13
|
1 # Copyright INRA (Institut National de la Recherche Agronomique)
|
|
2 # http://www.inra.fr
|
|
3 # http://urgi.versailles.inra.fr
|
|
4 #
|
|
5 # This software is governed by the CeCILL license under French law and
|
|
6 # abiding by the rules of distribution of free software. You can use,
|
|
7 # modify and/ or redistribute the software under the terms of the CeCILL
|
|
8 # license as circulated by CEA, CNRS and INRIA at the following URL
|
|
9 # "http://www.cecill.info".
|
|
10 #
|
|
11 # As a counterpart to the access to the source code and rights to copy,
|
|
12 # modify and redistribute granted by the license, users are provided only
|
|
13 # with a limited warranty and the software's author, the holder of the
|
|
14 # economic rights, and the successive licensors have only limited
|
|
15 # liability.
|
|
16 #
|
|
17 # In this respect, the user's attention is drawn to the risks associated
|
|
18 # with loading, using, modifying and/or developing or reproducing the
|
|
19 # software by the user in light of its specific status of free software,
|
|
20 # that may mean that it is complicated to manipulate, and that also
|
|
21 # therefore means that it is reserved for developers and experienced
|
|
22 # professionals having in-depth computer knowledge. Users are therefore
|
|
23 # encouraged to load and test the software's suitability as regards their
|
|
24 # requirements in conditions enabling the security of their systems and/or
|
|
25 # data to be ensured and, more generally, to use and operate it in the
|
|
26 # same conditions as regards security.
|
|
27 #
|
|
28 # The fact that you are presently reading this means that you have had
|
|
29 # knowledge of the CeCILL license and that you accept its terms.
|
|
30
|
|
31
|
|
32 import sys
|
|
33 from commons.core.seq.BioseqDB import BioseqDB
|
|
34 from commons.core.seq.Bioseq import Bioseq
|
|
35 from commons.core.coord.Align import Align
|
|
36 from commons.core.coord.Range import Range
|
|
37 from commons.core.stat.Stat import Stat
|
|
38 from math import log
|
|
39
|
|
40
|
|
41 ## Multiple Sequence Alignment Representation
|
|
42 #
|
|
43 #
|
|
44 class AlignedBioseqDB( BioseqDB ):
|
|
45
|
|
46 def __init__( self, name="" ):
|
|
47 BioseqDB.__init__( self, name )
|
|
48 seqLength = self.getLength()
|
|
49 if self.getSize() > 1:
|
|
50 for bs in self.db[1:]:
|
|
51 if bs.getLength() != seqLength:
|
|
52 print "ERROR: aligned sequences have different length"
|
|
53
|
|
54
|
|
55 ## Get length of the alignment
|
|
56 #
|
|
57 # @return length
|
|
58 # @warning name before migration was 'length'
|
|
59 #
|
|
60 def getLength( self ):
|
|
61 length = 0
|
|
62 if self.db != []:
|
|
63 length = self.db[0].getLength()
|
|
64 return length
|
|
65
|
|
66
|
|
67 ## Get the true length of a given sequence (without gaps)
|
|
68 #
|
|
69 # @param header string header of the sequence to analyze
|
|
70 # @return length integer
|
|
71 # @warning name before migration was 'true_length'
|
|
72 #
|
|
73 def getSeqLengthWithoutGaps( self, header ):
|
|
74 bs = self.fetch( header )
|
|
75 count = 0
|
|
76 for pos in xrange(0,len(bs.sequence)):
|
|
77 if bs.sequence[pos] != "-":
|
|
78 count += 1
|
|
79 return count
|
|
80
|
|
81 def cleanMSA( self ):
|
|
82 #TODO: Refactoring
|
|
83 """clean the MSA"""
|
|
84 i2del = []
|
|
85
|
|
86 # for each sequence in the MSA
|
|
87 for seqi in xrange(0,self.getSize()):
|
|
88 if seqi in i2del:
|
|
89 continue
|
|
90 #define it as the reference
|
|
91 ref = self.db[seqi].sequence
|
|
92 refHeader = self.db[seqi].header
|
|
93 # for each following sequence
|
|
94 for seq_next in xrange(seqi+1,self.getSize()):
|
|
95 if seq_next in i2del:
|
|
96 continue
|
|
97 keep = 0
|
|
98 # for each position along the MSA
|
|
