscreteDistribution(probQ1[i][j],Qscores)) | |
| 762 | |
| 763 if self.PE_MODELS: | |
| 764 self.initDistByPos2 = [DiscreteDistribution(initQ2[i],Qscores) for i in xrange(len(initQ2))] | |
| 765 self.probDistByPosByPrevQ2 = [None] | |
| 766 for i in xrange(1,len(initQ2)): | |
| 767 self.probDistByPosByPrevQ2.append([]) | |
| 768 for j in xrange(len(initQ2[0])): | |
| 769 if np.sum(probQ2[i][j]) <= 0.: # if we don't have sufficient data for a transition, use the previous qscore | |
| 770 self.probDistByPosByPrevQ2[-1].append(DiscreteDistribution([1],[Qscores[j]],degenerateVal=Qscores[j])) | |
| 771 else: | |
| 772 self.probDistByPosByPrevQ2[-1].append(DiscreteDistribution(probQ2[i][j],Qscores)) | |
| 773 | |
| 774 def getSequencingErrors(self, readData, isReverseStrand=False): | |
| 775 | |
| 776 qOut = [0]*self.readLen | |
| 777 sErr = [] | |
| 778 | |
| 779 if self.UNIFORM: | |
| 780 myQ = [self.uniform_qscore + self.offQ for n in xrange(self.readLen)] | |
| 781 qOut = ''.join([chr(n) for n in myQ]) | |
| 782 for i in xrange(self.readLen): | |
| 783 if random.random() < self.errorScale*self.qErrRate[self.uniform_qscore]: | |
| 784 sErr.append(i) | |
| 785 else: | |
| 786 | |
| 787 if self.PE_MODELS and isReverseStrand: | |
| 788 myQ = self.initDistByPos2[0].sample() | |
| 789 else: | |
| 790 myQ = self.initDistByPos1[0].sample() | |
| 791 qOut[0] = myQ | |
| 792 | |
| 793 for i in xrange(1,self.readLen): | |
| 794 if self.PE_MODELS and isReverseStrand: | |
| 795 myQ = self.probDistByPosByPrevQ2[self.qIndRemap[i]][myQ].sample() | |
| 796 else: | |
| 797 myQ = self.probDistByPosByPrevQ1[self.qIndRemap[i]][myQ].sample() | |
| 798 qOut[i] = myQ | |
| 799 | |
| 800 if isReverseStrand: | |
| 801 qOut = qOut[::-1] | |
| 802 | |
| 803 for i in xrange(self.readLen): | |
| 804 if random.random() < self.errorScale * self.qErrRate[qOut[i]]: | |
| 805 sErr.append(i) | |
| 806 | |
| 807 qOut = ''.join([chr(n + self.offQ) for n in qOut]) | |
| 808 | |
| 809 if self.errorScale == 0.0: | |
| 810 return (qOut,[]) | |
| 811 | |
| 812 sOut = [] | |
| 813 nDelSoFar = 0 | |
| 814 # don't allow indel errors to occur on subsequent positions | |
| 815 prevIndel = -2 | |
| 816 # don't allow other sequencing errors to occur on bases removed by deletion errors | |
| 817 delBlacklist = [] | |
| 818 | |
| 819 for ind in sErr[::-1]: # for each error that we're going to insert... | |
| 820 | |
| 821 # determine error type | |
| 822 isSub = True | |
| 823 if ind != 0 and ind != self.readLen-1-max(self.errP[3]) and abs(ind-prevIndel) > 1: | |
| 824 if random.random() < self.errP[1]: | |
| 825 isSub = False | |
| 826 | |
| 827 # errorOut = (type, len, pos, ref, alt) | |
| 828 | |
| 829 if isSub: # insert substitution error | |
| 830 myNucl = chr(readData[ind]) | |
| 831 newNucl = self.errSSE[NUC_IND[myNucl]].sample() | |
| 832 sOut.append(('S',1,ind,myNucl,newNucl)) | |
| 833 else: # insert indel error | |
| 834 indelLen = self.errSIE.sample() | |
| 835 if random.random() < self.errP[4]: # insertion error | |
| 836 myNucl = chr(readData[ind]) | |
