Mercurial > repos > vandelj > giant_factor_generator
diff src/heatMapClustering.R @ 0:4764dc6a1019 draft
"planemo upload for repository https://github.com/juliechevalier/GIANT/tree/master commit cb276a594444c8f32e9819fefde3a21f121d35df"
author | vandelj |
---|---|
date | Fri, 26 Jun 2020 09:51:15 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/heatMapClustering.R Fri Jun 26 09:51:15 2020 -0400 @@ -0,0 +1,896 @@ +# A command-line interface to plot heatmap based on expression or diff. exp. analysis +# written by Jimmy Vandel +# one of these arguments is required: +# +# +initial.options <- commandArgs(trailingOnly = FALSE) +file.arg.name <- "--file=" +script.name <- sub(file.arg.name, "", initial.options[grep(file.arg.name, initial.options)]) +script.basename <- dirname(script.name) +source(file.path(script.basename, "utils.R")) +source(file.path(script.basename, "getopt.R")) + +#addComment("Welcome R!") + +# setup R error handling to go to stderr +options( show.error.messages=F, error = function () { cat(geterrmessage(), file=stderr() ); q( "no", 1, F ) } ) + +# we need that to not crash galaxy with an UTF8 error on German LC settings. +loc <- Sys.setlocale("LC_MESSAGES", "en_US.UTF-8") +loc <- Sys.setlocale("LC_NUMERIC", "C") + +#get starting time +start.time <- Sys.time() + + +options(stringAsfactors = FALSE, useFancyQuotes = FALSE, OutDec=".") + +#get options +args <- commandArgs() + +# get options, using the spec as defined by the enclosed list. +# we read the options from the default: commandArgs(TRUE). +spec <- matrix(c( + "expressionFile", "x", 1, "character", + "diffAnalyseFile", "x", 1, "character", + "factorInfo","x", 1, "character", + "genericData","x", 0, "logical", + "comparisonName","x",1,"character", + "comparisonNameLow","x",1,"character", + "comparisonNameHigh","x",1,"character", + "filterInputOutput","x", 1, "character", + "FCthreshold","x", 1, "double", + "pvalThreshold","x", 1, "double", + "geneListFiltering","x",1,"character", + "clusterNumber","x",1,"integer", + "maxRows","x",1,"integer", + "sampleClusterNumber","x",1,"integer", + "dataTransformation","x",1,"character", + "distanceMeasure","x",1,"character", + "aggloMethod","x",1,"character", + "personalColors","x",1,"character", + "sideBarColorPalette","x",1,"character", + "format", "x", 1, "character", + "quiet", "x", 0, "logical", + "log", "x", 1, "character", + "outputFile" , "x", 1, "character"), + byrow=TRUE, ncol=4) +opt <- getoptLong(spec) + +# enforce the following required arguments +if (is.null(opt$log)) { + addComment("[ERROR]'log file' is required") + q( "no", 1, F ) +} +addComment("[INFO]Start of R script",T,opt$log,display=FALSE) +if (is.null(opt$format)) { + addComment("[ERROR]'output format' is required",T,opt$log) + q( "no", 1, F ) +} +if (is.null(opt$outputFile)) { + addComment("[ERROR]'output file' is required",T,opt$log) + q( "no", 1, F ) +} + +if(is.null(opt$expressionFile) && !is.null(opt$genericData)){ + addComment("[ERROR]generic data clustering is based on expression clustering",T,opt$log) + q( "no", 1, F ) +} + +if (is.null(opt$clusterNumber) || opt$clusterNumber<2) { + addComment("[ERROR]valid genes clusters number is required",T,opt$log) + q( "no", 1, F ) +} + +if (is.null(opt$sampleClusterNumber) || opt$sampleClusterNumber<1) { + addComment("[ERROR]valid samples clusters number is required",T,opt$log) + q( "no", 1, F ) +} + +if (is.null(opt$dataTransformation)) { + addComment("[ERROR]data transformation option is required",T,opt$log) + q( "no", 1, F ) +} + +if (is.null(opt$distanceMeasure)) { + addComment("[ERROR]distance measure option is required",T,opt$log) + q( "no", 1, F ) +} + +if (is.null(opt$aggloMethod)) { + addComment("[ERROR]agglomeration method option is required",T,opt$log) + q( "no", 1, F ) +} + +if (is.null(opt$maxRows) || opt$maxRows<2) { + addComment("[ERROR]valid plotted row number is required",T,opt$log) + q( "no", 1, F ) +} + +if (!is.null(opt[["comparisonName"]]) && nchar(opt[["comparisonName"]])==0){ + addComment("[ERROR]you have to specify comparison",T,opt$log) + q( "no", 1, F ) +} + +if (!is.null(opt$comparisonNameLow) && nchar(opt$comparisonNameLow)==0){ + addComment("[ERROR]you have to specify comparisonLow",T,opt$log) + q( "no", 1, F ) +} + +if (!is.null(opt$comparisonNameHigh) && nchar(opt$comparisonNameHigh)==0){ + addComment("[ERROR]you have to specify comparisonHigh",T,opt$log) + q( "no", 1, F ) +} + +if (is.null(opt$genericData) && (!is.null(opt$comparisonNameLow) || !is.null(opt$comparisonNameHigh))){ + addComment("[ERROR]comparisonLow and comparisonHigh can be specified only with generic data",T,opt$log) + q( "no", 1, F ) +} + +if (!is.null(opt$genericData) && !is.null(opt[["comparisonName"]])){ + addComment("[ERROR]basic comparison cannot be specified for generic data",T,opt$log) + q( "no", 1, F ) +} + +if ((!is.null(opt[["comparisonName"]]) || !is.null(opt$comparisonNameLow) || !is.null(opt$comparisonNameHigh)) && is.null(opt$diffAnalyseFile)) { + addComment("[ERROR]'diff. exp. analysis