99 for posx in xrange(0,self.getLength()):
|
|
100 seq = self.db[seq_next].sequence
|
|
101 if seq[posx] != '-' and ref[posx] != '-':
|
|
102 keep = 1
|
|
103 break
|
|
104 seqHeader = self.db[seq_next].header
|
|
105 # if there is at least one gap between the ref seq and the other seq
|
|
106 # keep track of the shortest by recording it in "i2del"
|
|
107 if keep == 0:
|
|
108
|
|
109 if self.getSeqLengthWithoutGaps(refHeader) < self.getSeqLengthWithoutGaps(seqHeader):
|
|
110 if seqi not in i2del:
|
|
111 i2del.append( seqi )
|
|
112 else:
|
|
113 if seq_next not in i2del:
|
|
114 i2del.append( seq_next )
|
|
115
|
|
116 # delete from the MSA each seq present in the list "i2del"
|
|
117 for i in reversed(sorted(set(i2del))):
|
|
118 del self.db[i]
|
|
119
|
|
120 self.idx = {}
|
|
121 count = 0
|
|
122 for i in self.db:
|
|
123 self.idx[i.header] = count
|
|
124 count += 1
|
|
125
|
|
126 ## Record the occurrences of symbols (A, T, G, C, N, -, ...) at each site
|
|
127 #
|
|
128 # @return: list of dico whose keys are symbols and values are their occurrences
|
|
129 #
|
|
130 def getListOccPerSite( self ):
|
|
131 lOccPerSite = [] # list of dictionaries, one per position on the sequence
|
|
132 n = 0 # nb of sequences parsed from the input file
|
|
133 firstSeq = True
|
|
134
|
|
135 # for each sequence in the bank
|
|
136 for bs in self.db:
|
|
137 if bs.sequence == None:
|
|
138 break
|
|
139 n += 1
|
|
140
|
|
141 # if it is the first to be parsed, create a dico at each site
|
|
142 if firstSeq:
|
|
143 for i in xrange(0,len(bs.sequence)):
|
|
144 lOccPerSite.append( {} )
|
|
145 firstSeq = False
|
|
146
|
|
147 # for each site, add its nucleotide
|
|
148 for i in xrange(0,len(bs.sequence)):
|
|
149 nuc = bs.sequence[i].upper()
|
|
150 if lOccPerSite[i].has_key( nuc ):
|
|
151 lOccPerSite[i][nuc] += 1
|
|
152 else:
|
|
153 lOccPerSite[i][nuc] = 1
|
|
154
|
|
155 return lOccPerSite
|
|
156
|
|
157 #TODO: review minNbNt !!! It should be at least 2 nucleotides to build a consensus...
|
|
158 ## Make a consensus from the MSA
|
|
159 #
|
|
160 # @param minNbNt: minimum nb of nucleotides to edit a consensus
|
|
161 # @param minPropNt: minimum proportion for the major nucleotide to be used, otherwise add 'N' (default=0.0)
|
|
162 # @param verbose: level of information sent to stdout (default=0/1)
|
|
163 # @return: consensus
|
|
164 #
|
|
165 def getConsensus( self, minNbNt, minPropNt=0.0, verbose=0 , isHeaderSAtannot=False):
|
|
166
|
|
167 maxPropN = 0.40 # discard consensus if more than 40% of N's
|
|
168
|
|
169 nbInSeq = self.getSize()
|
|
170 if verbose > 0:
|
|
171 print "nb of aligned sequences: %i" % ( nbInSeq ); sys.stdout.flush()
|
|
172 if nbInSeq < 2:
|
|
173 print "ERROR: can't make a consensus with less than 2 sequences"
|
|
174 sys.exit(1)
|
|
175 if minNbNt >= nbInSeq:
|
|
176 minNbNt = nbInSeq - 1
|
|
177 print "minNbNt=%i" % ( minNbNt )
|
|
178 if minPropNt >= 1.0:
|
|
179 print "ERROR: minPropNt=%.2f should be a proportion (below 1.0)" % ( minPropNt )
|
|
180 sys.exit(1)
|
|
181
|
|
182 lOccPerSite = self.getListOccPerSite()
|
|
183 nbSites = len(lOccPerSite)
|
|
184 if verbose > 0:
|
|
185 print "nb of sites: %i" % ( nbSites ); sys.stdout.flush()
|
|
186
|
|
187 seqConsensus = ""
|
|
188
|
|
189 # for each site (i.e. each column of the MSA)
|
|
190 nbRmvColumns = 0
|
|
191 countSites = 0
|
|
192 for dNt2Occ in lOccPerSite:
|
|
193 countSites += 1
|
|
194 if verbose > 1:
|
|
195 print "site %s / %i" % ( str(countSites).zfill( len(str(nbSites)) ),
|
|
196 nbSites )
|
|
197 sys.stdout.flush()
|
|
198 occMaxNt = 0 # occurrences of the predominant nucleotide at this site
|
|
199 lBestNt = []
|
|
200 nbNt = 0 # total nb of A, T, G and C (no gap)
|
|
201
|
|
202 # for each distinct symbol at this site (A, T, G, C, N, -,...)
