Mercurial > repos > ufz > dose_response_analysis_tool
view dose_response.R @ 1:8a1b524ed9d8 draft
planemo upload for repository https://github.com/bernt-matthias/mb-galaxy-tools/tools/tox_tools/baseline_calculator commit dca5f947ae4c9697ac0cfce0b313170b541124e5
author | ufz |
---|---|
date | Tue, 08 Oct 2024 12:41:07 +0000 |
parents | 082e9d22c38d |
children | c122403ac78a |
line wrap: on
line source
library(drc) library(ggplot2) fit_models <- function(data, concentration_col, response_col) { models <- list( LL.2 = drm(data[[response_col]] ~ data[[concentration_col]], data = data, fct = LL.2(), type = "binomial"), LL.3 = drm(data[[response_col]] ~ data[[concentration_col]], data = data, fct = LL.3(), type = "binomial"), LL.4 = drm(data[[response_col]] ~ data[[concentration_col]], data = data, fct = LL.4(), type = "binomial"), LL.5 = drm(data[[response_col]] ~ data[[concentration_col]], data = data, fct = LL.5(), type = "binomial"), W1.4 = drm(data[[response_col]] ~ data[[concentration_col]], data = data, fct = W1.4(), type = "binomial"), W2.4 = drm(data[[response_col]] ~ data[[concentration_col]], data = data, fct = W2.4(), type = "binomial") ) return(models) } select_best_model <- function(models) { aic_values <- sapply(models, AIC) best_model_name <- names(which.min(aic_values)) best_model <- models[[best_model_name]] return(list(name = best_model_name, model = best_model)) } calculate_ec_values <- function(model) { ec50 <- ED(model, 50, type = "relative") ec25 <- ED(model, 25, type = "relative") ec10 <- ED(model, 10, type = "relative") return(list(EC50 = ec50, EC25 = ec25, EC10 = ec10)) } plot_dose_response <- function(model, data, ec_values, concentration_col, response_col, plot_file) { concentration_grid <- seq(min(data[[concentration_col]]), max(data[[concentration_col]]), length.out = 100) prediction_data <- data.frame(concentration_grid) colnames(prediction_data) <- concentration_col predicted_values <- predict(model, newdata = prediction_data, type = "response") prediction_data$response <- predicted_values p <- ggplot(data, aes_string(x = concentration_col, y = response_col)) + geom_point(color = "red") + geom_line(data = prediction_data, aes_string(x = concentration_col, y = "response"), color = "blue") + geom_vline(xintercept = ec_values$EC10[1], color = "green", linetype = "dashed") + geom_vline(xintercept = ec_values$EC50[1], color = "purple", linetype = "dashed") + labs(title = "Dose-Response Curve", x = "Concentration", y = "Effect") + theme_minimal() + theme( panel.background = element_rect(fill = "white", color = NA), plot.background = element_rect(fill = "white", color = NA) ) jpeg(filename = plot_file) print(p) dev.off() } dose_response_analysis <- function(data, concentration_col, response_col, plot_file, ec_file) { concentration_col <- colnames(data)[as.integer(concentration_col)] response_col <- colnames(data)[as.integer(response_col)] models <- fit_models(data, concentration_col, response_col) best_model_info <- select_best_model(models) ec_values <- calculate_ec_values(best_model_info$model) plot_dose_response(best_model_info$model, data, ec_values, concentration_col, response_col, plot_file) ec_data <- data.frame( EC10 = ec_values$EC10[1], EC25 = ec_values$EC25[1], EC50 = ec_values$EC50[1] ) write.table(ec_data, ec_file, sep = "\t", row.names = FALSE, col.names = TRUE, quote = FALSE) return(list(best_model = best_model_info$name, ec_values = ec_values)) } args <- commandArgs(trailingOnly = TRUE) data_file <- args[1] concentration_col <- args[2] response_col <- args[3] plot_file <- args[4] ec_file <- args[5] data <- read.csv(data_file, header = TRUE, sep = "\t") dose_response_analysis(data, concentration_col, response_col, plot_file, ec_file)