| 837 newNucl = myNucl + ''.join([self.errSIN.sample() for n in xrange(indelLen)]) | |
| 838 sOut.append(('I',len(newNucl)-1,ind,myNucl,newNucl)) | |
| 839 elif ind < self.readLen-2-nDelSoFar: # deletion error (prevent too many of them from stacking up) | |
| 840 myNucl = str(readData[ind:ind+indelLen+1]) | |
| 841 newNucl = chr(readData[ind]) | |
| 842 nDelSoFar += len(myNucl)-1 | |
| 843 sOut.append(('D',len(myNucl)-1,ind,myNucl,newNucl)) | |
| 844 for i in xrange(ind+1,ind+indelLen+1): | |
| 845 delBlacklist.append(i) | |
| 846 prevIndel = ind | |
| 847 | |
| 848 # remove blacklisted errors | |
| 849 for i in xrange(len(sOut)-1,-1,-1): | |
| 850 if sOut[i][2] in delBlacklist: | |
| 851 del sOut[i] | |
| 852 | |
| 853 return (qOut,sOut) | |
| 854 | |
| 855 | |
| 856 | |
| 857 """************************************************ | |
| 858 **** DEFAULT MUTATION MODELS | |
| 859 ************************************************""" | |
| 860 | |
| 861 | |
| 862 # parse mutation model pickle file | |
| 863 def parseInputMutationModel(model=None, whichDefault=1): | |
| 864 if whichDefault == 1: | |
| 865 outModel = [copy.deepcopy(n) for n in DEFAULT_MODEL_1] | |
| 866 elif whichDefault == 2: | |
| 867 outModel = [copy.deepcopy(n) for n in DEFAULT_MODEL_2] | |
| 868 else: | |
| 869 print '\nError: Unknown default mutation model specified\n' | |
| 870 exit(1) | |
| 871 | |
| 872 if model != None: | |
| 873 pickle_dict = pickle.load(open(model,"rb")) | |
| 874 outModel[0] = pickle_dict['AVG_MUT_RATE'] | |
| 875 outModel[2] = 1. - pickle_dict['SNP_FREQ'] | |
| 876 | |
| 877 insList = pickle_dict['INDEL_FREQ'] | |
| 878 if len(insList): | |
| 879 insCount = sum([insList[k] for k in insList.keys() if k >= 1]) | |
| 880 delCount = sum([insList[k] for k in insList.keys() if k <= -1]) | |
| 881 insVals = [k for k in sorted(insList.keys()) if k >= 1] | |
| 882 insWght = [insList[k]/float(insCount) for k in insVals] | |
| 883 delVals = [k for k in sorted([abs(k) for k in insList.keys() if k <= -1])] | |
| 884 delWght = [insList[-k]/float(delCount) for k in delVals] | |
| 885 else: # degenerate case where no indel stats are provided | |
| 886 insCount = 1 | |
| 887 delCount = 1 | |
| 888 insVals = [1] | |
| 889 insWght = [1.0] | |
| 890 delVals = [1] | |
| 891 delWght = [1.0] | |
| 892 outModel[3] = insCount/float(insCount + delCount) | |
| 893 outModel[4] = insVals | |
| 894 outModel[5] = insWght | |
| 895 outModel[6] = delVals | |
| 896 outModel[7] = delWght | |
| 897 | |
| 898 trinuc_trans_prob = pickle_dict['TRINUC_TRANS_PROBS'] | |
| 899 for k in sorted(trinuc_trans_prob.keys()): | |
| 900 myInd = TRI_IND[k[0][0]+k[0][2]] | |
| 901 (k1,k2) = (NUC_IND[k[0][1]],NUC_IND[k[1][1]]) | |
| 902 outModel[8][myInd][k1][k2] = trinuc_trans_prob[k] | |
| 903 for i in xrange(len(outModel[8])): | |
| 904 for j in xrange(len(outModel[8][i])): | |
| 905 for l in xrange(len(outModel[8][i][j])): | |
| 906 # if trinuc not present in input mutation model, assign it uniform probability | |
| 907 if float(sum(outModel[8][i][j])) < 1e-12: | |