|
|
203 for j in dNt2Occ.keys():
|
|
204 if j != "-":
|
|
205 nbNt += dNt2Occ[j]
|
|
206 if verbose > 1:
|
|
207 print "%s: %i" % ( j, dNt2Occ[j] )
|
|
208 if dNt2Occ[j] > occMaxNt:
|
|
209 occMaxNt = dNt2Occ[j]
|
|
210 lBestNt = [ j ]
|
|
211 elif dNt2Occ[j] == occMaxNt:
|
|
212 lBestNt.append( j )
|
|
213 if nbNt == 0: # some MSA programs can remove some sequences (e.g. Muscle after Recon) or when using Refalign (non-alignable TE fragments put together via a refseq)
|
|
214 nbRmvColumns += 1
|
|
215
|
|
216 if len( lBestNt ) >= 1:
|
|
217 bestNt = lBestNt[0]
|
|
218
|
|
219 # if the predominant nucleotide occurs in less than x% of the sequences, put a "N"
|
|
220 if minPropNt > 0.0 and nbNt != 0 and float(occMaxNt)/float(nbNt) < minPropNt:
|
|
221 bestNt = "N"
|
|
222
|
|
223 if int(nbNt) >= int(minNbNt):
|
|
224 seqConsensus += bestNt
|
|
225 if verbose > 1:
|
|
226 print "-> %s" % ( bestNt )
|
|
227
|
|
228 if nbRmvColumns:
|
|
229 if nbRmvColumns == 1:
|
|
230 print "WARNING: 1 site was removed (%.2f%%)" % (nbRmvColumns / float(nbSites) * 100)
|
|
231 else:
|
|
232 print "WARNING: %i sites were removed (%.2f%%)" % ( nbRmvColumns, nbRmvColumns / float(nbSites) * 100 )
|
|
233 sys.stdout.flush()
|
|
234 if seqConsensus == "":
|
|
235 print "WARNING: no consensus can be built (no sequence left)"
|
|
236 return
|
|
237
|
|
238 propN = seqConsensus.count("N") / float(len(seqConsensus))
|
|
239 if propN >= maxPropN:
|
|
240 print "WARNING: no consensus can be built (%i%% of N's >= %i%%)" % ( propN * 100, maxPropN * 100 )
|
|
241 return
|
|
242 elif propN >= maxPropN * 0.5:
|
|
243 print "WARNING: %i%% of N's" % ( propN * 100 )
|
|
244
|
|
245 consensus = Bioseq()
|
|
246 consensus.sequence = seqConsensus
|
|
247 if isHeaderSAtannot:
|
|
248 header = self.db[0].header
|
|
249 pyramid = header.split("Gr")[1].split("Cl")[0]
|
|
250 pile = header.split("Cl")[1].split(" ")[0]
|
|
251 consensus.header = "consensus=%s length=%i nbAlign=%i pile=%s pyramid=%s" % (self.name, len(seqConsensus), self.getSize(), pile, pyramid)
|
|
252 else:
|
|
253 consensus.header = "consensus=%s length=%i nbAlign=%i" % ( self.name, len(seqConsensus), self.getSize() )
|
|
254
|
|
255 if verbose > 0:
|
|
256
|
|
257 statEntropy = self.getEntropy( verbose - 1 )
|
|
258 print "entropy: %s" % ( statEntropy.stringQuantiles() )
|
|
259 sys.stdout.flush()
|
|
260
|
|
261 return consensus
|
|
262
|
|
263
|
|
264 ## Get the entropy of the whole multiple alignment (only for A, T, G and C)
|
|
265 #
|
|
266 # @param verbose level of verbosity
|
|
267 #
|
|
268 # @return statistics about the entropy of the MSA
|
|
269 #
|
|
270 def getEntropy( self, verbose=0 ):
|
|
271
|
|
272 stats = Stat()
|
|
273
|
|
274 # get the occurrences of symbols at each site
|
|
