Mercurial > repos > ulfschaefer > vcfs2fasta
comparison vcfs2fasta.py @ 22:96f393ad7fc6 draft default tip
Uploaded
author | ulfschaefer |
---|---|
date | Wed, 23 Dec 2015 04:50:58 -0500 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
21:b09ffe50c378 | 22:96f393ad7fc6 |
---|---|
1 #!/usr/bin/env python | |
2 ''' | |
3 Merge SNP data from multiple VCF files into a single fasta file. | |
4 | |
5 Created on 5 Oct 2015 | |
6 | |
7 @author: alex | |
8 ''' | |
9 import argparse | |
10 from collections import OrderedDict | |
11 from collections import defaultdict | |
12 import glob | |
13 import itertools | |
14 import logging | |
15 import os | |
16 | |
17 from Bio import SeqIO | |
18 from bintrees import FastRBTree | |
19 | |
20 # Try importing the matplotlib and numpy for stats. | |
21 try: | |
22 from matplotlib import pyplot as plt | |
23 import numpy | |
24 can_stats = True | |
25 except ImportError: | |
26 can_stats = False | |
27 | |
28 import vcf | |
29 | |
30 from phe.variant_filters import IUPAC_CODES | |
31 | |
32 | |
33 def plot_stats(pos_stats, total_samples, plots_dir="plots", discarded={}): | |
34 if not os.path.exists(plots_dir): | |
35 os.makedirs(plots_dir) | |
36 | |
37 for contig in pos_stats: | |
38 plt.style.use('ggplot') | |
39 | |
40 x = numpy.array([pos for pos in pos_stats[contig] if pos not in discarded.get(contig, [])]) | |
41 y = numpy.array([ float(pos_stats[contig][pos]["mut"]) / total_samples for pos in pos_stats[contig] if pos not in discarded.get(contig, []) ]) | |
42 | |
43 f, (ax1, ax2, ax3, ax4) = plt.subplots(4, sharex=True, sharey=True) | |
44 f.set_size_inches(12, 15) | |
45 ax1.plot(x, y, 'ro') | |
46 ax1.set_title("Fraction of samples with SNPs") | |
47 plt.ylim(0, 1.1) | |
48 | |
49 y = numpy.array([ float(pos_stats[contig][pos]["N"]) / total_samples for pos in pos_stats[contig] if pos not in discarded.get(contig, [])]) | |
50 ax2.plot(x, y, 'bo') | |
51 ax2.set_title("Fraction of samples with Ns") | |
52 | |
53 y = numpy.array([ float(pos_stats[contig][pos]["mix"]) / total_samples for pos in pos_stats[contig] if pos not in discarded.get(contig, [])]) | |
54 ax3.plot(x, y, 'go') | |
55 ax3.set_title("Fraction of samples with mixed bases") | |
56 | |
57 y = numpy.array([ float(pos_stats[contig][pos]["gap"]) / total_samples for pos in pos_stats[contig] if pos not in discarded.get(contig, [])]) | |
58 ax4.plot(x, y, 'yo') | |
59 ax4.set_title("Fraction of samples with uncallable genotype (gap)") | |
60 | |
61 contig = contig.replace("/", "-") | |
62 plt.savefig(os.path.join(plots_dir, "%s.png" % contig), dpi=100) | |
63 | |
64 def get_mixture(record, threshold): | |
65 mixtures = {} | |
66 try: | |
67 if len(record.samples[0].data.AD) > 1: | |
68 | |
69 total_depth = sum(record.samples[0].data.AD) | |
70 # Go over all combinations of touples. | |
71 for comb in itertools.combinations(range(0, len(record.samples[0].data.AD)), 2): | |
72 i = comb[0] | |
73 j = comb[1] | |
74 | |
75 alleles = list() | |
76 | |
77 if 0 in comb: | |
78 alleles.append(str(record.REF)) | |
79 | |
80 if i != 0: | |
81 alleles.append(str(record.ALT[i - 1])) | |
82 mixture = record.samples[0].data.AD[i] | |
83 if j != 0: | |
84 alleles.append(str(record.ALT[j - 1])) | |
85 mixture = record.samples[0].data.AD[j] | |
86 | |
87 ratio = float(mixture) / total_depth | |
88 if ratio == 1.0: | |
89 logging.debug("This is only designed for mixtures! %s %s %s %s", record, ratio, record.samples[0].data.AD, record.FILTER) | |