| 908 outModel[8][i][j] = [0.25,0.25,0.25,0.25] | |
| 909 else: | |
| 910 outModel[8][i][j][l] /= float(sum(outModel[8][i][j])) | |
| 911 | |
| 912 trinuc_mut_prob = pickle_dict['TRINUC_MUT_PROB'] | |
| 913 which_have_we_seen = {n:False for n in ALL_TRI} | |
| 914 trinuc_mean = np.mean(trinuc_mut_prob.values()) | |
| 915 for trinuc in trinuc_mut_prob.keys(): | |
| 916 outModel[9][ALL_IND[trinuc]] = trinuc_mut_prob[trinuc] | |
| 917 which_have_we_seen[trinuc] = True | |
| 918 for trinuc in which_have_we_seen.keys(): | |
| 919 if which_have_we_seen[trinuc] == False: | |
| 920 outModel[9][ALL_IND[trinuc]] = trinuc_mean | |
| 921 | |
| 922 return outModel | |
| 923 | |
| 924 | |
| 925 # parse mutation model files, returns default model if no model directory is specified | |
| 926 # | |
| 927 # OLD FUNCTION THAT PROCESSED OUTDATED TEXTFILE MUTATION MODELS | |
| 928 def parseInputMutationModel_deprecated(prefix=None, whichDefault=1): | |
| 929 if whichDefault == 1: | |
| 930 outModel = [copy.deepcopy(n) for n in DEFAULT_MODEL_1] | |
| 931 elif whichDefault == 2: | |
| 932 outModel = [copy.deepcopy(n) for n in DEFAULT_MODEL_2] | |
| 933 else: | |
| 934 print '\nError: Unknown default mutation model specified\n' | |
| 935 exit(1) | |
| 936 | |
| 937 if prefix != None: | |
| 938 if prefix[-1] != '/': | |
| 939 prefix += '/' | |
| 940 if not os.path.isdir(prefix): | |
| 941 '\nError: Input mutation model directory not found:',prefix,'\n' | |
| 942 exit(1) | |
| 943 | |
| 944 print 'Reading in mutation model...' | |
| 945 listing1 = [n for n in os.listdir(prefix) if n[-5:] == '.prob'] | |
| 946 listing2 = [n for n in os.listdir(prefix) if n[-7:] == '.trinuc'] | |
| 947 listing = sorted(listing1) + sorted(listing2) | |
| 948 for l in listing: | |
| 949 f = open(prefix+l,'r') | |
| 950 fr = [n.split('\t') for n in f.read().split('\n')] | |
| 951 f.close() | |
| 952 | |
| 953 if '_overall.prob' in l: | |
| 954 myIns = None | |
| 955 myDel = None | |
| 956 for dat in fr[1:]: | |
| 957 if len(dat) == 2: | |
| 958 if dat[0] == 'insertion': | |
| 959 myIns = float(dat[1]) | |
| 960 elif dat[0] == 'deletion': | |
| 961 myDel = float(dat[1]) | |
| 962 if myIns != None and myDel != None: | |
| 963 outModel[2] = myIns + myDel | |
| 964 outModel[3] = myIns / (myIns + myDel) | |
| 965 print '-',l | |
| 966 | |
| 967 if '_insLength.prob' in l: | |
| 968 insVals = {} | |
| 969 for dat in fr[1:]: | |
| 970 if len(dat) == 2: | |
| 971 insVals[int(dat[0])] = float(dat[1]) | |
| 972 if len(insVals): | |
| 973 outModel[4] = sorted(insVals.keys()) | |
| 974 outModel[5] = [insVals[n] for n in outModel[4]] | |
| 975 print '-',l | |
| 976 | |
| 977 if '_delLength.prob' in l: | |
| 978 delVals = {} | |
| 979 for dat in fr[1:]: | |
| 980 if len(dat) == 2: | |
| 981 delVals[int(dat[0])] = float(dat[1]) | |
| 982 if len(delVals): | |
| 983 outModel[6] = sorted(delVals.keys()) | |
| 984 outModel[7] = [delVals[n] for n in outModel[6]] | |
| 985 print '-',l | |
| 986 | |
| 987 if '.trinuc' == l[-7:]: | |
