Mercurial > repos > thondeboer > neat_genreads
view py/SequenceContainer.py @ 9:441103f02a11 draft
planemo upload commit e96b43f96afce6a7b7dfd4499933aad7d05c955e-dirty
author | thondeboer |
---|---|
date | Wed, 16 May 2018 02:05:26 -0400 |
parents | 6e75a84e9338 |
children |
line wrap: on
line source
import random import copy import re import os import bisect import cPickle as pickle import numpy as np from probability import DiscreteDistribution, poisson_list, quantize_list from cigar import CigarString MAX_ATTEMPTS = 100 # max attempts to insert a mutation into a valid position MAX_MUTFRAC = 0.3 # the maximum percentage of a window that can contain mutations NUCL = ['A','C','G','T'] TRI_IND = {'AA':0, 'AC':1, 'AG':2, 'AT':3, 'CA':4, 'CC':5, 'CG':6, 'CT':7, 'GA':8, 'GC':9, 'GG':10, 'GT':11, 'TA':12, 'TC':13, 'TG':14, 'TT':15} NUC_IND = {'A':0, 'C':1, 'G':2, 'T':3} ALL_TRI = [NUCL[i]+NUCL[j]+NUCL[k] for i in xrange(len(NUCL)) for j in xrange(len(NUCL)) for k in xrange(len(NUCL))] ALL_IND = {ALL_TRI[i]:i for i in xrange(len(ALL_TRI))} # DEBUG IGNORE_TRINUC = False # percentile resolution used for fraglen quantizing COV_FRAGLEN_PERCENTILE = 10. LARGE_NUMBER = 9999999999 # # Container for reference sequences, applies mutations # class SequenceContainer: def __init__(self, xOffset, sequence, ploidy, windowOverlap, readLen, mutationModels=[], mutRate=None, onlyVCF=False): # initialize basic variables self.onlyVCF = onlyVCF self.init_basicVars(xOffset, sequence, ploidy, windowOverlap, readLen) # initialize mutation models self.init_mutModels(mutationModels, mutRate) # sample the number of variants that will be inserted into each ploid self.init_poisson() self.indelsToAdd = [n.sample() for n in self.ind_pois] self.snpsToAdd = [n.sample() for n in self.snp_pois] # initialize trinuc snp bias self.init_trinucBias() def init_basicVars(self, xOffset, sequence, ploidy, windowOverlap, readLen): self.x = xOffset self.ploidy = ploidy self.readLen = readLen self.sequences = [bytearray(sequence) for n in xrange(self.ploidy)] self.seqLen = len(sequence) self.indelList = [[] for n in xrange(self.ploidy)] self.snpList = [[] for n in xrange(self.ploidy)] self.allCigar = [[] for n in xrange(self.ploidy)] self.FM_pos = [[] for n in xrange(self.ploidy)] self.FM_span = [[] for n in xrange(self.ploidy)] self.adj = [None for n in xrange(self.ploidy)] # blackList[ploid][pos] = 0 safe to insert variant here # blackList[ploid][pos] = 1 indel inserted here # blackList[ploid][pos] = 2 snp inserted here # blackList[ploid][pos] = 3 invalid position for various processing reasons self.blackList = [np.zeros(self.seqLen,dtype='<i4') for n in xrange(self.ploidy)] # disallow mutations to occur on window overlap points self.winBuffer = windowOverlap for p in xrange(self.ploidy): self.blackList[p][-self.winBuffer] = 3 self.blackList[p][-self.winBuffer-1] = 3 def init_coverage(self,coverageDat,fragDist=None): # if we're only creating a vcf, skip some expensive initialization related to coverage depth if not self.onlyVCF: (self.windowSize, gc_scalars, targetCov_vals) = coverageDat gcCov_vals = [[] for n in self.sequences] trCov_vals = [[] for n in self.sequences] self.coverage_distribution = [] avg_out = [] for i in xrange(len(self.sequences)): # compute gc-bias j = 0 while j+self.windowSize < len(self.sequences[i]): gc_c = self.sequences[i][j:j+self.windowSize].count('G') + self.sequences[i][j:j+self.windowSize].count('C') gcCov_vals[i].extend([gc_scalars[gc_c]]*self.windowSize) j += self.windowSize gc_c = self.sequences[i][-self.windowSize:].count('G') + self.sequences[i][-self.windowSize:].count('C') gcCov_vals[i].extend([gc_scalars[gc_c]]*(len(self.sequences[i])-len(gcCov_vals[i]))) # trCov_vals[i].append(targetCov_vals[0]) prevVal = self.FM_pos[i][0] for j in xrange(1,len(self.sequences[i])-self.readLen): if self.FM_pos[i][j] == None: trCov_vals[i].append(targetCov_vals[prevVal]) else: trCov_vals[i].append(sum(targetCov_vals[self.FM_pos[i][j]:self.FM_span[i][j]])/float(self.FM_span[i][j]-self.FM_pos[i][j])) prevVal = self.FM_pos[i][j] #print (i,j), self.adj[i][j], self.allCigar[i][j], self.FM_pos[i][j], self.FM_span[i][j] # shift by half of read length trCov_vals[i] = [0.0]*int(self.readLen/2) + trCov_vals[i][:-int(self.readLen/2.)] # fill in missing indices trCov_vals[i].extend([0.0]*(len(self.sequences[i])-len(trCov_vals[i]))) # covvec = np.cumsum([trCov_vals[i][nnn]*gcCov_vals[i][nnn] for nnn in xrange(len(trCov_vals[i]))]) coverage_vals = [] for j in xrange(0,len(self.sequences[i])-self.readLen): coverage_vals.append(covvec[j+self.readLen] - covvec[j]) avg_out.append(np.mean(coverage_vals)/float(self.readLen)) if fragDist == None: self.coverage_distribution.append(DiscreteDistribution(coverage_vals,range(len(coverage_vals)))) # fragment