90 | |
91 if ratio not in mixtures: | |
92 mixtures[ratio] = [] | |
93 mixtures[ratio].append(alleles.pop()) | |
94 | |
95 elif ratio >= threshold: | |
96 try: | |
97 code = IUPAC_CODES[frozenset(alleles)] | |
98 if ratio not in mixtures: | |
99 mixtures[ratio] = [] | |
100 mixtures[ratio].append(code) | |
101 except KeyError: | |
102 logging.warn("Could not retrieve IUPAC code for %s from %s", alleles, record) | |
103 except AttributeError: | |
104 mixtures = {} | |
105 | |
106 return mixtures | |
107 | |
108 def print_stats(stats, pos_stats, total_vars): | |
109 for contig in stats: | |
110 for sample, info in stats[contig].items(): | |
111 print "%s,%i,%i" % (sample, len(info.get("n_pos", [])), total_vars) | |
112 | |
113 for contig in stats: | |
114 for pos, info in pos_stats[contig].iteritems(): | |
115 print "%s,%i,%i,%i,%i" % (contig, pos, info.get("N", "NA"), info.get("-", "NA"), info.get("mut", "NA")) | |
116 | |
117 | |
118 def get_args(): | |
119 args = argparse.ArgumentParser(description="Combine multiple VCFs into a single FASTA file.") | |
120 | |
121 group = args.add_mutually_exclusive_group(required=True) | |
122 group.add_argument("--directory", "-d", help="Path to the directory with .vcf files.") | |
123 group.add_argument("--input", "-i", type=str, nargs='+', help="List of VCF files to process.") | |
124 | |
125 args.add_argument("--out", "-o", required=True, help="Path to the output FASTA file.") | |
126 | |
127 args.add_argument("--with-mixtures", type=float, help="Specify this option with a threshold to output mixtures above this threshold.") | |
128 | |
129 args.add_argument("--column-Ns", type=float, help="Keeps columns with fraction of Ns above specified threshold.") | |
130 | |
131 args.add_argument("--sample-Ns", type=float, help="Keeps samples with fraction of Ns above specified threshold.") | |
132 | |
133 args.add_argument("--reference", type=str, help="If path to reference specified (FASTA), then whole genome will be written.") | |
134 | |
135 group = args.add_mutually_exclusive_group() | |
136 | |
137 group.add_argument("--include") | |
138 group.add_argument("--exclude") | |
139 | |
140 args.add_argument("--with-stats", help="If a path is specified, then position of the outputed SNPs is stored in this file. Requires mumpy and matplotlib.") | |
141 args.add_argument("--plots-dir", default="plots", help="Where to write summary plots on SNPs extracted. Requires mumpy and matplotlib.") | |
142 | |
143 args.add_argument("--debug", action="store_true", help="More verbose logging (default: turned off).") | |
144 args.add_argument("--local", action="store_true", help="Re-read the VCF instead of storing it in memory.") | |
145 | |
146 return args.parse_args() | |
147 | |
148 def main(): | |
149 """ | |
150 Process VCF files and merge them into a single fasta file. | |
151 """ | |
152 args = get_args() | |
153 | |
154 logging.basicConfig(level=logging.DEBUG if args.debug else logging.INFO) | |
155 | |
156 contigs = list() | |
157 | |
158 sample_stats = dict() | |
159 | |
160 # All positions available for analysis. | |
161 avail_pos = dict() | |
162 # Stats about each position in each chromosome. | |
163 pos_stats = dict() | |
164 indel_summary = defaultdict(int) | |
165 # Cached version of the data. | |
166 vcf_data = dict() | |
167 mixtures = dict() | |
168 | |
169 empty_tree = FastRBTree() | |
170 | |