file' is required",T,opt$log) + q( "no", 1, F ) +} + +if (!is.null(opt$genericData) && !is.null(opt$diffAnalyseFile) && is.null(opt$comparisonNameLow) && is.null(opt$comparisonNameHigh)){ + addComment("[ERROR]Missing comparison information for filtering",T,opt$log) + q( "no", 1, F ) +} + +if ((!is.null(opt$FCthreshold) || !is.null(opt$pvalThreshold)) && (is.null(opt[["comparisonName"]]) && is.null(opt$comparisonNameLow) && is.null(opt$comparisonNameHigh))) { + addComment("[ERROR]'comparisons' are missing for filtering",T,opt$log) + q( "no", 1, F ) +} + +if ((!is.null(opt$FCthreshold) || !is.null(opt$pvalThreshold)) && !is.null(opt$geneListFiltering)) { + addComment("[ERROR]Cannot have two filtering strategies",T,opt$log) + q( "no", 1, F ) +} + +verbose <- if (is.null(opt$quiet)) { + TRUE +}else{ + FALSE} + +addComment("[INFO]Parameters checked!",T,opt$log,display=FALSE) + +addComment(c("[INFO]Working directory: ",getwd()),TRUE,opt$log,display=FALSE) +addComment(c("[INFO]Command line: ",args),TRUE,opt$log,display=FALSE) + +#directory for plots and HTML +dir.create(file.path(getwd(), "plotDir")) +dir.create(file.path(getwd(), "plotLyDir")) + +#silent package loading +suppressPackageStartupMessages({ + library("plotly") + library("dendextend") + #library("ggdendro") + #library("plyr") + library("ggplot2") + library("heatmaply") + library("circlize") + #library("RColorBrewer") + #source("https://bioconductor.org/biocLite.R") + #biocLite("ComplexHeatmap") + library("ComplexHeatmap") + #library("processx") +}) + +expressionToCluster=!is.null(opt$expressionFile) + +#load input data files +if(expressionToCluster){ + #first expression data + expressionMatrix=read.csv(file=opt$expressionFile,header=F,sep="\t",colClasses="character") + #remove first row to convert it as colnames (to avoid X before colnames with header=T) + colNamesData=expressionMatrix[1,-1] + expressionMatrix=expressionMatrix[-1,] + #remove first colum to convert it as rownames + rowNamesData=expressionMatrix[,1] + expressionMatrix=expressionMatrix[,-1] + if(is.data.frame(expressionMatrix)){ + expressionMatrix=data.matrix(expressionMatrix) + }else{ + expressionMatrix=data.matrix(as.numeric(expressionMatrix)) + } + dimnames(expressionMatrix)=list(rowNamesData,colNamesData) + + #check input files + if (!is.numeric(expressionMatrix)) { + addComment("[ERROR]Expression data is not fully numeric!",T,opt$log,display=FALSE) + q( "no", 1, F ) + } + + addComment("[INFO]Expression data loaded and checked") + addComment(c("[INFO]Dim of expression matrix:",dim(expressionMatrix)),T,opt$log,display=FALSE) +} + +nbComparisons=0 +nbColPerContrast=5 +comparisonMatrix=NULL +comparisonMatrixInfoGene=NULL +#if available comparisons +if(!is.null(opt[["comparisonName"]])){ + #load results from differential expression analysis + #consider first row contains column names + comparisonMatrix=read.csv(file=opt$diffAnalyseFile,header=F,sep="\t") + colnames(comparisonMatrix)=as.character(unlist(comparisonMatrix[1,])) + #remove the second line also as it's information line (p-val,FDR.p-val,FC,logFC) + comparisonMatrix=comparisonMatrix[-c(1,2),] + #remove first and second colums, convert the first one as rownames + rownames(comparisonMatrix)=as.character(unlist(comparisonMatrix[,1])) + #and save second column content that contain geneInfo + comparisonMatrixInfoGene=as.character(unlist(comparisonMatrix[,2])) + names(comparisonMatrixInfoGene)=as.character(unlist(comparisonMatrix[,1])) + comparisonMatrix=comparisonMatrix[,-c(1,2)] + + comparisonMatrix=matrix(as.numeric(as.matrix(comparisonMatrix)),ncol=ncol(comparisonMatrix),dimnames = dimnames(comparisonMatrix)) + + if (ncol(comparisonMatrix)%%nbColPerContrast != 0) { + addComment("[ERROR]Diff. exp. data does not contain good number of columns per contrast, should contains in this order:p-val,FDR.p-val,FC,log2(FC) and t-stat",T,opt$log,display=FALSE) + q( "no", 1, F ) + } + + if(max(comparisonMatrix[,c(seq(1,ncol(comparisonMatrix),nbColPerContrast),seq(2,ncol(comparisonMatrix),nbColPerContrast))])>1 || min(comparisonMatrix[,c(seq(1,ncol(comparisonMatrix),nbColPerContrast),seq(2,ncol(comparisonMatrix),nbColPerContrast))])<0){ + addComment("[ERROR]Seem that diff. exp. data does not contain correct values for p-val and FDR.p-val columns, should be including in [0,1] interval",T,opt$log,display=FALSE) + q( "no", 1, F ) + } + + if (!is.numeric(comparisonMatrix)) { + addComment("[ERROR]Diff. exp. data is not fully numeric!",T,opt$log,display=FALSE) + q( "no", 1, F ) + } + + if(expressionToCluster && length(setdiff(rownames(comparisonMatrix),rownames(expressionMatrix)))!=0){ + addComment("[WARNING]All genes from diff. exp. file are not included in expression file",T,opt$log,display=FALSE) + } + + if(expressionToCluster && length(setdiff(rownames(expressionMatrix),rownames(comparisonMatrix)))!