length nightmare else: currentThresh = 0. index_list = [0] for j in xrange(len(fragDist.cumP)): if fragDist.cumP[j] >= currentThresh + COV_FRAGLEN_PERCENTILE/100.0: currentThresh = fragDist.cumP[j] index_list.append(j) flq = [fragDist.values[nnn] for nnn in index_list] if fragDist.values[-1] not in flq: flq.append(fragDist.values[-1]) flq.append(LARGE_NUMBER) self.fraglens_indMap = {} for j in fragDist.values: bInd = bisect.bisect(flq,j) if abs(flq[bInd-1] - j) <= abs(flq[bInd] - j): self.fraglens_indMap[j] = flq[bInd-1] else: self.fraglens_indMap[j] = flq[bInd] self.coverage_distribution.append({}) for flv in sorted(list(set(self.fraglens_indMap.values()))): buffer_val = self.readLen for j in fragDist.values: if self.fraglens_indMap[j] == flv and j > buffer_val: buffer_val = j coverage_vals = [] for j in xrange(len(self.sequences[i])-buffer_val): coverage_vals.append(covvec[j+self.readLen] - covvec[j] + covvec[j+flv] - covvec[j+flv-self.readLen]) # EXPERIMENTAL #quantized_covVals = quantize_list(coverage_vals) #self.coverage_distribution[i][flv] = DiscreteDistribution([n[2] for n in quantized_covVals],[(n[0],n[1]) for n in quantized_covVals]) # TESTING #import matplotlib.pyplot as mpl #print len(coverage_vals),'-->',len(quantized_covVals) #mpl.figure(0) #mpl.plot(range(len(coverage_vals)),coverage_vals) #for qcv in quantized_covVals: # mpl.plot([qcv[0],qcv[1]+1],[qcv[2],qcv[2]],'r') #mpl.show() #exit(1) self.coverage_distribution[i][flv] = DiscreteDistribution(coverage_vals,range(len(coverage_vals))) return np.mean(avg_out) def init_mutModels(self,mutationModels,mutRate): if mutationModels == []: ml = [copy.deepcopy(DEFAULT_MODEL_1) for n in xrange(self.ploidy)] self.modelData = ml[:self.ploidy] else: if len(mutationModels) != self.ploidy: print '\nError: Number of mutation models recieved is not equal to specified ploidy\n' exit(1) self.modelData = copy.deepcopy(mutationModels) # do we need to rescale mutation frequencies? mutRateSum = sum([n[0] for n in self.modelData]) self.mutRescale = mutRate if self.mutRescale == None: self.mutScalar = 1.0 else: self.mutScalar = float(self.mutRescale)/(mutRateSum/float(len(self.modelData))) # how are mutations spread to each ploid, based on their specified mut rates? self.ploidMutFrac = [float(n[0])/mutRateSum for n in self.modelData] self.ploidMutPrior = DiscreteDistribution(self.ploidMutFrac,range(self.ploidy)) # init mutation models # # self.models[ploid][0] = average mutation rate # self.models[ploid][1] = p(mut is homozygous | mutation occurs) # self.models[ploid][2] = p(mut is indel | mut occurs) # self.models[ploid][3] = p(insertion | indel occurs) # self.models[ploid][4] = distribution of insertion lengths # self.models[ploid][5] = distribution of deletion lengths # self.models[ploid][6] = distribution of trinucleotide SNP transitions # self.models[ploid][7] = p(trinuc mutates) self.models = [] for n in self.modelData: self.models.append([self.mutScalar*n[0],n[1],n[2],n[3],DiscreteDistribution(n[5],n[4]),DiscreteDistribution(n[7],n[6]),[]]) for m in n[8]: self.models[-1][6].append([DiscreteDistribution(m[0],NUCL), DiscreteDistribution(m[1],NUCL), DiscreteDistribution(m[2],NUCL), DiscreteDistribution(m[3],NUCL)]) self.models[-1].append([m for m in n[9]]) def init_poisson(self): ind_l_list = [self.seqLen*self.models[i][0]*self.models[i][2]*self.ploidMutFrac[i] for i in xrange(len(self.models))] snp_l_list = [self.seqLen*self.models[i][0]*(1.-self.models[i][2])*self.ploidMutFrac[i] for i in xrange(len(self.models))] k_range = range(int(self.seqLen*MAX_MUTFRAC)) self.ind_pois = [poisson_list(k_range,ind_l_list[n]) for n in xrange(len(self.models))] self.snp_pois = [poisson_list(k_range,snp_l_list[n]) for n in xrange(len(self.models))] def init_trinucBias(self): # compute mutation positional bias given trinucleotide strings of the sequence (ONLY AFFECTS SNPs) # # note: since indels are added before snps, it's possible these positional biases aren't correctly utilized # at positions affected by indels. At the moment I'm going to consider this negligible. trinuc_snp_bias = [[0. for n in xrange(self.seqLen)] for m in xrange(self.ploidy)] self.trinuc_bias = [None for n in xrange(self.ploidy)] for p in xrange(self.ploidy): for i in xrange(self.winBuffer+1,self.seqLen-1): trinuc_snp_bias[p][i] = self.models[p][7][ALL_IND[str(self.sequences[p][i-1:i+2])]] self.trinuc_bias[p] = DiscreteDistribution(trinuc_snp_bias[p][self.winBuffer+1:self.seqLen-1],range(self.winBuffer+1,self.seqLen-1)) def update(self, xOffset, sequence, ploidy, windowOverlap, readLen, mutationModels=[], mutRate=None): # if mutation model is changed, we have to reinitialize it... if ploidy != self.ploidy or mutRate != self.mutRescale or mutationModels != []: self.ploidy = ploidy self.mutRescale = mutRate self.init_mutModels(mutationModels, mutRate) # if sequence length is different than previous window, we have to redo snp/indel poissons if len(sequence) != self.seqLen: self.seqLen = len(sequence) self.init_poisson() # basic vars self.init_basicVars(xOffset, sequence, ploidy, windowOverlap, readLen) self.indelsToAdd = [n.sample() for n in self.ind_pois] self.snpsToAdd = [n.sample() for n in self.snp_pois] #print (self.indelsToAdd,self.snpsToAdd) # initialize trinuc snp bias if not IGNORE_TRINUC: self.init_trinucBias() def insert_mutations(self, inputList): # # TODO!!!!!! user-input variants, determine which ploid to put it on, etc.. # for inpV in inputList: whichPloid = [] wps = inpV[4][0] if wps == None: # if no genotype given, assume heterozygous and choose a single ploid based on their mut rates whichPloid.append(self.ploidMutPrior.sample()) whichAlt = [0] else: #if 'WP=' in wps: # whichPloid = [int(n) for n in inpV[-1][3:].split(',') if n == '1'] # print 'WHICH:', whichPloid # whichAlt = [0]*len(whichPloid) #elif '/' in wps or '|' in wps: if '/' in wps or '|' in wps: if '/' in wps: splt = wps.split('/') else: splt = wps.split('|') whichPloid = [] whichAlt = [] for i in xrange(len(splt)): if splt[i] == '1': whichPloid.append(i) #whichAlt.append(int(splt[i])-1) # assume we're just using first alt for inserted variants? whichAlt = [0 for n in whichPloid] else: # otherwise assume monoploidy whichPloid = [0] whichAlt = [0] # ignore invalid ploids for i in xrange(len(whichPloid)-1,-1,-1): if whichPloid[i] >= self.ploidy: del whichPloid[i] for i in xrange(len(whichPloid)): p = whichPloid[i] myAlt = inpV[2][whichAlt[i]] myVar = (inpV[0]-self.x,inpV[1],myAlt) inLen = max([len(inpV[1]),len(myAlt)]) #print myVar, chr(self.sequences[p][myVar[0]]) if myVar[0] < 0 or myVar[0] >= len(self.blackList[p]): print '\nError: Attempting to insert variant out of window bounds:' print myVar, '--> blackList[0:'+str(len(self.blackList[p]))+']\n' exit(1) if len(inpV[1]) == 1 and len(myAlt) == 1: if self.blackList[p][myVar[0]]: continue self.snpList[p].append(myVar) self.blackList[p][myVar[0]] = 2 else: for k in xrange(myVar[0],myVar[0]+inLen+1): if self.blackList[p][k]: continue for k in xrange(myVar[0],myVar[0]+inLen+1): self.blackList[p][k] = 1 self.indelList[p].append(myVar) def random_mutations(self): # add random indels all_indels = [[] for n in self.sequences] for i in xrange(self.ploidy): for j in xrange(self.indelsToAdd[i]): if random.random() <= self.models[i][1]: # insert homozygous indel whichPloid = range(self.ploidy) else: # insert heterozygous indel whichPloid = [self.ploidMutPrior.sample()] # try to find suitable places to insert indels eventPos = -1 for attempt in xrange(MAX_ATTEMPTS): eventPos = random.randint(self.winBuffer,self.seqLen-1) for p in whichPloid: if self.blackList[p][eventPos]: eventPos = -1 if eventPos != -1: break if eventPos == -1: continue if random.random() <= self.models[i][3]: # insertion inLen = self.models[i][4].sample() # sequence content of random insertions is uniformly random (change this later) inSeq = ''.join([random.choice(NUCL) for n in xrange(inLen)]) refNucl = chr(self.sequences[i][eventPos]) myIndel = (eventPos,refNucl,refNucl+inSeq) else: # deletion inLen = self.models[i][5].sample() if eventPos+inLen+1 >= len(self.sequences[i]): # skip if deletion too close to boundary continue if inLen == 1: inSeq = chr(self.sequences[i][eventPos+1]) else: inSeq = str(self.sequences[i][eventPos+1:eventPos+inLen+1]) refNucl = chr(self.sequences[i][eventPos]) myIndel = (eventPos,refNucl+inSeq,refNucl) # if event too close to boundary, skip. if event conflicts with other indel, skip. skipEvent = False if eventPos+len(myIndel[1]) >= self.seqLen-self.winBuffer-1: skipEvent = True if skipEvent: continue for p in whichPloid: for k in xrange(eventPos,eventPos+inLen+1): if self.blackList[p][k]: skipEvent = True if skipEvent: continue for p in whichPloid: for k in xrange(eventPos,eventPos+inLen+1): self.blackList[p][k] = 1 all_indels[p].append(myIndel) for i in xrange(len(all_indels)): all_indels[i].extend(self.indelList[i]) all_indels = [sorted(n,reverse=True) for n in all_indels] #print all_indels # add random snps all_snps = [[] for n in self.sequences] for i in xrange(self.ploidy): for j in xrange(self.snpsToAdd[i]): if random.random() <= self.models[i][1]: # insert homozygous SNP whichPloid = range(self.ploidy) else: # insert heterozygous SNP whichPloid = [self.ploidMutPrior.sample()] # try to find suitable places to insert snps eventPos = -1 for attempt in xrange(MAX_ATTEMPTS): # based on the mutation model for the specified ploid, choose a SNP location based on trinuc bias # (if there are multiple ploids, choose