100
|
1 #!/usr/bin/env python
|
|
2 # -*- coding: utf-8 -*-
|
|
3 import sys
|
|
4 from Bio import SeqIO
|
|
5 import math
|
|
6 from parse_dis_react import *
|
|
7 from react_norm_function import *
|
|
8 import os
|
|
9 import random
|
|
10 import string
|
|
11
|
|
12
|
|
13 dist_file1 = sys.argv[1] #plus library
|
|
14 dist_file2 = sys.argv[2] #minus library
|
|
15 seq_file = sys.argv[3] #Reference library(genome/cDNA)
|
|
16 nt_spec = sys.argv[4] #only show reactivity for AC or ATCG
|
|
17 flag_in = sys.argv[5] # perform 2-8% normalization (1) or not (0)
|
|
18 threshold = sys.argv[6] #Threshold to cap the reactivities
|
|
19 output_file = sys.argv[7]
|
|
20
|
|
21
|
|
22 distri_p = parse_dist(dist_file1)
|
|
23 distri_m = parse_dist(dist_file2)
|
|
24 threshold = float(threshold)
|
|
25
|
|
26
|
|
27 syspathrs = os.getcwd()
|
|
28
|
|
29 h = file(syspathrs+"react.txt",'w')
|
|
30 flag_in = int(flag_in)
|
|
31
|
|
32 seqs = SeqIO.parse(open(seq_file),'fasta');
|
|
33 nt_s = set()
|
|
34 for i in range(len(nt_spec)):
|
|
35 nt_s.add(nt_spec[i])
|
|
36
|
|
37 flag = 0
|
|
38 trans = []
|
|
39 distri_p = distri_p[1]
|
|
40 distri_m = distri_m[1]
|
|
41
|
|
42 #thres = int(threshold)
|
|
43
|
|
44
|
|
45 transcripts = {}
|
|
46 for seq in seqs:
|
|
47 n = seq.id
|
|
48 trans.append(n)
|
|
49 transcripts[n] = seq.seq.tostring()
|
|
50
|
|
51
|
|
52 #print(distri_p)
|
|
53
|
|
54
|
|
55 for i in range(0, len(trans)):
|
|
56 h.write(trans[i])
|
|
57 h.write('\n')
|
|
58 for j in range(len(distri_p[trans[i]])):
|
|
59 distri_p[trans[i]][j] = math.log((int(distri_p[trans[i]][j])+1),math.e)
|
|
60 for j in range(len(distri_m[trans[i]])):
|
|
61 distri_m[trans[i]][j] = math.log((int(distri_m[trans[i]][j])+1),math.e)
|
|
62 s_p = sum(distri_p[trans[i]])
|
|
63 s_m = sum(distri_m[trans[i]])
|
|
64 length = len(distri_p[trans[i]])
|
|
65 if s_p!= 0 and s_m!= 0:
|
|
66 r = []
|
|
67 for j in range(0, len(distri_p[trans[i]])):
|
|
68 f_p = (float(distri_p[trans[i]][j]))/float(s_p)*length
|
|
69 f_m = (float(distri_m[trans[i]][j]))/float(s_m)*length
|
|
70 raw_react = f_p-f_m
|
|
71 r.append(max(0, raw_react))
|
|
72
|
|
73 if s_p!= 0 and s_m!= 0:
|
|
74 for k in range(1,(len(r)-1)):
|
|
75 if transcripts[trans[i]][k-1] in nt_s:
|
|
76 h.write(str(float('%.3f'%r[k])))
|
|
77 h.write('\t')
|
|
78 else:
|
|
79 h.write('NA')
|
|
80 h.write('\t')
|
|
81 k = k+1
|
|
82 if transcripts[trans[i]][k-1] in nt_s:
|
|
83 h.write(str(float('%.3f'%r[k])))
|
|
84 h.write('\n')
|
|
85 else:
|
|
86 h.write('NA')
|
|
87 h.write('\n')
|
|
88
|
|
89
|
|
90 h.close()
|
|
91
|
|
92 if flag_in:
|
|
93 react_norm((syspathrs+"react.txt"),output_file, threshold)
|
|
94 else:
|
|
95 h_o = file(output_file, 'w')
|
|
96 f_i = open(syspathrs+"react.txt")
|
|
97 for aline in f_i.readlines():
|
|
98 h_o.write(aline.strip())
|
|
99 h_o.write('\n')
|
|
100 os.system("rm -f "+syspathrs+"react.txt")
|
|
101
|
|
102 #os.system("rm -r "+syspathrs)
|
|
103
|
|
104
|
|
105
|
|
106
|
|
107
|
|
108
|
|
109
|
|
110
|
|
111
|
|
112
|
|
113
|
|
114
|
|
115
|
|
116
|
|
117
|
|
118
|
|
119
|
|
120
|
|
121
|
|
122
|
|
123
|
|
124
|
|
125
|
|
126
|
|
127
|
|
128
|
|
129
|
|
130
|
|
131
|
|
132
|
|
133
|
|
134
|
|
135
|