=0){ + addComment("[WARNING]All genes from expression file are not included in diff. exp. file",T,opt$log,display=FALSE) + } + + addComment("[INFO]Diff. exp. analysis loaded and checked",T,opt$log,display=FALSE) + addComment(c("[INFO]Dim of original comparison matrix:",dim(comparisonMatrix)),T,opt$log,display=FALSE) + + #restrict to user specified comparisons + restrictedComparisons=unlist(strsplit(opt[["comparisonName"]],",")) + #should be improved to avoid selection of column names starting too similarly + colToKeep=which(unlist(lapply(colnames(comparisonMatrix),function(x)any(startsWith(x,restrictedComparisons))))) + comparisonMatrix=matrix(comparisonMatrix[,colToKeep],ncol=length(colToKeep),dimnames = list(rownames(comparisonMatrix),colnames(comparisonMatrix)[colToKeep])) + + #get number of required comparisons + nbComparisons=ncol(comparisonMatrix)/nbColPerContrast + + addComment(c("[INFO]Dim of effective filtering matrix:",dim(comparisonMatrix)),T,opt$log,display=FALSE) +} + +#should be only the case with generic data +if(!is.null(opt$comparisonNameLow) || !is.null(opt$comparisonNameHigh)){ + #load generic data used for filtering + nbColPerContrast=1 + #consider first row contains column names + comparisonMatrix=read.csv(file=opt$diffAnalyseFile,header=F,sep="\t") + colnames(comparisonMatrix)=as.character(unlist(comparisonMatrix[1,])) + #remove first colum, convert the first one as rownames + rownames(comparisonMatrix)=as.character(unlist(comparisonMatrix[,1])) + comparisonMatrix=comparisonMatrix[-1,-1] + + comparisonMatrix=matrix(as.numeric(as.matrix(comparisonMatrix)),ncol=ncol(comparisonMatrix),dimnames = dimnames(comparisonMatrix)) + + if (!is.numeric(comparisonMatrix)) { + addComment("[ERROR]Filtering matrix is not fully numeric!",T,opt$log,display=FALSE) + q( "no", 1, F ) + } + + if(expressionToCluster && length(setdiff(rownames(comparisonMatrix),rownames(expressionMatrix)))!=0){ + addComment("[WARNING]All genes from filtering file are not included in expression file",T,opt$log,display=FALSE) + } + + if(expressionToCluster && length(setdiff(rownames(expressionMatrix),rownames(comparisonMatrix)))!=0){ + addComment("[WARNING]All genes from expression file are not included in filtering file",T,opt$log,display=FALSE) + } + + addComment("[INFO]Filtering file loaded and checked",T,opt$log,display=FALSE) + addComment(c("[INFO]Dim of original filtering matrix:",dim(comparisonMatrix)),T,opt$log,display=FALSE) + + #restrict to user specified comparisons + restrictedComparisons=c() + if(!is.null(opt$comparisonNameLow))restrictedComparisons=unique(c(restrictedComparisons,unlist(strsplit(opt$comparisonNameLow,",")))) + if(!is.null(opt$comparisonNameHigh))restrictedComparisons=unique(c(restrictedComparisons,unlist(strsplit(opt$comparisonNameHigh,",")))) + + if (!all(restrictedComparisons%in%colnames(comparisonMatrix))){ + addComment("[ERROR]Selected columns in filtering file are not present in filtering matrix!",T,opt$log,display=FALSE) + q( "no", 1, F ) + } + comparisonMatrix=matrix(comparisonMatrix[,restrictedComparisons],ncol=length(restrictedComparisons),dimnames = list(rownames(comparisonMatrix),restrictedComparisons)) + + #get number of required comparisons + nbComparisons=ncol(comparisonMatrix) + + addComment(c("[INFO]Dim of effective filtering matrix:",dim(comparisonMatrix)),T,opt$log,display=FALSE) +} + + + +factorInfoMatrix=NULL +if(!is.null(opt$factorInfo)){ + #get group information + #load factors file + factorInfoMatrix=read.csv(file=opt$factorInfo,header=F,sep="\t",colClasses="character") + #remove first row to convert it as colnames + colnames(factorInfoMatrix)=factorInfoMatrix[1,] + factorInfoMatrix=factorInfoMatrix[-1,] + #use first colum to convert it as rownames but not removing it to avoid conversion as vector in unique factor case + rownames(factorInfoMatrix)=factorInfoMatrix[,1] + + factorBarColor=colnames(factorInfoMatrix)[2] + + if(ncol(factorInfoMatrix)>2){ + addComment("[ERROR]Factors file should not contain more than 2 columns",T,opt$log,display=FALSE) + q( "no", 1, F ) + } + + #factor file is used for color band on heatmap, so all expression matrix column should be in the factor file + if(expressionToCluster && length(setdiff(colnames(expressionMatrix),rownames(factorInfoMatrix)))!=0){ + addComment("[ERROR]Missing samples in factor file",T,opt$log,display=FALSE) + q( "no", 1, F ) + } + + #factor file is used for color band on heatmap, so all comparison matrix column should be in the factor file + if(!expressionToCluster && length(setdiff(colnames(comparisonMatrix),rownames(factorInfoMatrix)))!=0){ + addComment("[ERROR]Missing differential contrasts in factor file",T,opt$log,display=FALSE) + q( "no", 1, F ) + } + + addComment("[INFO]Factors OK",T,opt$log,display=FALSE) + addComment(c("[INFO]Dim of factorInfo matrix:",dim(factorInfoMatrix)),T,opt$log,display=FALSE) +} + +if(!is.null(opt$personalColors)){ + ##parse personal colors + personalColors=unlist(strsplit(opt$personalColors,",")) + if(length(personalColors)==2){ + ##add medium color between two to get three colors + personalColors=c(personalColors[1],paste(c("#",as.character(as.hexmode(floor(apply(col2rgb(personalColors),1,mean))))),collapse=""),personalColors[2]) + } + if(length(personalColors)!