one at random) if IGNORE_TRINUC: eventPos = random.randint(self.winBuffer+1,self.seqLen-2) else: ploid_to_use = whichPloid[random.randint(0,len(whichPloid)-1)] eventPos = self.trinuc_bias[ploid_to_use].sample() for p in whichPloid: if self.blackList[p][eventPos]: eventPos = -1 if eventPos != -1: break if eventPos == -1: continue refNucl = chr(self.sequences[i][eventPos]) context = str(chr(self.sequences[i][eventPos-1])+chr(self.sequences[i][eventPos+1])) # sample from tri-nucleotide substitution matrices to get SNP alt allele newNucl = self.models[i][6][TRI_IND[context]][NUC_IND[refNucl]].sample() mySNP = (eventPos,refNucl,newNucl) for p in whichPloid: all_snps[p].append(mySNP) self.blackList[p][mySNP[0]] = 2 # combine random snps with inserted snps, remove any snps that overlap indels for p in xrange(len(all_snps)): all_snps[p].extend(self.snpList[p]) all_snps[p] = [n for n in all_snps[p] if self.blackList[p][n[0]] != 1] # modify reference sequences for i in xrange(len(all_snps)): for j in xrange(len(all_snps[i])): # sanity checking (for debugging purposes) vPos = all_snps[i][j][0] if all_snps[i][j][1] != chr(self.sequences[i][vPos]): print '\nError: Something went wrong!\n', all_snps[i][j], chr(self.sequences[i][vPos]),'\n' exit(1) else: self.sequences[i][vPos] = all_snps[i][j][2] adjToAdd = [[] for n in xrange(self.ploidy)] for i in xrange(len(all_indels)): for j in xrange(len(all_indels[i])): # sanity checking (for debugging purposes) vPos = all_indels[i][j][0] vPos2 = vPos + len(all_indels[i][j][1]) #print all_indels[i][j], str(self.sequences[i][vPos:vPos2]) #print len(self.sequences[i]),'-->', if all_indels[i][j][1] != str(self.sequences[i][vPos:vPos2]): print '\nError: Something went wrong!\n', all_indels[i][j], str(self.sequences[i][vPos:vPos2]),'\n' exit(1) else: self.sequences[i] = self.sequences[i][:vPos] + bytearray(all_indels[i][j][2]) + self.sequences[i][vPos2:] adjToAdd[i].append((all_indels[i][j][0],len(all_indels[i][j][2])-len(all_indels[i][j][1]))) #print len(self.sequences[i]) adjToAdd[i].sort() #print adjToAdd[i] self.adj[i] = np.zeros(len(self.sequences[i]),dtype='<i4') indSoFar = 0 valSoFar = 0 for j in xrange(len(self.adj[i])): if indSoFar < len(adjToAdd[i]) and j >= adjToAdd[i][indSoFar][0]+1: valSoFar += adjToAdd[i][indSoFar][1] indSoFar += 1 self.adj[i][j] = valSoFar # precompute cigar strings (we can skip this is going for only vcf output) if not self.onlyVCF: tempSymbolString = ['M'] prevVal = self.adj[i][0] j = 1 while j < len(self.adj[i]): diff = self.adj[i][j] - prevVal prevVal = self.adj[i][j] if diff > 0: # insertion tempSymbolString.extend(['I']*abs(diff)) j += abs(diff) elif diff < 0: # deletion tempSymbolString.append('D'*abs(diff)+'M') j += 1 else: tempSymbolString.append('M') j += 1 for j in xrange(len(tempSymbolString)-self.readLen): self.allCigar[i].append(CigarString(listIn=tempSymbolString[j:j+self.readLen]).getString()) # pre-compute reference position of first matching base my_fm_pos = None for k in xrange(self.readLen): if 'M' in tempSymbolString[j+k]: my_fm_pos = j+k break if my_fm_pos == None: self.FM_pos[i].append(None) self.FM_span[i].append(None) else: self.FM_pos[i].append(my_fm_pos-self.adj[i][my_fm_pos]) span_dif = len([nnn for nnn in tempSymbolString[j:j+self.readLen] if 'M' in nnn]) self.FM_span[i].append(self.FM_pos[i][-1] + span_dif) # tally up variants implemented countDict = {} all_variants = [sorted(all_snps[i]+all_indels[i]) for i in xrange(self.ploidy)] for i in xrange(len(all_variants)): for j in xrange(len(all_variants[i])): all_variants[i][j] = tuple([all_variants[i][j][0]+self.x])+all_variants[i][j][1:] t = tuple(all_variants[i][j]) if t not in countDict: countDict[t] = [] countDict[t].append(i) # # TODO: combine multiple variants that happened to occur at same position into single vcf entry # output_variants = [] for k in sorted(countDict.keys()): output_variants.append(k+tuple([len(countDict[k])/float(self.ploidy)])) ploid_string = ['0' for n in xrange(self.ploidy)] for k2 in [n for n in countDict[k]]: ploid_string[k2] = '1' output_variants[-1] += tuple(['WP='+'/'.join(ploid_string)]) return output_variants def sample_read(self, sequencingModel, fragLen=None): # choose a ploid myPloid = random.randint(0,self.ploidy-1) # stop attempting to find a valid position if we fail enough times MAX_READPOS_ATTEMPTS = 100 attempts_thus_far = 0 # choose a random position within the ploid, and generate quality scores / sequencing errors readsToSample = [] if fragLen == None: rPos = self.coverage_distribution[myPloid].sample() #####rPos = random.randint(0,len(self.sequences[myPloid])-self.readLen-1) # uniform random #### ##### decide which subsection of the sequence to sample from using coverage probabilities ####coords_bad = True ####while coords_bad: #### attempts_thus_far += 1 #### if attempts_thus_far > MAX_READPOS_ATTEMPTS: #### return None #### myBucket = max([self.which_bucket.sample() - self.win_per_read, 0]) #### coords_to_select_from = [myBucket*self.windowSize,(myBucket+1)*self.windowSize] #### if coords_to_select_from[0] >= len(self.adj[myPloid]): # prevent going beyond region boundaries #### continue #### coords_to_select_from[0] += self.adj[myPloid][coords_to_select_from[0]] #### coords_to_select_from[1] += self.adj[myPloid][coords_to_select_from[0]] #### if max(coords_to_select_from) <= 0: # prevent invalid negative coords due to adj #### continue #### if coords_to_select_from[1] - coords_to_select_from[0] <= 2: # we don't span enough coords to sample #### continue #### if coords_to_select_from[1] < len(self.sequences[myPloid])-self.readLen: #### coords_bad = False ####rPos = random.randint(coords_to_select_from[0],coords_to_select_from[1]-1) # sample read position and call function to compute quality scores / sequencing errors rDat = self.sequences[myPloid][rPos:rPos+self.readLen] (myQual, myErrors) = sequencingModel.getSequencingErrors(rDat) readsToSample.append([rPos,myQual,myErrors,rDat]) else: rPos1 = self.coverage_distribution[myPloid][self.fraglens_indMap[fragLen]].sample() # EXPERIMENTAL #coords_to_select_from = self.coverage_distribution[myPloid][self.fraglens_indMap[fragLen]].sample() #rPos1 = random.randint(coords_to_select_from[0],coords_to_select_from[1]) #####rPos1 = random.randint(0,len(self.sequences[myPloid])-fragLen-1) # uniform random #### ##### decide which subsection of the sequence to sample from using coverage probabilities ####coords_bad = True ####while coords_bad: #### attempts_thus_far += 1 #### if attempts_thus_far > MAX_READPOS_ATTEMPTS: #### #print coords_to_select_from #### return None #### myBucket = max([self.which_bucket.sample() - self.win_per_read, 0]) #### coords_to_select_from = [myBucket*self.windowSize,(myBucket+1)*self.windowSize] #### if coords_to_select_from[0] >= len(self.adj[myPloid]): # prevent going beyond region boundaries #### continue #### coords_to_select_from[0] += self.adj[myPloid][coords_to_select_from[0]] #### coords_to_select_from[1] += self.adj[myPloid][coords_to_select_from[0]] # both ends use index of starting position to avoid issues with reads spanning breakpoints of large events #### if max(coords_to_select_from) <= 0: # prevent invalid negative coords due to adj #### continue #### if coords_to_select_from[1] - coords_to_select_from[0] <= 2: # we don't span enough coords to sample #### continue #### rPos1 = random.randint(coords_to_select_from[0],coords_to_select_from[1]-1) #### # for PE-reads, flip a coin to decide if R1 or R2 will be the "covering" read #### if random.randint(1,2) == 1 and rPos1 > fragLen - self.readLen: #### rPos1 -= fragLen - self.readLen #### if rPos1 < len(self.sequences[myPloid])-fragLen: #### coords_bad = False rPos2 = rPos1 + fragLen - self.readLen rDat1 = self.sequences[myPloid][rPos1:rPos1+self.readLen] rDat2 = self.sequences[myPloid][rPos2:rPos2+self.readLen] #print len(rDat1), rPos1, len(self.sequences[myPloid]) (myQual1, myErrors1) = sequencingModel.getSequencingErrors(rDat1) (myQual2, myErrors2) = sequencingModel.getSequencingErrors(rDat2,isReverseStrand=True) readsToSample.append([rPos1,myQual1,myErrors1,rDat1]) readsToSample.append([rPos2,myQual2,myErrors2,rDat2]) # error format: # myError[i] = (type, len, pos, ref, alt) # examine sequencing errors to-be-inserted. # - remove deletions that don't have enough bordering sequence content to "fill in" # if error is valid, make the changes to the read data rOut = [] for r in readsToSample: try: myCigar = self.allCigar[myPloid][r[0]] except IndexError: print 'Index error when attempting to find cigar string.' print len(self.allCigar[myPloid]), r[0] if fragLen != None: print (rPos1, rPos2) print myPloid, fragLen, self.fraglens_indMap[fragLen] exit(1) totalD = sum([error[1] for error in r[2] if error[0] == 'D']) totalI = sum([error[1] for error in r[2] if error[0] == 'I']) availB = len(self.sequences[myPloid]) - r[0] - self.readLen - 1 # add buffer sequence to fill in positions that get deleted r[3] += self.sequences[myPloid][r[0]+self.readLen:r[0]+self.readLen+totalD] expandedCigar = [] extraCigar = [] adj = 0 sse_adj = [0 for n in xrange(self.readLen + max(sequencingModel.errP[3]))] anyIndelErr = False # sort by letter (D > I > S) such that we introduce all indel errors before substitution errors # secondarily, sort by index arrangedErrors = {'D':[],'I':[],'S':[]} for error in r[2]: arrangedErrors[error[0]].append((error[2],error)) sortedErrors = [] for k in sorted(arrangedErrors.keys()): sortedErrors.extend([n[1] for n in