Mercurial > repos > vandelj > giant_plot_functions
view src/ExprPlotsScript.R @ 0:488e6e8bb8cb draft
"planemo upload for repository https://github.com/juliechevalier/GIANT/tree/master commit cb276a594444c8f32e9819fefde3a21f121d35df"
author | vandelj |
---|---|
date | Fri, 26 Jun 2020 09:41:56 -0400 |
parents | |
children |
line wrap: on
line source
# A command-line interface to basic plots for use with Galaxy # written by Jimmy Vandel # one of these arguments is required: # # initial.options <- commandArgs(trailingOnly = FALSE) file.arg.name <- "--file=" script.name <- sub(file.arg.name, "", initial.options[grep(file.arg.name, initial.options)]) script.basename <- dirname(script.name) source(file.path(script.basename, "utils.R")) source(file.path(script.basename, "getopt.R")) #addComment("Welcome R!") # setup R error handling to go to stderr options( show.error.messages=F, error = function () { cat(geterrmessage(), file=stderr() ); q( "no", 1, F ) } ) # we need that to not crash galaxy with an UTF8 error on German LC settings. loc <- Sys.setlocale("LC_MESSAGES", "en_US.UTF-8") loc <- Sys.setlocale("LC_NUMERIC", "C") #get starting time start.time <- Sys.time() #get options options(stringAsfactors = FALSE, useFancyQuotes = FALSE) args <- commandArgs() # get options, using the spec as defined by the enclosed list. # we read the options from the default: commandArgs(TRUE). spec <- matrix(c( "dataFile", "i", 1, "character", "factorInfo","t", 1, "character", "dataFileFormat","j",1,"character", "conditionNames","c",1,"character", "format", "f", 1, "character", "quiet", "q", 0, "logical", "log", "l", 1, "character", "histo" , "h", 1, "character", "maPlot" , "a", 1, "character", "boxplot" , "b", 1, "character", "microarray" , "m", 1, "character", "acp" , "p" , 1, "character", "screePlot" , "s" , 1, "character"), byrow=TRUE, ncol=4) opt <- getopt(spec) # enforce the following required arguments if (is.null(opt$log)) { addComment("[ERROR]'log file' is required") q( "no", 1, F ) } addComment("[INFO]Start of R script",T,opt$log,display=FALSE) if (is.null(opt$dataFile) || is.null(opt$dataFileFormat)) { addComment("[ERROR]'dataFile' and it format are required",T,opt$log) q( "no", 1, F ) } if (is.null(opt$format)) { addComment("[ERROR]'output format' is required",T,opt$log) q( "no", 1, F ) } if (is.null(opt$histo) & is.null(opt$maPlot) & is.null(opt$boxplot) & is.null(opt$microarray) & is.null(opt$acp)){ addComment("[ERROR]Select at least one plot to draw",T,opt$log) q( "no", 1, F ) } verbose <- if (is.null(opt$quiet)) { TRUE }else{ FALSE} addComment("[INFO]Parameters checked!",T,opt$log,display=FALSE) addComment(c("[INFO]Working directory: ",getwd()),TRUE,opt$log,display=FALSE) addComment(c("[INFO]Command line: ",args),TRUE,opt$log,display=FALSE) #directory for plots dir.create(file.path(getwd(), "plotDir")) dir.create(file.path(getwd(), "plotLyDir")) #silent package loading suppressPackageStartupMessages({ library("oligo") library("ff") library("ggplot2") library("plotly") }) #chargement des fichiers en entrée #fichier de type CEL dataAreFromCel=FALSE if(toupper(opt$dataFileFormat)=="CEL"){ dataAreFromCel=TRUE