171 exclude = False | |
172 include = False | |
173 | |
174 if args.reference: | |
175 ref_seq = OrderedDict() | |
176 with open(args.reference) as fp: | |
177 for record in SeqIO.parse(fp, "fasta"): | |
178 ref_seq[record.id] = str(record.seq) | |
179 | |
180 args.reference = ref_seq | |
181 | |
182 if args.exclude or args.include: | |
183 pos = {} | |
184 chr_pos = [] | |
185 bed_file = args.include if args.include is not None else args.exclude | |
186 | |
187 with open(bed_file) as fp: | |
188 for line in fp: | |
189 data = line.strip().split("\t") | |
190 | |
191 chr_pos += [ (i, False,) for i in xrange(int(data[1]), int(data[2]) + 1)] | |
192 | |
193 if data[0] not in pos: | |
194 pos[data[0]] = [] | |
195 | |
196 pos[data[0]] += chr_pos | |
197 | |
198 | |
199 pos = {chrom: FastRBTree(l) for chrom, l in pos.items()} | |
200 | |
201 if args.include: | |
202 include = pos | |
203 else: | |
204 exclude = pos | |
205 | |
206 | |
207 if args.directory is not None and args.input is None: | |
208 args.input = glob.glob(os.path.join(args.directory, "*.filtered.vcf")) | |
209 | |
210 # First pass to get the references and the positions to be analysed. | |
211 for vcf_in in args.input: | |
212 sample_name, _ = os.path.splitext(os.path.basename(vcf_in)) | |
213 vcf_data[vcf_in] = list() | |
214 reader = vcf.Reader(filename=vcf_in) | |
215 | |
216 for record in reader: | |
217 if include and include.get(record.CHROM, empty_tree).get(record.POS, True) or exclude and not exclude.get(record.CHROM, empty_tree).get(record.POS, True): | |
218 continue | |
219 | |
220 if not args.local: | |
221 vcf_data[vcf_in].append(record) | |
222 | |
223 if record.CHROM not in contigs: | |
224 contigs.append(record.CHROM) | |
225 avail_pos[record.CHROM] = FastRBTree() | |
226 mixtures[record.CHROM] = {} | |
227 sample_stats[record.CHROM] = {} | |
228 | |
229 if sample_name not in mixtures[record.CHROM]: | |
230 mixtures[record.CHROM][sample_name] = FastRBTree() | |
231 | |
232 if sample_name not in sample_stats[record.CHROM]: | |
233 sample_stats[record.CHROM][sample_name] = {} | |
234 | |
235 if not record.FILTER: | |
236 if record.is_snp: | |
237 if record.POS in avail_pos[record.CHROM] and avail_pos[record.CHROM][record.POS] != record.REF: | |
238 logging.critical("SOMETHING IS REALLY WRONG because reference for the same position is DIFFERENT! %s in %s", record.POS, vcf_in) | |
239 return 2 | |
240 | |
241 if record.CHROM not in pos_stats: | |
242 pos_stats[record.CHROM] = {} | |
243 | |
244 avail_pos[record.CHROM].insert(record.POS, str(record.REF)) | |
245 pos_stats[record.CHROM][record.POS] = {"N":0, "-": 0, "mut": 0, "mix": 0, "gap": 0} | |
246 | |
247 elif args.with_mixtures and record.is_snp: | |
248 mix = get_mixture(record, args.with_mixtures) | |
249 | |
250 for ratio, code in mix.items(): | |
251 for c in code: | |
252 avail_pos[record.CHROM].insert(record.POS, str(record.REF)) | |
253 if record.CHROM not in pos_stats: | |
254 pos_stats[record.CHROM] = {} | |
255 pos_stats[record.CHROM][record.POS] = {"N": 0, "-": 0, "mut": 0, "mix": 0, "gap": 0} | |
256 | |
257 if sample_name not in mixtures[record.CHROM]: | |
258 mixtures[record.CHROM][sample_name] = FastRBTree() | |
259 | |
260 mixtures[record.CHROM][sample_name].insert(record.POS, c) | |
261 elif not record.is_deletion and not record.is_indel: | |
262 if record.CHROM not in pos_stats: | |
263 pos_stats[record.CHROM] = {} | |