| 988 context_ind = TRI_IND[l[-10]+l[-8]] | |
| 989 p_matrix = [[-1,-1,-1,-1],[-1,-1,-1,-1],[-1,-1,-1,-1],[-1,-1,-1,-1]] | |
| 990 for i in xrange(len(p_matrix)): | |
| 991 for j in xrange(len(fr[i])): | |
| 992 p_matrix[i][j] = float(fr[i][j]) | |
| 993 anyNone = False | |
| 994 for i in xrange(len(p_matrix)): | |
| 995 for j in xrange(len(p_matrix[i])): | |
| 996 if p_matrix[i][j] == -1: | |
| 997 anyNone = True | |
| 998 if not anyNone: | |
| 999 outModel[8][context_ind] = copy.deepcopy(p_matrix) | |
| 1000 print '-',l | |
| 1001 | |
| 1002 return outModel | |
| 1003 | |
| 1004 ###################### | |
| 1005 # DEFAULT VALUES # | |
| 1006 ###################### | |
| 1007 | |
| 1008 DEFAULT_1_OVERALL_MUT_RATE = 0.001 | |
| 1009 DEFAULT_1_HOMOZYGOUS_FREQ = 0.010 | |
| 1010 DEFAULT_1_INDEL_FRACTION = 0.05 | |
| 1011 DEFAULT_1_INS_VS_DEL = 0.6 | |
| 1012 DEFAULT_1_INS_LENGTH_VALUES = [1,2,3,4,5,6,7,8,9,10] | |
| 1013 DEFAULT_1_INS_LENGTH_WEIGHTS = [0.4, 0.2, 0.1, 0.05, 0.05, 0.05, 0.05, 0.034, 0.033, 0.033] | |
| 1014 DEFAULT_1_DEL_LENGTH_VALUES = [1,2,3,4,5] | |
| 1015 DEFAULT_1_DEL_LENGTH_WEIGHTS = [0.3,0.2,0.2,0.2,0.1] | |
| 1016 example_matrix_1 = [[0.0, 0.15, 0.7, 0.15], | |
| 1017 [0.15, 0.0, 0.15, 0.7], | |
| 1018 [0.7, 0.15, 0.0, 0.15], | |
| 1019 [0.15, 0.7, 0.15, 0.0]] | |
| 1020 DEFAULT_1_TRI_FREQS = [copy.deepcopy(example_matrix_1) for n in xrange(16)] | |
| 1021 DEFAULT_1_TRINUC_BIAS = [1./float(len(ALL_TRI)) for n in ALL_TRI] | |
| 1022 DEFAULT_MODEL_1 = [DEFAULT_1_OVERALL_MUT_RATE, | |
| 1023 DEFAULT_1_HOMOZYGOUS_FREQ, | |
| 1024 DEFAULT_1_INDEL_FRACTION, | |
| 1025 DEFAULT_1_INS_VS_DEL, | |
| 1026 DEFAULT_1_INS_LENGTH_VALUES, | |
| 1027 DEFAULT_1_INS_LENGTH_WEIGHTS, | |
| 1028 DEFAULT_1_DEL_LENGTH_VALUES, | |
| 1029 DEFAULT_1_DEL_LENGTH_WEIGHTS, | |
| 1030 DEFAULT_1_TRI_FREQS, | |
| 1031 DEFAULT_1_TRINUC_BIAS] | |
| 1032 | |
| 1033 DEFAULT_2_OVERALL_MUT_RATE = 0.002 | |
| 1034 DEFAULT_2_HOMOZYGOUS_FREQ = 0.200 | |
| 1035 DEFAULT_2_INDEL_FRACTION = 0.1 | |
| 1036 DEFAULT_2_INS_VS_DEL = 0.3 | |
| 1037 DEFAULT_2_INS_LENGTH_VALUES = [1,2,3,4,5,6,7,8,9,10] | |
| 1038 DEFAULT_2_INS_LENGTH_WEIGHTS = [0.1, 0.1, 0.2, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05] | |
| 1039 DEFAULT_2_DEL_LENGTH_VALUES = [1,2,3,4,5] | |
| 1040 DEFAULT_2_DEL_LENGTH_WEIGHTS = [0.3,0.2,0.2,0.2,0.1] | |
| 1041 example_matrix_2 = [[0.0, 0.15, 0.7, 0.15], | |
| 1042 [0.15, 0.0, 0.15, 0.7], | |
| 1043 [0.7, 0.15, 0.0, 0.15], | |
| 1044 [0.15, 0.7, 0.15, 0.0]] | |
| 1045 DEFAULT_2_TRI_FREQS = [copy.deepcopy(example_matrix_2) for n in xrange(16)] | |
| 1046 DEFAULT_2_TRINUC_BIAS = [1./float(len(ALL_TRI)) for n in ALL_TRI] | |
| 1047 DEFAULT_MODEL_2 = [DEFAULT_2_OVERALL_MUT_RATE, | |
| 1048 DEFAULT_2_HOMOZYGOUS_FREQ, | |
| 1049 DEFAULT_2_INDEL_FRACTION, | |
| 1050 DEFAULT_2_INS_VS_DEL, | |
| 1051 DEFAULT_2_INS_LENGTH_VALUES, | |
| 1052 DEFAULT_2_INS_LENGTH_WEIGHTS, | |
| 1053 DEFAULT_2_DEL_LENGTH_VALUES, | |
| 1054 DEFAULT_2_DEL_LENGTH_WEIGHTS, | |
| 1055 DEFAULT_2_TRI_FREQS, | |
| 1056 DEFAULT_2_TRINUC_BIAS] | |
| 1057 | |
| 1058 |