=3){ + addComment("[ERROR]Personalized colors doesn't contain enough colors",T,opt$log,display=FALSE) + q( "no", 1, F ) + } + +} + + +if(!is.null(opt$filterInputOutput) && opt$filterInputOutput=="input"){ + #filter input data + + if(is.null(opt$geneListFiltering)){ + #filtering using stat thresholds + #rowToKeep=intersect(which(comparisonMatrix[,seq(2,ncol(comparisonMatrix),4)]<=opt$pvalThreshold),which(abs(comparisonMatrix[,seq(4,ncol(comparisonMatrix),4)])>=log2(opt$FCthreshold))) + if(is.null(opt$genericData)){ + #diff. expression matrix + rowToKeep=names(which(unlist(apply(comparisonMatrix,1,function(x)length(intersect(which(x[seq(2,length(x),nbColPerContrast)]<opt$pvalThreshold),which(abs(x[seq(4,length(x),nbColPerContrast)])>log2(opt$FCthreshold))))!=0)))) + }else{ + #generic filtering matrix + rowToKeep=rownames(comparisonMatrix) + if(!is.null(opt$comparisonNameLow)){ + restrictedLowComparisons=unlist(strsplit(opt$comparisonNameLow,",")) + rowToKeep=intersect(rowToKeep,names(which(unlist(apply(comparisonMatrix,1,function(x)length(which(x[restrictedLowComparisons]>opt$FCthreshold))!=0))))) + } + if(!is.null(opt$comparisonNameHigh)){ + restrictedHighComparisons=unlist(strsplit(opt$comparisonNameHigh,",")) + rowToKeep=intersect(rowToKeep,names(which(unlist(apply(comparisonMatrix,1,function(x)length(which(x[restrictedHighComparisons]<opt$pvalThreshold))!=0))))) + } + } + }else{ + #filtering using user gene list + geneListFiltering=read.csv(opt$geneListFiltering,as.is = 1,header=F) + rowToKeep=unlist(c(geneListFiltering)) + } + + if(!is.null(comparisonMatrix) && !all(rowToKeep%in%rownames(comparisonMatrix))){ + #should arrive only with user gene list filtering with diff.exp. results clustering + addComment("[WARNING] some genes of the user defined list are not in the diff. exp. input file",T,opt$log) + rowToKeep=intersect(rowToKeep,rownames(comparisonMatrix)) + } + + if(expressionToCluster && !all(rowToKeep%in%rownames(expressionMatrix))){ + addComment("[WARNING] some genes selected by the input filter are not in the expression file",T,opt$log) + rowToKeep=intersect(rowToKeep,rownames(expressionMatrix)) + } + + if(length(rowToKeep)==0){ + addComment("[ERROR]No gene survived to the input filtering thresholds, execution will be aborted. + Please consider to change threshold values and re-run the tool.",T,opt$log) + q( "no", 1, F ) + } + + #filter comparison matrix + if(!is.null(comparisonMatrix)){ + comparisonMatrix=matrix(comparisonMatrix[rowToKeep,],ncol=ncol(comparisonMatrix),dimnames = list(rowToKeep,colnames(comparisonMatrix))) + if(!is.null(comparisonMatrixInfoGene))comparisonMatrixInfoGene=comparisonMatrixInfoGene[rowToKeep] + } + #then expression matrix + if(expressionToCluster)expressionMatrix=matrix(expressionMatrix[rowToKeep,],ncol=ncol(expressionMatrix),dimnames = list(rowToKeep,colnames(expressionMatrix))) + + if(!is.null(comparisonMatrix) && expressionToCluster && nrow(comparisonMatrix)!=nrow(expressionMatrix)){ + addComment("[ERROR]Problem during input filtering, please check code",T,opt$log,display=FALSE) + q( "no", 1, F ) + } + + addComment("[INFO]Filtering step done",T,opt$log,display=FALSE) + addComment(c("[INFO]Input filtering step:",length(rowToKeep),"remaining rows"),T,opt$log,display=FALSE) +} + + +addComment("[INFO]Ready to plot",T,opt$log,display=FALSE) + +##--------------------- + +#plot heatmap +if(expressionToCluster){ + #will make clustering based on expression value or generic value + dataToHeatMap=expressionMatrix + valueMeaning="Intensity" + if(!is.null(opt$genericData))valueMeaning="Value" +}else{ + #will make clustering on log2(FC) values + dataToHeatMap=matrix(comparisonMatrix[,seq(4,ncol(comparisonMatrix),nbColPerContrast)],ncol=nbComparisons,dimnames = list(rownames(comparisonMatrix),colnames(comparisonMatrix)[seq(1,ncol(comparisonMatrix),nbColPerContrast)])) + valueMeaning="Log2(FC)" +} +addComment(c("[INFO]Dim of heatmap matrix:",dim(dataToHeatMap)),T,opt$log,display=FALSE) + +if(nrow(dataToHeatMap)==1 && ncol(dataToHeatMap)==1){ + addComment("[ERROR]Cannot make clustering with unique cell tab",T,opt$log,display=FALSE) + q( "no", 1, F ) +} + + +#apply data transformation if needed +if(opt$dataTransformation=="log"){ + dataToHeatMap=log(dataToHeatMap) + valueMeaning=paste(c("log(",valueMeaning,")"),collapse="") + addComment("[INFO]Data to cluster and to display in the heatmap are log transformed",T,opt$log,display=FALSE) +} +if(opt$dataTransformation=="log2"){ + dataToHeatMap=log2(dataToHeatMap) + valueMeaning=paste(c("log2(",valueMeaning,")"),collapse="") + addComment("[INFO]Data to cluster and to display in the heatmap are log2 transformed",T,opt$log,display=FALSE) +} + +maxRowsToDisplay=opt$maxRows + +nbClusters=opt$clusterNumber +if(nbClusters>nrow(dataToHeatMap)){ + #correct number of clusters if needed + nbClusters=nrow(dataToHeatMap) + addComment(c("[WARNING]Not enough rows to reach required clusters number, it is reduced to number of rows:",nbClusters),T,opt$log,display=FALSE) +} + +nbSampleClusters=opt$sampleClusterNumber +if(nbSampleClusters>ncol(dataToHeatMap)){ + #correct number of clusters if needed + nbSampleClusters=ncol(dataToHeatMap) + addComment(c("[WARNING]Not enough columns to reach required conditions clusters number, it is reduced to number of columns:",nbSampleClusters),T,opt$log,display=FALSE) +} + +colClust=FALSE +rowClust=FALSE +effectiveRowClust=FALSE + +#make appropriate clustering if needed +if(nrow(dataToHeatMap)>1 && nbClusters>1)rowClust=hclust(distExtended(dataToHeatMap,method = opt$distanceMeasure),method = opt$aggloMethod) +if(ncol(dataToHeatMap)>1 && nbSampleClusters>1)colClust=hclust(distExtended(t(dataToHeatMap),method = opt$distanceMeasure),method = opt$aggloMethod) + +if(nrow(dataToHeatMap)>maxRowsToDisplay){ + #make subsampling based on preliminary global clustering + #clusteringResults=cutree(rowClust,nbClusters) + #heatMapGenesToKeep=unlist(lapply(seq(1,nbClusters),function(x)sample(which(clusteringResults==x),min(length(which(clusteringResults==x)),round(maxRowsToDisplay/nbClusters))))) + ##OR + #basic subsampling + heatMapGenesToKeep=sample(rownames(dataToHeatMap),maxRowsToDisplay) + effectiveDataToHeatMap=matrix(dataToHeatMap[heatMapGenesToKeep,],ncol=ncol(dataToHeatMap),dimnames=list(heatMapGenesToKeep,colnames(dataToHeatMap))) + effectiveNbClusters=min(nbClusters,maxRowsToDisplay) + if(nrow(effectiveDataToHeatMap)>1 && effectiveNbClusters>1)effectiveRowClust=hclust(distExtended(effectiveDataToHeatMap, method = opt$distanceMeasure),method = opt$aggloMethod) + addComment(c("[WARNING]Too many rows for efficient heatmap drawing",maxRowsToDisplay,"subsampling is done for vizualization only"),T,opt$log,display=FALSE) + rm(heatMapGenesToKeep) +}else{ + effectiveDataToHeatMap=dataToHeatMap + effectiveRowClust=rowClust + effectiveNbClusters=nbClusters +} + +addComment(c("[INFO]Dim of plotted heatmap matrix:",dim(effectiveDataToHeatMap)),T,opt$log,display=FALSE) + +personalized_hoverinfo=matrix("",ncol = ncol(effectiveDataToHeatMap),nrow = nrow(effectiveDataToHeatMap),dimnames = dimnames(effectiveDataToHeatMap)) +if(expressionToCluster){ + for(iCol in colnames(effectiveDataToHeatMap)){for(iRow in rownames(effectiveDataToHeatMap)){personalized_hoverinfo[iRow,iCol]=paste(c("Probe: ",iRow,"\nCondition: ",iCol,"\n",valueMeaning,": ",effectiveDataToHeatMap[iRow,iCol]),collapse="")}} +}else{ + for(iCol in colnames(effectiveDataToHeatMap)){for(iRow in rownames(effectiveDataToHeatMap)){personalized_hoverinfo[iRow,iCol]=paste(c("Probe: ",iRow,"\nCondition: ",iCol,"\nFC: ",round(2^effectiveDataToHeatMap[iRow,iCol],2)),collapse="")}} +} + +#trying to overcome limitation of heatmaply package to modify xtick and ytick label, using directly plotly functions, but for now plotly do not permit to have personalized color for each x/y tick separately +test=FALSE +if(test==TRUE){ + + #define dendogram shapes + dd.row <- as.dendrogram(effectiveRowClust) + dd.col <- as.dendrogram(colClust) + + #and color them + dd.row=color_branches(dd.row, k = effectiveNbClusters, groupLabels = T) + dd.col=color_branches(dd.col, k = nbSampleClusters, groupLabels = T) + + #generating function for dendogram from segment list + ggdend <- function(df) { + ggplot() + + geom_segment(data = df, aes(x=x, y=y, xend=xend, yend=yend)) + + labs(x = "", y = "") + theme_minimal() + + theme(axis.text = element_blank(), axis.ticks = element_blank(), + panel.grid = element_blank()) + } + + # generate x/y dendogram plots + px <- ggdend(dendro_data(dd.col)$segments) + py <- ggdend(dendro_data(dd.row)$segments) + coord_flip() + + # reshape data matrix + col.ord <- order.dendrogram(dd.col) + row.ord <- order.dendrogram(dd.row) + xx <- effectiveDataToHeatMap[row.ord, col.ord] + # and also personalized_hoverinfo + personalized_hoverinfo=personalized_hoverinfo[row.ord, col.ord] + + # hide axis ticks and grid lines + eaxis <- list( + showticklabels = FALSE, + showgrid = FALSE, + zeroline = FALSE + ) + + #make the empty plot + p_empty <- plot_ly() %>% + layout(margin = list(l = 200), + xaxis = eaxis, + yaxis = eaxis) + + heatmap.plotly <- plot_ly( + z = xx, x = 1:ncol(xx), y = 1:nrow(xx), colors = viridis(n = 101, alpha = 1, begin = 0, end = 1, option = "inferno"), + type = "heatmap", showlegend = FALSE, text = personalized_hoverinfo, hoverinfo = "text", + colorbar = list( + # Capitalise first letter + title = valueMeaning, + tickmode = "array", + len = 0.3 + ) + ) %>% + layout( + xaxis = list( + tickfont = list(size = 10,color=get_leaves_branches_col(dd.row)), + tickangle = 45, + tickvals = 1:ncol(xx), ticktext = colnames(xx), + linecolor = "#ffffff", + range = c(0.5, ncol(xx) + 0.5), + showticklabels = TRUE + ), + yaxis = list( + tickfont = list(size = 10, color=get_leaves_branches_col(dd.col)), + tickangle = 0, + tickvals = 1:nrow(xx), ticktext = rownames(xx), + linecolor = "#ffffff", + range = c(0.5, nrow(xx) + 0.5), + showticklabels = TRUE + ) + ) + + #generate plotly + pp <- subplot(px, p_empty, heatmap.plotly, py, nrows = 2, margin = 0,widths = c(0.8,0.2),heights = c(0.2,0.8), shareX = TRUE, + shareY = TRUE) + + #save image file + export(pp, file = paste(c(file.path(getwd(), "plotDir"),"/Heatmap.",opt$format),collapse="")) + #rise a bug due to token stuf + #orca(pp, file = paste(c(file.path(getwd(), "plotDir"),"/Heatmap.",opt$format),collapse="")) + + + #save plotLy file + htmlwidgets::saveWidget(as_widget(pp), paste(c(file.path(getwd(), "plotLyDir"),"/Heatmap.html"),collapse=""),selfcontained = F) + + #htmlwidgets::saveWidget(as_widget(pp),"~/Bureau/test.html",selfcontained = F) + +}else{ #test + label_names=c("Probe","Condition",valueMeaning) + + # #color hclust objects + # dd.row=color_branches(effectiveRowClust, k = effectiveNbClusters) + # #rowColors=get_leaves_branches_col(dd.row) + # #rowColors[order.dendrogram(dd.row)]=rowColors + # rowGroup=cutree(effectiveRowClust, k = effectiveNbClusters) + # + # #get order of class as they will be displayed on the dendogram + # rowGroupRenamed=data.frame(cluster=mapvalues(rowGroup, unique(rowGroup[order.dendrogram(dd.row)[nleaves(dd.row):1]]), 1:effectiveNbClusters)) + # + # dd.col=color_branches(colClust, k = nbSampleClusters) + # #colColors=get_leaves_branches_col(dd.col) + # #colColors[order.dendrogram(dd.col)]=colColors + # colGroup=cutree(colClust, k = nbSampleClusters) + # + # # #get order of class as they will be displayed on the dendogram + # colGroupRenamed=data.frame(sampleCluster=mapvalues(colGroup, unique(colGroup[order.dendrogram(dd.col)[nleaves(dd.col):1]]), 1:nbSampleClusters)) + + + #while option is not correctly managed by heatmap apply, put personalized_hoverinfo to NULL + personalized_hoverinfo=NULL + + if(is.null(opt$personalColors)){ + heatmapColors=viridis(n = 101, alpha = 1, begin = 0, end = 1, option = "inferno") + }else{ + heatmapColors=personalColors + } + + colGroupRenamed=NULL + if(!is.null(factorInfoMatrix)){ + colGroupRenamed=eval(parse(text=(paste("data.frame(",factorBarColor,"=factorInfoMatrix[colnames(effectiveDataToHeatMap),2])",sep="")))) + sideBarGroupNb=length(table(factorInfoMatrix[colnames(effectiveDataToHeatMap),2])) + sideBarColorPaletteName="Spectral" + if(!is.null(opt$sideBarColorPalette) && opt$sideBarColorPalette%in%rownames(RColorBrewer::brewer.pal.info)){ + sideBarColorPaletteName=opt$sideBarColorPalette + } + sideBarColorPalette=setNames(colorRampPalette(RColorBrewer::brewer.pal(RColorBrewer::brewer.pal.info[sideBarColorPaletteName,"maxcolors"], sideBarColorPaletteName))(sideBarGroupNb),unique(factorInfoMatrix[colnames(effectiveDataToHeatMap),2])) + } + + if(!is.null(colGroupRenamed)){ + pp <- heatmaply(effectiveDataToHeatMap,key.title = valueMeaning,k_row=effectiveNbClusters,k_col=nbSampleClusters,col_side_colors=colGroupRenamed,col_side_palette=sideBarColorPalette,Rowv=effectiveRowClust,Colv=colClust,label_names=label_names,custom_hovertext=personalized_hoverinfo,plot_method = "plotly",colors = heatmapColors) + }else{ + pp <- heatmaply(effectiveDataToHeatMap,key.title = valueMeaning,k_row=effectiveNbClusters,k_col=nbSampleClusters,Rowv=effectiveRowClust,Colv=colClust,label_names=label_names,custom_hovertext=personalized_hoverinfo,plot_method = "plotly",colors = heatmapColors) + } + + + #save image file + export(pp, file = paste(c(file.path(getwd(), "plotDir"),"/Heatmap.",opt$format),collapse="")) + #rise a bug due to token stuf + #orca(pp, file = paste(c(file.path(getwd(), "plotDir"),"/Heatmap.",opt$format),collapse="")) + + + #save plotLy file + htmlwidgets::saveWidget(as_widget(pp), paste(c(file.path(getwd(), "plotLyDir"),"/Heatmap.html"),collapse=""),selfcontained = F) + +} +addComment("[INFO]Heatmap drawn",T,opt$log,display=FALSE) + + +#plot circular heatmap +if(!class(effectiveRowClust)=="logical"){ + dendo=as.dendrogram(effectiveRowClust) + + if(is.null(opt$personalColors)){ + col_fun = colorRamp2(quantile(effectiveDataToHeatMap,probs = seq(0,1,0.01)), viridis(101,option = "inferno")) + }else{ + col_fun = colorRamp2(quantile(effectiveDataToHeatMap,probs = seq(0,1,0.5)), personalColors) + } + + if(opt$format=="pdf"){ + pdf(paste(c("./plotDir/circularPlot.pdf"),collapse=""))}else{ + png(paste(c("./plotDir/circularPlot.png"),collapse="")) + } + + circos.par(cell.padding = c(0, 0, 0, 0), gap.degree = 5) + circos.initialize(c(rep("a",nrow(effectiveDataToHeatMap)),"b"),xlim=cbind(c(0,0),c(nrow(effectiveDataToHeatMap),5))) + circos.track(ylim = c(0, 1), bg.border = NA, panel.fun = function(x, y) { + if(CELL_META$sector.index=="a"){ + nr = ncol(effectiveDataToHeatMap) + nc = nrow(effectiveDataToHeatMap) + circos.text(1:nc- 0.5, rep(0,nc), adj = c(0, 0), + rownames(effectiveDataToHeatMap)[order.dendrogram(dendo)], facing = "clockwise", niceFacing = TRUE, cex = 0.3) + } + }) + + circos.track(ylim = c(0, ncol(effectiveDataToHeatMap)), bg.border = NA, panel.fun = function(x, y) { + + m = t(matrix(effectiveDataToHeatMap[order.dendrogram(dendo),],ncol=ncol(effectiveDataToHeatMap))) + col_mat = col_fun(m) + nr = nrow(m) + nc = ncol(m) + if(CELL_META$sector.index=="a"){ + for(i in 1:nr) { + circos.rect(1:nc - 1, rep(nr - i, nc), + 1:nc, rep(nr - i + 1, nc), + border = col_mat[i, ], col = col_mat[i, ]) + } + }else{ + circos.text(rep(1,nr), seq(nr,1,-1) , colnames(effectiveDataToHeatMap),cex = 0.3) + } + }) + + #dendo = color_branches(dendo, k = effectiveNbClusters, col = colorRampPalette(brewer.pal(12,"Set3"))(effectiveNbClusters)) + dendo = color_branches(dendo, k = effectiveNbClusters, col = rev(colorspace::rainbow_hcl(effectiveNbClusters))) + + + circos.track(ylim = c(0, attributes(dendo)$height), bg.border = NA, track.height = 0.25, + panel.fun = function(x, y) { + if(CELL_META$sector.index=="a")circos.dendrogram(dendo)} ) + + circos.clear() + ##add legend + lgd_links = Legend(at = seq(ceiling(min(effectiveDataToHeatMap)),floor(max(effectiveDataToHeatMap)),ceiling((floor(max(effectiveDataToHeatMap))-ceiling(min(effectiveDataToHeatMap)))/4)), col_fun = col_fun, + title_position = "topleft", grid_width = unit(5, "mm") ,title = valueMeaning) + + pushViewport(viewport(x = 0.85, y = 0.80, + width = 0.1, + height = 0.1, + just = c("left", "bottom"))) + grid.draw(lgd_links) + upViewport() + + + dev.off() + + addComment("[INFO]Circular heatmap drawn",T,opt$log,display=FALSE) + loc <- Sys.setlocale("LC_NUMERIC","C") +}else{ + addComment(c("[WARNING]Circular plot will not be plotted considering row or cluster number < 2"),T,opt$log,display=FALSE) +} +rm(effectiveDataToHeatMap,effectiveRowClust,effectiveNbClusters) + +#plot screeplot +if(class(rowClust)!="logical" && nrow(dataToHeatMap)>2){ + screePlotData=c() + for(iNbClusters in 2:(nbClusters+min(10,max(0,nrow(dataToHeatMap)-nbClusters)))){ + clusteringResults=cutree(rowClust,iNbClusters) + #clusteringResults=kmeans(dataToHeatMap,iNbClusters)$cluster + + #compute variance between each intra-class points amongst themselves (need at least 3 points by cluster) + #screePlotData=c(screePlotData,sum(unlist(lapply(seq(1,iNbClusters),function(x){temp=which(clusteringResults==x);if(length(temp)>2){var(dist(dataToHeatMap[temp,]))}else{0}}))) ) + #compute variance between each intra-class points and fictive mean point (need at least 2 points by cluster) + #screePlotData=c(screePlotData,sum(unlist(lapply(seq(1,iNbClusters),function(x){temp=which(clusteringResults==x);if(length(temp)>1){ var(dist(rbind(apply(dataToHeatMap[temp,],2,mean),dataToHeatMap[temp,]))[1:length(temp)]) }else{0}}))) ) + if(ncol(dataToHeatMap)>1)screePlotData=c(screePlotData,sum(unlist(lapply(seq(1,iNbClusters),function(x){temp=which(clusteringResults==x);if(length(temp)>1){ sum((distExtended(rbind(apply(dataToHeatMap[temp,],2,mean),dataToHeatMap[temp,]),method = opt$distanceMeasure)[1:length(temp)])^2) }else{0}}))) ) + else screePlotData=c(screePlotData,sum(unlist(lapply(seq(1,iNbClusters),function(x){temp=which(clusteringResults==x);if(length(temp)>1){ sum((dataToHeatMap[temp,]-mean(dataToHeatMap[temp,]))^2) }else{0}}))) ) + } + + dataToPlot=data.frame(clusterNb=seq(2,length(screePlotData)+1),wcss=screePlotData) + p <- ggplot(data=dataToPlot, aes(clusterNb,wcss)) + geom_point(colour="#EE4444") + geom_line(colour="#DD9999") + + ggtitle("Scree plot") + theme_bw() + xlab(label="Cluster number") + ylab(label="Within cluster sum of squares") + + theme(panel.border=element_blank(),plot.title = element_text(hjust = 0.5),legend.position = "none") + + scale_x_continuous(breaks=seq(min(dataToPlot$clusterNb), max(dataToPlot$clusterNb), 1)) + + #save plotly files + pp <- ggplotly(p) + + if(opt$format=="pdf"){ + pdf(paste(c("./plotDir/screePlot.pdf"),collapse=""))}else{ + png(paste(c("./plotDir/screePlot.png"),collapse="")) + } + plot(p) + dev.off() + + #save plotly files + htmlwidgets::saveWidget(as_widget(pp), paste(c(file.path(getwd(), "plotLyDir"),"/screePlot.html"),collapse=""),selfcontained = F) + + addComment("[INFO]Scree plot drawn",T,opt$log,display=FALSE) +}else{ + addComment(c("[WARNING]Scree plot will not be plotted considering row number <= 2"),T,opt$log,display=FALSE) +} + +##---------------------- + +#filter output based on parameters + +rowToKeep=rownames(dataToHeatMap) +if(!is.null(opt$filterInputOutput) && opt$filterInputOutput=="output"){ + #rowToKeep=intersect(which(comparisonMatrix[,seq(2,ncol(comparisonMatrix),4)]<=opt$pvalThreshold),which(abs(comparisonMatrix[,seq(4,ncol(comparisonMatrix),4)])>=log2(opt$FCthreshold))) + if(is.null(opt$geneListFiltering)){ + if(is.null(opt$genericData)){ + #diff. expression matrix + rowToKeep=names(which(unlist(apply(comparisonMatrix,1,function(x)length(intersect(which(x[seq(2,length(x),nbColPerContrast)]<=opt$pvalThreshold),which(abs(x[seq(4,length(x),nbColPerContrast)])>=log2(opt$FCthreshold))))!