Mercurial > repos > ufz > dfpl_predict
comparison dfpl_predict.xml @ 0:8956e949d466 draft default tip
planemo upload for repository https://github.com/Helmholtz-UFZ/galaxy-tools/tree/main/tools/dfpl commit 66c6acfeff5441c36fba97787ddc5ee3d6a4a6ec
author | ufz |
---|---|
date | Thu, 19 Dec 2024 12:51:08 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:8956e949d466 |
---|---|
1 <tool id="dfpl_predict" name="deepFPlearn predict" version="@TOOL_VERSION@+galaxy0" profile="23.0"> | |
2 <description>association of molecular structures to biological targets</description> | |
3 <creator> | |
4 <organization name="Helmholtz Centre for Environmental Research - UFZ, Research Data Management" | |
5 url ="https://www.ufz.de/index.php?en=45348"/> | |
6 </creator> | |
7 <macros> | |
8 <import>macros.xml</import> | |
9 </macros> | |
10 <expand macro="requirements"/> | |
11 <command detect_errors="exit_code"><![CDATA[ | |
12 set -o pipefail; | |
13 ln -s '$fnn_weights' model_weights.h5 && | |
14 ln -s '$autoencoder_weights' encoder_weights.h5 && | |
15 cat '$inputs' | |
16 | python '$__tool_directory__/json_flatten.py' | |
17 | python '$__tool_directory__/json_predict.py' | |
18 > config.json && | |
19 dfpl predict --configFile config.json && | |
20 cp predictions.csv '$outputFile' | |
21 ]]></command> | |
22 <configfiles> | |
23 <inputs name="inputs" data_style="paths"/> | |
24 </configfiles> | |
25 <inputs> | |
26 <section title="Input Data" name="input-data" expanded="true"> | |
27 <param label="Input File" argument="--inputFile" | |
28 type="data" format="csv" | |
29 help="The file containing the data for the prediction in (unquoted) comma-separated CSV format. | |
30 The column named 'smiles' or 'fp' contains the field to be predicted. | |
31 Please adjust the type that should be predicted (fp or smile) appropriately. | |
32 An optional column 'id' is used to assign the outcomes to the original identifiers. | |
33 If this column is missing, the results are numbered in the order of their appearance in the input file. | |
34 A header is expected and respective column names are used"/> | |
35 <param label="Chemical Representation" argument="--type" | |
36 type="select" optional="true" | |
37 help="Type of the chemical representation"> | |
38 <option value="fp" selected="true">fp</option> | |
39 <option value="smiles">smiles</option> | |
40 </param> | |
41 <param label="Fingerprint Type" argument="--fpType" | |
42 type="select" optional="true" | |
43 help="The type of fingerprint to be generated/used in input file"> | |
44 <option value="topological" selected="true">topological</option> | |
45 <option value="MACCS">MACCS</option> | |
46 </param> | |
47 </section> | |
48 <conditional name="autoencoder"> | |
49 <param label="Compress Fingerprints with Autoencoder" argument="--compressFeatures" | |
50 type="select" | |
51 help="Compress the fingerprints using a trained autoencoder (requires a weights file)"> | |
52 <option value="true">Compress fingerprints</option> | |
53 <option value="false">Use raw fingerprints</option> | |
54 </param> | |
55 <when value="true"> | |
56 <param label="Autoencoder Weights" name="autoencoder_weights" | |
57 type="data" format="h5" optional="false" | |
58 help="The autoencoder weights as generated by ``dfpl train``"/> | |
59 <param label="Autoencoder Type" argument="--aeType" | |
60 type="select" optional="true" | |
61 help="Autoencoder type, variational or deterministic"> | |
62 <option value="variational">Variational</option> | |
63 <option value="deterministic" selected="true">Deterministic</option> | |
64 </param> | |
65 </when> | |
66 <when value="false"> | |
67 </when> | |
68 </conditional> | |
69 <param label="Model Weights" name="fnn_weights" | |
70 type="data" format="h5" optional="false" | |
71 help="The model weights as generated by ``dfpl train``"/> | |
72 </inputs> | |
73 <outputs> | |
74 <data name="outputFile" | |
75 label="${tool.name} on ${on_string}: predicted values" | |
76 format="csv" /> | |
77 </outputs> | |
78 <tests> | |
79 <!-- TODO add test with https://zenodo.org/records/14409985 .. https://github.com/galaxyproject/galaxy/issues/19346 --> | |
80 <test> | |
81 <section name="input-data"> | |
82 <param name="inputFile" value="S_dataset.csv"/> | |
83 <param name="type" value="smiles"/> | |
84 <param name="fpType" value="topological"/> | |
85 </section> | |
86 <conditional name="autoencoder"> | |
87 <param name="compressFeatures" value="true"/> | |
88 <param name="autoencoder_weights" value="encoder_weights.h5" location="https://zenodo.org/api/records/14514397/files/encoder_weights.h5/content"/> | |
89 <param name="aeType" value="deterministic"/> | |
90 </conditional> | |
91 <param name="fnn_weights" value="model_weights.h5" location="https://zenodo.org/api/records/14514397/files/model_weights.h5/content"/> | |
92 <output name="outputFile"> | |
93 <assert_contents> | |
94 <has_n_lines n="7249"/> | |
95 <has_n_columns n="10" sep=","/> | |
96 <has_line n="1" line=",smiles,AR,ER,GR,Aromatase,TR,PPARg,ED,predicted"/> | |
97 </assert_contents> | |
98 </output> | |
99 <assert_stdout> | |
100 <has_text text="Prediction successful"/> | |
101 </assert_stdout> | |
102 </test> | |
103 </tests> | |
104 <help><![CDATA[ | |
105 This tool is the predict mode of `DeepFPLearn <https://github.com/yigbt/deepFPlearn>`_. | |
106 It's equivalent to running ``dfpl predict`` from the command line. | |
107 | |
108 The predict mode uses a model that was trained with ``dfpl train`` to predict | |
109 the association of molecular structures to a biological target. | |
110 | |
111 The input file should be a CSV file with a header. | |
112 | |
113 The tool will output the given CSV file with an additional column containing the predicted values. | |
114 ]]></help> | |
115 <expand macro="citations"/> | |
116 </tool> |