275 lOccPerSite = self.getListOccPerSite()
|
|
276
|
|
277 countSite = 0
|
|
278
|
|
279 # for each site
|
|
280 for dSymbol2Occ in lOccPerSite:
|
|
281 countSite += 1
|
|
282
|
|
283 # count the number of nucleotides (A, T, G and C, doesn't count gap '-')
|
|
284 nbNt = 0
|
|
285 dATGC2Occ = {}
|
|
286 for base in ["A","T","G","C"]:
|
|
287 dATGC2Occ[ base ] = 0.0
|
|
288 for nt in dSymbol2Occ.keys():
|
|
289 if nt != "-":
|
|
290 nbNt += dSymbol2Occ[ nt ]
|
|
291 checkedNt = self.getATGCNFromIUPAC( nt )
|
|
292 if checkedNt in ["A","T","G","C"] and dSymbol2Occ.has_key( checkedNt ):
|
|
293 dATGC2Occ[ checkedNt ] += 1 * dSymbol2Occ[ checkedNt ]
|
|
294 else: # for 'N'
|
|
295 if dSymbol2Occ.has_key( checkedNt ):
|
|
296 dATGC2Occ[ "A" ] += 0.25 * dSymbol2Occ[ checkedNt ]
|
|
297 dATGC2Occ[ "T" ] += 0.25 * dSymbol2Occ[ checkedNt ]
|
|
298 dATGC2Occ[ "G" ] += 0.25 * dSymbol2Occ[ checkedNt ]
|
|
299 dATGC2Occ[ "C" ] += 0.25 * dSymbol2Occ[ checkedNt ]
|
|
300 if verbose > 2:
|
|
301 for base in dATGC2Occ.keys():
|
|
302 print "%s: %i" % ( base, dATGC2Occ[ base ] )
|
|
303
|
|
304 # compute the entropy for the site
|
|
305 entropySite = 0.0
|
|
306 for nt in dATGC2Occ.keys():
|
|
307 entropySite += self.computeEntropy( dATGC2Occ[ nt ], nbNt )
|
|
308 if verbose > 1:
|
|
309 print "site %i (%i nt): entropy = %.3f" % ( countSite, nbNt, entropySite )
|
|
310 stats.add( entropySite )
|
|
311
|
|
312 return stats
|
|
313
|
|
314
|
|
315 ## Get A, T, G, C or N from an IUPAC letter
|
|
316 # IUPAC = ['A','T','G','C','U','R','Y','M','K','W','S','B','D','H','V','N']
|
|
317 #
|
|
318 # @return A, T, G, C or N
|
|
319 #
|
|
320 def getATGCNFromIUPAC( self, nt ):
|
|
321 iBs = Bioseq()
|
|
322 return iBs.getATGCNFromIUPAC( nt )
|
|
323
|
|
324
|
|
325 ## Compute the entropy based on the occurrences of a certain nucleotide and the total number of nucleotides
|
|
326 #
|
|
327 def computeEntropy( self, nbOcc, nbNt ):
|
|
328 if nbOcc == 0.0:
|
|
329 return 0.0
|
|
330 else:
|
|
331 freq = nbOcc / float(nbNt)
|
|
332 return - freq * log(freq) / log(2)
|
|
333
|
|
334
|
|
335 ## Save the multiple alignment as a matrix with '0' if gap, '1' otherwise
|
|
336 #
|
|
337 def saveAsBinaryMatrix( self, outFile ):
|
|
338 outFileHandler = open( outFile, "w" )
|
|
339 for bs in self.db:
|
|
340 string = "%s" % ( bs.header )
|
|
341 for nt in bs.sequence:
|
|
342 if nt != "-":
|
|
343 string += "\t%i" % ( 1 )
|
|
344 else:
|
|
345 string += "\t%i" % ( 0 )
|
|
346 outFileHandler.write( "%s\n" % ( string ) )
|
|
347 outFileHandler.close()
|
|
348
|
|
349
|
|
350 ## Return a list of Align instances corresponding to the aligned regions (without gaps)
|
|
351 #
|
|
352 # @param query string header of the sequence considered as query
|
|