sorted(arrangedErrors[k])]) skipIndels = False for error in sortedErrors: #print '-se-',r[0], error #print sse_adj eLen = error[1] ePos = error[2] if error[0] == 'D' or error[0] == 'I': anyIndelErr = True extraCigarVal = [] if totalD > availB: # if not enough bases to fill-in deletions, skip all indel erors continue if expandedCigar == []: expandedCigar = CigarString(stringIn=myCigar).getList() fillToGo = totalD - totalI + 1 if fillToGo > 0: try: extraCigarVal = CigarString(stringIn=self.allCigar[myPloid][r[0]+fillToGo]).getList()[-fillToGo:] except IndexError: # applying the deletions we want requires going beyond region boundaries. skip all indel errors skipIndels = True if skipIndels: continue # insert deletion error into read and update cigar string accordingly if error[0] == 'D': myadj = sse_adj[ePos] pi = ePos+myadj pf = ePos+myadj+eLen+1 if str(r[3][pi:pf]) == str(error[3]): r[3] = r[3][:pi+1] + r[3][pf:] expandedCigar = expandedCigar[:pi+1] + expandedCigar[pf:] if pi+1 == len(expandedCigar): # weird edge case with del at very end of region. Make a guess and add a "M" expandedCigar.append('M') expandedCigar[pi+1] = 'D'*eLen + expandedCigar[pi+1] else: print '\nError, ref does not match alt while attempting to insert deletion error!\n' exit(1) adj -= eLen for i in xrange(ePos,len(sse_adj)): sse_adj[i] -= eLen # insert insertion error into read and update cigar string accordingly else: myadj = sse_adj[ePos] if chr(r[3][ePos+myadj]) == error[3]: r[3] = r[3][:ePos+myadj] + error[4] + r[3][ePos+myadj+1:] expandedCigar = expandedCigar[:ePos+myadj] + ['I']*eLen + expandedCigar[ePos+myadj:] else: print '\nError, ref does not match alt while attempting to insert insertion error!\n' print '---',chr(r[3][ePos+myadj]), '!=', error[3] exit(1) adj += eLen for i in xrange(ePos,len(sse_adj)): sse_adj[i] += eLen else: # substitution errors, much easier by comparison... if chr(r[3][ePos+sse_adj[ePos]]) == error[3]: r[3][ePos+sse_adj[ePos]] = error[4] else: print '\nError, ref does not match alt while attempting to insert substitution error!\n' exit(1) if anyIndelErr: if len(expandedCigar): relevantCigar = (expandedCigar+extraCigarVal)[:self.readLen] myCigar = CigarString(listIn=relevantCigar).getString() r[3] = r[3][:self.readLen] rOut.append([self.FM_pos[myPloid][r[0]],myCigar,str(r[3]),str(r[1])]) # rOut[i] = (pos, cigar, read_string, qual_string) return rOut # # Container for read data, computes quality scores and positions to insert errors # class ReadContainer: def __init__(self, readLen, errorModel, reScaledError): self.readLen = readLen errorDat = pickle.load(open(errorModel,'rb')) self.UNIFORM = False if len(errorDat) == 4: # uniform-error SE reads (e.g. PacBio) self.UNIFORM = True [Qscores,offQ,avgError,errorParams] = errorDat self.uniform_qscore = int(-10.*np.log10(avgError)+0.5) print 'Using uniform sequencing error model. (q='+str(self.uniform_qscore)+'+'+str(offQ)+', p(err)={0:0.2f}%)'.format(100.*avgError) if len(errorDat) == 6: # only 1 q-score model present, use same model for both strands [initQ1,probQ1,Qscores,offQ,avgError,errorParams] = errorDat self.PE_MODELS = False elif len(errorDat) == 8: # found a q-score model for both forward and reverse strands #print 'Using paired-read quality score profiles...' [initQ1,probQ1,initQ2,probQ2,Qscores,offQ,avgError,errorParams] = errorDat self.PE_MODELS = True if len(initQ1) != len(initQ2) or len(probQ1) != len(probQ2): print '\nError: R1 and R2 quality score models are of different length.\n' exit(1) self.qErrRate = [0.]*(max(Qscores)+1) for q in Qscores: self.qErrRate[q] = 10.**(-q/10.) self.offQ = offQ # errorParams = [SSE_PROB, SIE_RATE, SIE_PROB, SIE_VAL, SIE_INS_FREQ, SIE_INS_NUCL] self.errP = errorParams self.errSSE = [DiscreteDistribution(n,NUCL) for n in self.errP[0]] self.errSIE = DiscreteDistribution(self.errP[2],self.errP[3]) self.errSIN = DiscreteDistribution(self.errP[5],NUCL) # adjust sequencing error frequency to match desired rate if reScaledError == None: self.errorScale = 1.0 else: self.errorScale = reScaledError/avgError print 'Warning: Quality scores no longer exactly representative of error probability. Error model scaled by {0:.3f} to match desired rate...'