264 pos_stats[record.CHROM][record.POS] = {"N": 0, "-": 0, "mut": 0, "mix": 0, "gap": 0} | |
265 avail_pos[record.CHROM].insert(record.POS, str(record.REF)) | |
266 else: | |
267 logging.debug("Discarding %s from %s as DEL and/or INDEL", record.POS, vcf_in) | |
268 indel_summary[vcf_in] += 1 | |
269 try: | |
270 vcf_data[vcf_in].remove(record) | |
271 except ValueError: | |
272 pass | |
273 | |
274 | |
275 all_data = { contig: {} for contig in contigs} | |
276 samples = [] | |
277 | |
278 for vcf_in in args.input: | |
279 | |
280 sample_seq = "" | |
281 sample_name, _ = os.path.splitext(os.path.basename(vcf_in)) | |
282 samples.append(sample_name) | |
283 | |
284 # Initialise the data for this sample to be REF positions. | |
285 for contig in contigs: | |
286 all_data[contig][sample_name] = { pos: avail_pos[contig][pos] for pos in avail_pos[contig] } | |
287 | |
288 # Re-read data from VCF if local is specified, otherwise get it from memory. | |
289 iterator = vcf.Reader(filename=vcf_in) if args.local else vcf_data[vcf_in] | |
290 for record in iterator: | |
291 # Array of filters that have been applied. | |
292 filters = [] | |
293 | |
294 # If position is our available position. | |
295 if avail_pos.get(record.CHROM, empty_tree).get(record.POS, False): | |
296 if not record.FILTER: | |
297 if record.is_snp: | |
298 if len(record.ALT) > 1: | |
299 logging.info("POS %s passed filters but has multiple alleles. Inserting N") | |
300 all_data[record.CHROM][sample_name][record.POS] = "N" | |
301 else: | |
302 all_data[record.CHROM][sample_name][record.POS] = record.ALT[0].sequence | |
303 pos_stats[record.CHROM][record.POS]["mut"] += 1 | |
304 else: | |
305 | |
306 # Currently we are only using first filter to call consensus. | |
307 extended_code = mixtures[record.CHROM][sample_name].get(record.POS, "N") | |
308 | |
309 # extended_code = PHEFilterBase.call_concensus(record) | |
310 | |
311 # Calculate the stats | |
312 if extended_code == "N": | |
313 pos_stats[record.CHROM][record.POS]["N"] += 1 | |
314 | |
315 if "n_pos" not in sample_stats[record.CHROM][sample_name]: | |
316 sample_stats[record.CHROM][sample_name]["n_pos"] = [] | |
317 sample_stats[record.CHROM][sample_name]["n_pos"].append(record.POS) | |
318 | |
319 elif extended_code == "-": | |
320 pos_stats[record.CHROM][record.POS]["-"] += 1 | |
321 else: | |
322 pos_stats[record.CHROM][record.POS]["mix"] += 1 | |
323 # print "Good mixture %s: %i (%s)" % (sample_name, record.POS, extended_code) | |
324 # Record if there was uncallable genoty/gap in the data. | |
325 if record.samples[0].data.GT == "./.": | |
326 pos_stats[record.CHROM][record.POS]["gap"] += 1 | |
327 | |
328 # Save the extended code of the SNP. | |
329 all_data[record.CHROM][sample_name][record.POS] = extended_code | |
330 del vcf_data[vcf_in] | |
331 | |
332 # Output the data to the fasta file. | |
333 # The data is already aligned so simply output it. | |
334 discarded = {} | |
335 | |
336 if args.reference: | |
337 # These should be in the same order as the order in reference. | |
338 contigs = args.reference.keys() | |
339 | |
340 if args.sample_Ns: | |
341 delete_samples = [] | |
342 for contig in contigs: | |
343 for sample in samples: | |
344 | |
345 # Skip if the contig not in sample_stats | |
346 if contig not in sample_stats: | |
347 continue | |
348 | |
349 sample_n_ratio = float(len(sample_stats[contig][sample]["n_pos"])) / len(avail_pos[contig]) | |