353 # @param subject string header of the sequence considered as subject
|
|
354 #
|
|
355 def getAlignList( self, query, subject ):
|
|
356 lAligns = []
|
|
357 alignQ = self.fetch( query ).sequence
|
|
358 alignS = self.fetch( subject ).sequence
|
|
359 createNewAlign = True
|
|
360 indexAlign = 0
|
|
361 indexQ = 0
|
|
362 indexS = 0
|
|
363 while indexAlign < len(alignQ):
|
|
364 if alignQ[ indexAlign ] != "-" and alignS[ indexAlign ] != "-":
|
|
365 indexQ += 1
|
|
366 indexS += 1
|
|
367 if createNewAlign:
|
|
368 iAlign = Align( Range( query, indexQ, indexQ ),
|
|
369 Range( subject, indexS, indexS ),
|
|
370 0,
|
|
371 int( alignQ[ indexAlign ] == alignS[ indexAlign ] ),
|
|
372 int( alignQ[ indexAlign ] == alignS[ indexAlign ] ) )
|
|
373 lAligns.append( iAlign )
|
|
374 createNewAlign = False
|
|
375 else:
|
|
376 lAligns[-1].range_query.end += 1
|
|
377 lAligns[-1].range_subject.end += 1
|
|
378 lAligns[-1].score += int( alignQ[ indexAlign ] == alignS[ indexAlign ] )
|
|
379 lAligns[-1].identity += int( alignQ[ indexAlign ] == alignS[ indexAlign ] )
|
|
380 else:
|
|
381 if not createNewAlign:
|
|
382 lAligns[-1].identity = 100 * lAligns[-1].identity / lAligns[-1].getLengthOnQuery()
|
|
383 createNewAlign = True
|
|
384 if alignQ[ indexAlign ] != "-":
|
|
385 indexQ += 1
|
|
386 elif alignS[ indexAlign ] != "-":
|
|
387 indexS += 1
|
|
388 indexAlign += 1
|
|
389 if not createNewAlign:
|
|
390 lAligns[-1].identity = 100 * lAligns[-1].identity / lAligns[-1].getLengthOnQuery()
|
|
391 return lAligns
|
|
392
|
|
393
|
|
394 def removeGaps(self):
|
|
395 for iBs in self.db:
|
|
396 iBs.removeSymbol( "-" )
|
|
397
|
|
398 ## Compute mean per cent identity for MSA.
|
|
399 # First sequence in MSA is considered as reference sequence.
|
|
400 #
|
|
401 #
|
|
402 def computeMeanPcentIdentity(self):
|
|
403 seqRef = self.db[0]
|
|
404 sumPcentIdentity = 0
|
|
405
|
|
406 for seq in self.db[1:]:
|
|
407 pcentIdentity = self._computePcentIdentityBetweenSeqRefAndCurrentSeq(seqRef, seq)
|
|
408 sumPcentIdentity = sumPcentIdentity + pcentIdentity
|
|
409
|
|
410 nbSeq = len(self.db[1:])
|
|
411 meanPcentIdentity = round (sumPcentIdentity/nbSeq)
|
|
412
|
|
413 return meanPcentIdentity
|
|
414
|
|
415 def _computePcentIdentityBetweenSeqRefAndCurrentSeq(self, seqRef, seq):
|
|
416 indexOnSeqRef = 0
|
|
417 sumIdentity = 0
|
|
418 for nuclSeq in seq.sequence:
|
|
419 nuclRef = seqRef.sequence[indexOnSeqRef]
|
|
420
|
|
421 if nuclRef != "-" and nuclRef == nuclSeq:
|
|
422 sumIdentity = sumIdentity + 1
|
|
423 indexOnSeqRef = indexOnSeqRef + 1
|
|
424
|
|
425 return float(sumIdentity) / float(seqRef.getLength()) * 100
|
|
426
|
|
427
|
|
428
|
|
429
|
|
430
|
|
431
|
|
432
|
|
433
|
|
434
|
|
435
|
|
436
|
|
437
|
|
438
|
|
439
|
|
440
|