.format(self.errorScale) if self.UNIFORM == False: # adjust length to match desired read length if self.readLen == len(initQ1): self.qIndRemap = range(self.readLen) else: print 'Warning: Read length of error model ('+str(len(initQ1))+') does not match -R value ('+str(self.readLen)+'), rescaling model...' self.qIndRemap = [max([1,len(initQ1)*n/readLen]) for n in xrange(readLen)] # initialize probability distributions self.initDistByPos1 = [DiscreteDistribution(initQ1[i],Qscores) for i in xrange(len(initQ1))] self.probDistByPosByPrevQ1 = [None] for i in xrange(1,len(initQ1)): self.probDistByPosByPrevQ1.append([]) for j in xrange(len(initQ1[0])): if np.sum(probQ1[i][j]) <= 0.: # if we don't have sufficient data for a transition, use the previous qscore self.probDistByPosByPrevQ1[-1].append(DiscreteDistribution([1],[Qscores[j]],degenerateVal=Qscores[j])) else: self.probDistByPosByPrevQ1[-1].append(DiscreteDistribution(probQ1[i][j],Qscores)) if self.PE_MODELS: self.initDistByPos2 = [DiscreteDistribution(initQ2[i],Qscores) for i in xrange(len(initQ2))] self.probDistByPosByPrevQ2 = [None] for i in xrange(1,len(initQ2)): self.probDistByPosByPrevQ2.append([]) for j in xrange(len(initQ2[0])): if np.sum(probQ2[i][j]) <= 0.: # if we don't have sufficient data for a transition, use the previous qscore self.probDistByPosByPrevQ2[-1].append(DiscreteDistribution([1],[Qscores[j]],degenerateVal=Qscores[j])) else: self.probDistByPosByPrevQ2[-1].append(DiscreteDistribution(probQ2[i][j],Qscores)) def getSequencingErrors(self, readData, isReverseStrand=False): qOut = [0]*self.readLen sErr = [] if self.UNIFORM: myQ = [self.uniform_qscore + self.offQ for n in xrange(self.readLen)] qOut = ''.join([chr(n) for n in myQ]) for i in xrange(self.readLen): if random.random() < self.errorScale*self.qErrRate[self.uniform_qscore]: sErr.append(i) else: if self.PE_MODELS and isReverseStrand: myQ = self.initDistByPos2[0].sample() else: myQ = self.initDistByPos1[0].sample() qOut[0] = myQ for i in xrange(1,self.readLen): if self.PE_MODELS and isReverseStrand: myQ = self.probDistByPosByPrevQ2[self.qIndRemap[i]][myQ].sample() else: myQ = self.probDistByPosByPrevQ1[self.qIndRemap[i]][myQ].sample() qOut[i] = myQ if isReverseStrand: qOut = qOut[::-1] for i in xrange(self.readLen): if random.random() < self.errorScale * self.qErrRate[qOut[i]]: sErr.append(i) qOut = ''.join([chr(n + self.offQ) for n in qOut]) if self.errorScale == 0.0: return (qOut,[]) sOut = [] nDelSoFar = 0 # don't allow indel errors to occur on subsequent positions prevIndel = -2 # don't allow other sequencing errors to occur on bases removed by deletion errors delBlacklist = [] for ind in sErr[::-1]: # for each error that we're going to insert... # determine error type isSub = True if ind != 0 and ind != self.readLen-1-max(self.errP[3]) and abs(ind-prevIndel) > 1: if random.random() < self.errP[1]: isSub = False # errorOut = (type, len, pos, ref, alt) if isSub: # insert substitution error myNucl = chr(readData[ind]) newNucl = self.errSSE[NUC_IND[myNucl]].sample() sOut.append(('S',1,ind,myNucl,newNucl)) else: # insert indel error indelLen = self.errSIE.sample() if random.random() < self.errP[4]: # insertion error myNucl = chr(readData[ind]) newNucl = myNucl + ''.join([self.errSIN.sample() for n in xrange(indelLen)]) sOut.append(('I',len(newNucl)-1,ind,myNucl,newNucl)) elif ind < self.readLen-2-nDelSoFar: # deletion error (prevent too many of them from stacking up) myNucl = str(readData[ind:ind+indelLen+1]) newNucl = chr(readData[ind]) nDelSoFar += len(myNucl)-1 sOut.append(('D',len(myNucl)-1,ind,myNucl,newNucl)) for i in xrange(ind+1,ind+indelLen+1): delBlacklist.append(i) prevIndel = ind # remove blacklisted errors for i in xrange(len(sOut)-1,-1,-1): if sOut[i][2] in delBlacklist: del sOut[i] return (qOut,sOut) """************************************************ **** DEFAULT MUTATION MODELS ************************************************""" # parse mutation model pickle file def parseInputMutationModel(model=None, whichDefault=1): if whichDefault == 1: outModel = [copy.deepcopy(n) for n in DEFAULT_MODEL_1] elif whichDefault == 2: outModel = [copy.deepcopy(n) for n in DEFAULT_MODEL_2] else: print '\nError: Unknown default mutation model specified\n' exit(1) if model != None: pickle_dict = pickle.load(open(model,"rb")) outModel[0] = pickle_dict['AVG_MUT_RATE'] outModel[2] = 1. - pickle_dict['SNP_FREQ'] insList = pickle_dict['INDEL_FREQ'] if len(insList): insCount = sum([insList[k] for k in insList.keys() if k >= 1]) delCount = sum([insList[k] for k in insList.keys() if k <= -1]) insVals = [k for k in sorted(insList.keys()) if k >= 1] insWght = [insList[k]/float(insCount) for k in insVals] delVals = [k for k in sorted([abs(k) for k in insList.keys() if k <= -1])] delWght = [insList[-k]/float(delCount) for k in delVals] else: # degenerate case where no indel stats are provided insCount = 1 delCount = 1 insVals = [1] insWght = [1.0] delVals = [1] delWght = [1.0] outModel[3] = insCount/float(insCount + delCount) outModel[4] = insVals outModel[5] = insWght outModel[6] = delVals outModel[7] = delWght trinuc_trans_prob = pickle_dict['TRINUC_TRANS_PROBS'] for k in sorted(trinuc_trans_prob.keys()): myInd = TRI_IND[k[0][0]+k[0][2]] (k1,k2) = (NUC_IND[k[0][1]],NUC_IND[k[1][1]]) outModel[8][myInd][k1][k2] = trinuc_trans_prob[k] for