350 if sample_n_ratio > args.sample_Ns: | |
351 for pos in sample_stats[contig][sample]["n_pos"]: | |
352 pos_stats[contig][pos]["N"] -= 1 | |
353 | |
354 logging.info("Removing %s due to high Ns in sample: %s", sample , sample_n_ratio) | |
355 | |
356 delete_samples.append(sample) | |
357 | |
358 samples = [sample for sample in samples if sample not in delete_samples] | |
359 snp_positions = [] | |
360 with open(args.out, "w") as fp: | |
361 | |
362 for sample in samples: | |
363 sample_seq = "" | |
364 for contig in contigs: | |
365 if contig in avail_pos: | |
366 if args.reference: | |
367 positions = xrange(1, len(args.reference[contig]) + 1) | |
368 else: | |
369 positions = avail_pos[contig].keys() | |
370 for pos in positions: | |
371 if pos in avail_pos[contig]: | |
372 if not args.column_Ns or float(pos_stats[contig][pos]["N"]) / len(samples) < args.column_Ns and \ | |
373 float(pos_stats[contig][pos]["-"]) / len(samples) < args.column_Ns: | |
374 sample_seq += all_data[contig][sample][pos] | |
375 else: | |
376 if contig not in discarded: | |
377 discarded[contig] = [] | |
378 discarded[contig].append(pos) | |
379 elif args.reference: | |
380 sample_seq += args.reference[contig][pos - 1] | |
381 elif args.reference: | |
382 sample_seq += args.reference[contig] | |
383 | |
384 fp.write(">%s\n%s\n" % (sample, sample_seq)) | |
385 # Do the same for reference data. | |
386 ref_snps = "" | |
387 | |
388 for contig in contigs: | |
389 if contig in avail_pos: | |
390 if args.reference: | |
391 positions = xrange(1, len(args.reference[contig]) + 1) | |
392 else: | |
393 positions = avail_pos[contig].keys() | |
394 for pos in positions: | |
395 if pos in avail_pos[contig]: | |
396 if not args.column_Ns or float(pos_stats[contig][pos]["N"]) / len(samples) < args.column_Ns and \ | |
397 float(pos_stats[contig][pos]["-"]) / len(samples) < args.column_Ns: | |
398 | |
399 ref_snps += str(avail_pos[contig][pos]) | |
400 snp_positions.append((contig, pos,)) | |
401 elif args.reference: | |
402 ref_snps += args.reference[contig][pos - 1] | |
403 elif args.reference: | |
404 ref_snps += args.reference[contig] | |
405 | |
406 fp.write(">reference\n%s\n" % ref_snps) | |
407 | |
408 if can_stats and args.with_stats: | |
409 with open(args.with_stats, "wb") as fp: | |
410 fp.write("contig\tposition\tmutations\tn_frac\n") | |
411 for values in snp_positions: | |
412 fp.write("%s\t%s\t%s\t%s\n" % (values[0], | |
413 values[1], | |
414 float(pos_stats[values[0]][values[1]]["mut"]) / len(args.input), | |
415 float(pos_stats[values[0]][values[1]]["N"]) / len(args.input))) | |
416 plot_stats(pos_stats, len(samples), discarded=discarded, plots_dir=os.path.abspath(args.plots_dir)) | |
417 # print_stats(sample_stats, pos_stats, total_vars=len(avail_pos[contig])) | |
418 | |
419 total_discarded = 0 | |
420 for _, i in discarded.items(): | |
421 total_discarded += len(i) | |
422 logging.info("Discarded total of %i poor quality columns", float(total_discarded) / len(args.input)) | |
423 logging.info("Samples with indels:") | |
424 for sample, count in indel_summary.iteritems(): | |
425 logging.info("%s\t%s", sample, count) | |
426 return 0 | |
427 | |
428 if __name__ == '__main__': | |
429 import time | |
430 | |
431 # with PyCallGraph(output=graphviz): | |
432 # T0 = time.time() | |
433 r = main() | |
434 # T1 = time.time() | |
435 | |
436 # print "Time taken: %i" % (T1 - T0) | |
437 exit(r) |