=0)))) + }else{ + #generic filtering matrix + rowToKeep=rownames(comparisonMatrix) + if(!is.null(opt$comparisonNameLow)){ + restrictedLowComparisons=unlist(strsplit(opt$comparisonNameLow,",")) + rowToKeep=intersect(rowToKeep,names(which(unlist(apply(comparisonMatrix,1,function(x)length(which(x[restrictedLowComparisons]>opt$FCthreshold))!=0))))) + } + if(!is.null(opt$comparisonNameHigh)){ + restrictedHighComparisons=unlist(strsplit(opt$comparisonNameHigh,",")) + rowToKeep=intersect(rowToKeep,names(which(unlist(apply(comparisonMatrix,1,function(x)length(which(x[restrictedHighComparisons]<opt$pvalThreshold))!=0))))) + } + } + }else{ + geneListFiltering=read.csv(opt$geneListFiltering,as.is = 1,header=F) + rowToKeep=unlist(c(geneListFiltering)) + } + if(!is.null(comparisonMatrix) && !all(rowToKeep%in%rownames(comparisonMatrix))){ + #should arrive only with user gene list filtering with diff.exp. results clustering + addComment("[WARNING] some genes of the user defined list are not in the diff. exp. input file",T,opt$log) + rowToKeep=intersect(rowToKeep,rownames(comparisonMatrix)) + } + + if(expressionToCluster && !all(rowToKeep%in%rownames(expressionMatrix))){ + addComment("[WARNING] some genes selected by the output filter are not in the expression file",T,opt$log) + rowToKeep=intersect(rowToKeep,rownames(expressionMatrix)) + } + addComment(c("[INFO]Output filtering step:",length(rowToKeep),"remaining rows"),T,opt$log,display=FALSE) +} + +#we add differential analysis info in output if it was directly used for clustering or when it was used for filtering with expression + +#in case of expression or generic data clustering without filtering based on external stats +if(expressionToCluster && is.null(comparisonMatrix)){ + if(length(rowToKeep)==0){ + addComment("[WARNING]No more gene after output filtering step, tabular output will be empty",T,opt$log,display=FALSE) + outputData=matrix(c("Gene","Cluster","noGene","noClustering"),ncol=2,nrow=2,byrow = TRUE) + }else{ + outputData=matrix(0,ncol=2,nrow=length(rowToKeep)+1) + outputData[1,]=c("Gene","Cluster") + outputData[2:(length(rowToKeep)+1),1]=rowToKeep + if(class(rowClust)!="logical" ){ + outputData[2:(length(rowToKeep)+1),2]=cutree(rowClust,nbClusters)[rowToKeep] + }else{ + outputData[2:(length(rowToKeep)+1),2]=0 + } + } +} + +#in case of generic data clustering with filtering based on generic external data +if(!is.null(opt$genericData) && !is.null(comparisonMatrix)){ + if(length(rowToKeep)==0){ + addComment("[WARNING]No more gene after output filtering step, tabular output will be empty",T,opt$log,display=FALSE) + outputData=matrix(c("Gene","Cluster","noGene","noClustering"),ncol=2,nrow=2,byrow = TRUE) + }else{ + outputData=matrix(0,ncol=2+nbComparisons,nrow=length(rowToKeep)+1) + outputData[1,]=c("Gene","Cluster",colnames(comparisonMatrix)) + outputData[2:(length(rowToKeep)+1),1]=rowToKeep + if(class(rowClust)!="logical" ){ + outputData[2:(length(rowToKeep)+1),2]=cutree(rowClust,nbClusters)[rowToKeep] + }else{ + outputData[2:(length(rowToKeep)+1),2]=0 + } + outputData[2:(length(rowToKeep)+1),3:(ncol(comparisonMatrix)+2)]=prettyNum(comparisonMatrix[rowToKeep,],digits=4) + } +} + +#in case of expression data clustering with filtering based on diff. exp. results or diff. exp. results clustering +if(is.null(opt$genericData) && !is.null(comparisonMatrix)){ + if(length(rowToKeep)==0){ + addComment("[WARNING]No more gene after output filtering step, tabular output will be empty",T,opt$log,display=FALSE) + outputData=matrix(0,ncol=3,nrow=3) + outputData[1,]=c("","","Comparison") + outputData[2,]=c("Gene","Info","Cluster") + outputData[3,]=c("noGene","noInfo","noClustering") + }else{ + outputData=matrix(0,ncol=3+nbComparisons*nbColPerContrast,nrow=length(rowToKeep)+2) + outputData[1,]=c("","","Comparison",rep(colnames(comparisonMatrix)[seq(1,ncol(comparisonMatrix),nbColPerContrast)],each=nbColPerContrast)) + outputData[2,]=c("Gene","Info","Cluster",rep(c("p-val","FDR.p-val","FC","log2(FC)","t-stat"),nbComparisons)) + outputData[3:(length(rowToKeep)+2),1]=rowToKeep + outputData[3:(length(rowToKeep)+2),2]=comparisonMatrixInfoGene[rowToKeep] + if(class(rowClust)!="logical" ){ + outputData[3:(length(rowToKeep)+2),3]=cutree(rowClust,nbClusters)[rowToKeep] + }else{ + outputData[3:(length(rowToKeep)+2),3]=0 + } + outputData[3:(length(rowToKeep)+2),4:(ncol(comparisonMatrix)+3)]=prettyNum(comparisonMatrix[rowToKeep,],digits=4) + } +} + +addComment("[INFO]Formated output",T,opt$log,display=FALSE) +write.table(outputData,file=opt$outputFile,quote=FALSE,sep="\t",col.names = F,row.names = F) + +##---------------------- + +end.time <- Sys.time() +addComment(c("[INFO]Total execution time for R script:",as.numeric(end.time - start.time,units="mins"),"mins"),T,opt$log,display=FALSE) + + +addComment("[INFO]End of R script",T,opt$log,display=FALSE) + +printSessionInfo(opt$log) + +#sessionInfo() + + +