celData=read.celfiles(unlist(strsplit(opt$dataFile,","))) #load all expressions dataMatrix=exprs(celData) #select "pm" probes probeInfo=getProbeInfo(celData,probeType = c("pm"),target="probeset") #reduce dataMatrix to log expression matrix for a randomly probe selection dataMatrix=log2(dataMatrix[sample(unique(probeInfo[,1]),min(100000,length(unique(probeInfo[,1])))),]) addComment("[INFO]Raw data are log2 transformed",TRUE,opt$log,display=FALSE) remove(probeInfo) }else{ #fichier deja tabule dataMatrix=read.csv(file=opt$dataFile,header=F,sep="\t",colClasses="character") #remove first row to convert it as colnames (to avoid X before colnames with header=T) colNamesData=dataMatrix[1,-1] dataMatrix=dataMatrix[-1,] #remove first colum to convert it as rownames rowNamesData=dataMatrix[,1] dataMatrix=dataMatrix[,-1] if(is.data.frame(dataMatrix)){ dataMatrix=data.matrix(dataMatrix) }else{ dataMatrix=data.matrix(as.numeric(dataMatrix)) } dimnames(dataMatrix)=list(rowNamesData,colNamesData) if(any(duplicated(rowNamesData)))addComment("[WARNING] several rows share the same probe/gene name, you should merge or rename them to avoid further analysis mistakes",TRUE,opt$log,display=FALSE) } addComment("[INFO]Input data loaded",TRUE,opt$log,display=FALSE) addComment(c("[INFO]Dim of data matrix:",dim(dataMatrix)),T,opt$log,display=FALSE) #get number of conditions nbConditions=ncol(dataMatrix) #get condition names if they are specified if(!is.null(opt$conditionNames) && length(opt$conditionNames)==nbConditions){ nameConditions=opt$conditionNames colnames(dataMatrix)=nameConditions #rownames(phenoData(celData)@data)=nameConditions #rownames(protocolData(celData)@data)=nameConditions }else{ nameConditions=colnames(dataMatrix) } #create a correspondance table between plot file names and name displayed in figure legend and html items correspondanceNameTable=matrix("",ncol=2,nrow=nbConditions) correspondanceNameTable[,1]=paste("Condition",1:nbConditions,sep="") correspondanceNameTable[,2]=nameConditions rownames(correspondanceNameTable)=correspondanceNameTable[,2] addComment("[INFO]Retreive condition names",TRUE,opt$log,display=FALSE) if(!is.null(opt$factorInfo)){ #chargement du fichier des facteurs factorInfoMatrix=read.csv(file=file.path(getwd(), opt$factorInfo),header=F,sep="\t",colClasses="character") #remove first row to convert it as colnames colnames(factorInfoMatrix)=factorInfoMatrix[1,] factorInfoMatrix=factorInfoMatrix[-1,] #use first colum to convert it as rownames but not removing it to avoid conversion as vector in unique factor case rownames(factorInfoMatrix)=factorInfoMatrix[,1] if(length(setdiff(colnames(dataMatrix),rownames(factorInfoMatrix)))!=0){ addComment("[ERROR]Missing samples in factor file",T,opt$log) q( "no", 1, F ) } #order sample as in expression matrix and remove spurious sample factorInfoMatrix=factorInfoMatrix[colnames(dataMatrix),] addComment("[INFO]Factors OK",T,opt$log,display=FALSE) addComment(c("[INFO]Dim of factorInfo matrix:",dim(factorInfoMatrix)),T,opt$log,display=FALSE) } addComment("[INFO]Ready to plot",T,opt$log,display=FALSE) ##---------------------- ###plot histograms### histogramPerFigure=50 