i in xrange(len(outModel[8])): for j in xrange(len(outModel[8][i])): for l in xrange(len(outModel[8][i][j])): # if trinuc not present in input mutation model, assign it uniform probability if float(sum(outModel[8][i][j])) < 1e-12: outModel[8][i][j] = [0.25,0.25,0.25,0.25] else: outModel[8][i][j][l] /= float(sum(outModel[8][i][j])) trinuc_mut_prob = pickle_dict['TRINUC_MUT_PROB'] which_have_we_seen = {n:False for n in ALL_TRI} trinuc_mean = np.mean(trinuc_mut_prob.values()) for trinuc in trinuc_mut_prob.keys(): outModel[9][ALL_IND[trinuc]] = trinuc_mut_prob[trinuc] which_have_we_seen[trinuc] = True for trinuc in which_have_we_seen.keys(): if which_have_we_seen[trinuc] == False: outModel[9][ALL_IND[trinuc]] = trinuc_mean return outModel # parse mutation model files, returns default model if no model directory is specified # # OLD FUNCTION THAT PROCESSED OUTDATED TEXTFILE MUTATION MODELS def parseInputMutationModel_deprecated(prefix=None, whichDefault=1): if whichDefault == 1: outModel = [copy.deepcopy(n) for n in DEFAULT_MODEL_1] elif whichDefault == 2: outModel = [copy.deepcopy(n) for n in DEFAULT_MODEL_2] else: print '\nError: Unknown default mutation model specified\n' exit(1) if prefix != None: if prefix[-1] != '/': prefix += '/' if not os.path.isdir(prefix): '\nError: Input mutation model directory not found:',prefix,'\n' exit(1) print 'Reading in mutation model...' listing1 = [n for n in os.listdir(prefix) if n[-5:] == '.prob'] listing2 = [n for n in os.listdir(prefix) if n[-7:] == '.trinuc'] listing = sorted(listing1) + sorted(listing2) for l in listing: f = open(prefix+l,'r') fr = [n.split('\t') for n in f.read().split('\n')] f.close() if '_overall.prob' in l: myIns = None myDel = None for dat in fr[1:]: if len(dat) == 2: if dat[0] == 'insertion': myIns = float(dat[1]) elif dat[0] == 'deletion': myDel = float(dat[1]) if myIns != None and myDel != None: outModel[2] = myIns + myDel outModel[3] = myIns / (myIns + myDel) print '-',l if '_insLength.prob' in l: insVals = {} for dat in fr[1:]: if len(dat) == 2: insVals[int(dat[0])] = float(dat[1]) if len(insVals): outModel[4] = sorted(insVals.keys()) outModel[5] = [insVals[n] for n in outModel[4]] print '-',l if '_delLength.prob' in l: delVals = {} for dat in fr[1:]: if len(dat) == 2: delVals[int(dat[0])] = float(dat[1]) if len(delVals): outModel[6] = sorted(delVals.keys()) outModel[7] = [delVals[n] for n in outModel[6]] print '-',l if '.trinuc' == l[-7:]: context_ind = TRI_IND[l[-10]+l[-8]] p_matrix = [[-1,-1,-1,-1],[-1,-1,-1,-1],[-1,-1,-1,-1],[-1,-1,-1,-1]] for i in xrange(len(p_matrix)): for j in xrange(len(fr[i])): p_matrix[i][j] = float(fr[i][j]) anyNone = False for i in xrange(len(p_matrix)): for j in xrange(len(p_matrix[i])): if p_matrix[i][j] == -1: anyNone = True if not anyNone: outModel[8][context_ind] = copy.deepcopy(p_matrix) print '-',l return outModel ###################### # DEFAULT VALUES # ###################### DEFAULT_1_OVERALL_MUT_RATE = 0.001 DEFAULT_1_HOMOZYGOUS_FREQ = 0.010 DEFAULT_1_INDEL_FRACTION = 0.05 DEFAULT_1_INS_VS_DEL = 0.6 DEFAULT_1_INS_LENGTH_VALUES = [1,2,3,4,5,6,7,8,9,10] DEFAULT_1_INS_LENGTH_WEIGHTS = [0.4, 0.2, 0.1, 0.05, 0.05, 0.05, 0.05, 0.034, 0.033, 0.033] DEFAULT_1_DEL_LENGTH_VALUES = [1,2,3,4,5] DEFAULT_1_DEL_LENGTH_WEIGHTS = [0.3,0.2,0.2,0.2,0.1] example_matrix_1 = [[0.0, 0.15, 0.7, 0.15], [0.15, 0.0, 0.15, 0.7], [0.7, 0.15, 0.0, 0.15], [0.15, 0.7, 0.15, 0.0]] DEFAULT_1_TRI_FREQS = [copy.deepcopy(example_matrix_1) for n in xrange(16)] DEFAULT_1_TRINUC_BIAS = [1./float(len(ALL_TRI)) for n in ALL_TRI] DEFAULT_MODEL_1 = [DEFAULT_1_OVERALL_MUT_RATE, DEFAULT_1_HOMOZYGOUS_FREQ, DEFAULT_1_INDEL_FRACTION, DEFAULT_1_INS_VS_DEL, DEFAULT_1_INS_LENGTH_VALUES, DEFAULT_1_INS_LENGTH_WEIGHTS, DEFAULT_1_DEL_LENGTH_VALUES, DEFAULT_1_DEL_LENGTH_WEIGHTS, DEFAULT_1_TRI_FREQS, DEFAULT_1_TRINUC_BIAS] DEFAULT_2_OVERALL_MUT_RATE = 0.002 DEFAULT_2_HOMOZYGOUS_FREQ = 0.200 DEFAULT_2_INDEL_FRACTION = 0.1 DEFAULT_2_INS_VS_DEL = 0.3 DEFAULT_2_INS_LENGTH_VALUES = [1,2,3,4,5,6,7,8,9,10] DEFAULT_2_INS_LENGTH_WEIGHTS = [0.1, 0.1, 0.2, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05] DEFAULT_2_DEL_LENGTH_VALUES = [1,2,3,4,5] DEFAULT_2_DEL_LENGTH_WEIGHTS = [0.3,0.2,0.2,0.2,0.1] example_matrix_2 = [[0.0, 0.15, 0.7, 0.15], [0.15, 0.0, 0.15, 0.7], [0.7, 0.15, 0.0, 0.15], [0.15, 0.7, 0.15, 0.0]] DEFAULT_2_TRI_FREQS = [copy.deepcopy(example_matrix_2) for n in xrange(16)] DEFAULT_2_TRINUC_BIAS = [1./float(len(ALL_TRI)) for n in ALL_TRI] DEFAULT_MODEL_2 = [DEFAULT_2_OVERALL_MUT_RATE, DEFAULT_2_HOMOZYGOUS_FREQ, DEFAULT_2_INDEL_FRACTION, DEFAULT_2_INS_VS_DEL, DEFAULT_2_INS_LENGTH_VALUES, DEFAULT_2_INS_LENGTH_WEIGHTS, DEFAULT_2_DEL_LENGTH_VALUES, DEFAULT_2_DEL_LENGTH_WEIGHTS, DEFAULT_2_TRI_FREQS, DEFAULT_2_TRINUC_BIAS]