if (!is.null(opt$histo)) { for(iToPlot in 1:(((nbConditions-1)%/%histogramPerFigure)+1)){ firstPlot=1+histogramPerFigure*(iToPlot-1) lastPlot=min(nbConditions,histogramPerFigure*iToPlot) dataToPlot=data.frame(x=c(dataMatrix[,firstPlot:lastPlot]),Experiment=rep(colnames(dataMatrix)[firstPlot:lastPlot],each=nrow(dataMatrix))) p <- ggplot(data=dataToPlot, aes(x = x, color=Experiment)) + stat_density(geom="line", size=1, position="identity") + ggtitle("Intensity densities") + theme_bw() + ylab(label="Density") + theme(panel.border=element_blank(),plot.title = element_text(hjust = 0.5)) if(dataAreFromCel){ #original ploting function #hist(celData[,firstPlot:lastPlot],lty=rep(1,nbConditions)[firstPlot:lastPlot],lwd=2,which='pm',target="probeset",transfo=log2,col=rainbow(nbConditions)[firstPlot:lastPlot]) p <- p + xlab(label="Log2 intensities") }else{ p <- p + xlab(label="Intensities") } if(opt$format=="pdf"){ pdf(paste(c("./plotDir/",opt$histo,iToPlot,".pdf"),collapse=""))}else{ png(paste(c("./plotDir/",opt$histo,iToPlot,".png"),collapse="")) } print(p) dev.off() #save plotly files pp <- ggplotly(p) htmlwidgets::saveWidget(as_widget(pp), paste(c(file.path(getwd(), "plotLyDir"),"/",opt$histo,iToPlot,".html"),collapse=""),selfcontained = F) } remove(p,dataToPlot) addComment("[INFO]Histograms drawn",T,opt$log,display=FALSE) } ##---------------------- ###plot MAplots### MAplotPerPage=4 if (!is.null(opt$maPlot)) { iToPlot=1 plotVector=list() toTake=sample(nrow(dataMatrix),min(200000,nrow(dataMatrix))) refMedianColumn=rowMedians(as.matrix(dataMatrix[toTake,])) if(length(toTake)>100000)addComment(c("[INFO]high number of input data rows ",length(toTake),"; the generation of MA plot can take a while, please be patient"),TRUE,opt$log,display=FALSE) for (iCondition in 1:nbConditions){ #MAplot(celData,which=i,what=pm,transfo=log2) #smoothScatter(x=xToPlot,y=yToPlot,main=nameConditions[iCondition]) dataA=dataMatrix[toTake,iCondition] dataB=refMedianColumn####ATTENTION PAR DEFAUT xToPlot=0.5*(dataA+dataB) yToPlot=dataA-dataB tempX=seq(min(xToPlot),max(xToPlot),0.1) tempY=unlist(lapply(tempX,function(x){median(yToPlot[intersect(which(xToPlot>=(x-0.1/2)),which(xToPlot<(x+0.1/2)))])})) dataToPlot=data.frame(x=xToPlot,y=yToPlot) dataMedianToPlot=data.frame(x=tempX,y=tempY) p <- ggplot(data=dataToPlot, aes(x,y)) + stat_density2d(aes(fill = ..density..^0.25), geom = "tile", contour = FALSE, n = 100) + scale_fill_continuous(low = "white", high = "dodgerblue4") + geom_smooth(data=dataMedianToPlot,colour="red", size=0.5, se=FALSE) + ggtitle(correspondanceNameTable[iCondition,2]) + theme_bw() + xlab(label="") + ylab(label="") + theme(panel.border=element_blank(),plot.title = element_text(hjust = 0.5),legend.position = "none") plotVector[[length(plotVector)+1]]=p #save plotly files pp <- ggplotly(p) htmlwidgets::saveWidget(as_widget(pp), paste(c(file.path(getwd(), "plotLyDir"),"/",opt$maPlot,"_",correspondanceNameTable[iCondition,1],".html"),collapse=""),selfcontained = F) if(iCondition==nbConditions || length(plotVector)==MAplotPerPage){ #define a new plotting file if(opt$format=="pdf"){ pdf(paste(c("./plotDir/",opt$maPlot,iToPlot,".pdf"),collapse=""))}else{ png(paste(c("./plotDir/",opt$maPlot,iToPlot,".png"),collapse="")) } multiplot(plotlist=plotVector,cols=2) dev.off() if(iCondition<nbConditions){ #prepare for a new plotting file if necessary plotVector=list() iToPlot=iToPlot+1 } } } remove(p,dataToPlot,dataA,dataB,toTake,xToPlot,yToPlot) addComment("[INFO]MAplots drawn",T,opt$log,display=FALSE) } ##---------------------- ###plot boxplots### boxplotPerFigure=50 if (!is.null(opt$boxplot)) { for(iToPlot in 1:(((nbConditions-1)%/%boxplotPerFigure)+1)){ firstPlot=1+boxplotPerFigure*(iToPlot-1) lastPlot=min(nbConditions,boxplotPerFigure*iToPlot) dataToPlot=data.frame(intensities=c(dataMatrix[,firstPlot:lastPlot]),Experiment=rep(colnames(dataMatrix)[firstPlot:lastPlot],each=nrow(dataMatrix))) #to make HTML file lighter, sampling will be done amongst outliers #get outliers for each boxplot boxplotsOutliers=apply(dataMatrix[,firstPlot:lastPlot],2,function(x)boxplot.stats(x)$out) #sample amongst them to keep at maximum of 1000 points and include both min and max outliers values boxplotsOutliers=lapply(boxplotsOutliers,function(x)if(length(x)>0)c(sample(c(x),min(length(x),1000)),max(c(x)),min(c(x)))) dataOutliers=data.frame(yVal=unlist(boxplotsOutliers),xVal=unlist(lapply(seq_along(boxplotsOutliers),function(x)rep(names(boxplotsOutliers)[x],length(boxplotsOutliers[[x]]))))) #plot boxplots without outliers p <- ggplot(data=dataToPlot, aes(y = intensities, x=Experiment ,color=Experiment)) + geom_boxplot(outlier.colour=NA,outlier.shape =NA) + ggtitle("Intensities") + theme_bw() + xlab(label="") + theme(panel.border=element_blank(),plot.title = element_text(hjust = 0.5),axis.text.x = element_text(angle = 45, hjust = 1),plot.margin=unit(c(10,10,max(unlist(lapply(dataToPlot$Experiment,function(x)nchar(as.character(x))))),15+max(unlist(lapply(dataToPlot$Experiment,function(x)nchar(as.character(x)))))),"mm")) #add to plot sampled outliers p <- p + geom_point(data=dataOutliers,aes(x=xVal,y=yVal,color=xVal),inherit.aes = F) if(dataAreFromCel){ #original plotting function #boxplot(celData[,firstPlot:lastPlot],which='pm',col=rainbow(nbConditions)[firstPlot:lastPlot],target="probeset",transfo=log2,names=nameConditions[firstPlot:lastPlot],main="Intensities") p <- p + ylab(label="Log2 intensities") }else{ p <- p + ylab(label="Intensities") } if(opt$format=="pdf"){ pdf(paste(c("./plotDir/",opt$boxplot,iToPlot,".pdf"),collapse=""))}else{ png(paste(c("./plotDir/",opt$boxplot,iToPlot,".png"),collapse="")) } print(p) dev.off() #save plotly files pp <- ggplotly(p) #modify plotly object to get HTML file not too heavy for loading for(iData in 1:length(pp$x$data)){ ##get kept outliers y values #yPointsToKeep=dataOutliers$yVal[which(dataOutliers$xVal==pp$x$data[[iData]]$name)] if(pp$x$data[[iData]]$type=="scatter"){ ##scatter plot represent outliers points added to boxplot through geom_point ##nothing to do as outliers have been sampled allready, just have to modify hover text #if(length(yPointsToKeep)>0){ #pointsToKeep=which(pp$x$data[[iData]]$y %in% yPointsToKeep) #pp$x$data[[iData]]$x=pp$x$data[[iData]]$x[pointsToKeep] #pp$x$data[[iData]]$y=pp$x$data[[iData]]$y[pointsToKeep] #pp$x$data[[iData]]$text=pp$x$data[[iData]]$text[pointsToKeep] #}else{ #pp$x$data[[iData]]$x=NULL #pp$x$data[[iData]]$y=NULL #pp$x$data[[iData]]$marker$opacity=0 #pp$x$data[[iData]]$hoverinfo=NULL #pp$x$data[[iData]]$text=NULL #} #modify text to display if(dataAreFromCel){ pp$x$data[[iData]]$text=unlist(lapply(seq_along(pp$x$data[[iData]]$y),function(x)return(paste(c("log2(intensity) ",prettyNum(pp$x$data[[iData]]$y[x],digits=4)),collapse = "")))) }else{ pp$x$data[[iData]]$text=unlist(lapply(seq_along(pp$x$data[[iData]]$y),function(x)return(paste(c("intensity ",prettyNum(pp$x$data[[iData]]$y[x],digits=4)),collapse = "")))) } }else{ ##disable marker plotting to keep only box and whiskers plot (outliers are displayed through scatter plot) pp$x$data[[iData]]$marker$opacity=0 #sample 50000 points amongst all data to get a lighter html file, sampling size should not be too low to avoid modifying limit of boxplots pp$x$data[[iData]]$y=c(sample(dataMatrix[,pp$x$data[[iData]]$name],min(length(dataMatrix[,pp$x$data[[iData]]$name]),50000)),min(dataMatrix[,pp$x$data[[iData]]$name]),max(dataMatrix[,pp$x$data[[iData]]$name])) pp$x$data[[iData]]$x=rep(pp$x$data[[iData]]$x[1],length(pp$x$data[[iData]]$y)) ##first remove outliers info #downUpValues=boxplot.stats(dataMatrix[,pp$x$data[[iData]]$name])$stats #if(verbose)addComment(c("filter values for boxplot",pp$x$data[[iData]]$name,"between",min(downUpValues),"and",max(downUpValues)),T,opt$log) #pointsToRemove=which(pp$x$data[[iData]]$y<min(downUpValues)) #if(length(pointsToRemove)>0)pp$x$data[[iData]]$y=pp$x$data[[iData]]$y[-pointsToRemove] #pointsToRemove=which(pp$x$data[[iData]]$y>max(downUpValues)) #if(length(pointsToRemove)>0)pp$x$data[[iData]]$y=pp$x$data[[iData]]$y[-pointsToRemove] #then add sampled outliers info #pp$x$data[[iData]]$y=c(yPointsToKeep,pp$x$data[[iData]]$y) #pp$x$data[[iData]]$x=rep(pp$x$data[[iData]]$x[1],length(pp$x$data[[iData]]$y)) } } htmlwidgets::saveWidget(as_widget(pp), paste(c(file.path(getwd(), "plotLyDir"),"/",opt$boxplot,iToPlot,".html"),collapse=""),selfcontained = F) } remove(p,dataToPlot) addComment("[INFO]Boxplots drawn",T,opt$log,display=FALSE) } ##---------------------- ###plot microarrays (only for .CEL files)### if (!is.null(opt$microarray) && dataAreFromCel) { for (iCondition in 1:nbConditions){ if(opt$format=="pdf"){ pdf(paste(c("./plotDir/",opt$microarray,"_",correspondanceNameTable[iCondition,1],".pdf"),collapse=""),onefile = F,width = 5,height = 5)}else{ png(paste(c("./plotDir/",opt$microarray,"_",correspondanceNameTable[iCondition,1],".png"),collapse="")) } image(celData[,iCondition],main=correspondanceNameTable[iCondition,2]) dev.off() } addComment("[INFO]Microarray drawn",T,opt$log,display=FALSE) } ##---------------------- ###plot PCA plot### if (!is.null(opt$acp)){ ##to avoid error when nrow is too large, results quite stable with 200k random selected rows randomSelection=sample(nrow(dataMatrix),min(200000,nrow(dataMatrix))) #remove constant variables dataFiltered=dataMatrix[randomSelection,] toRemove=which(unlist(apply(dataFiltered,1,var))==0) if(length(toRemove)>0){ dataFiltered=dataFiltered[-toRemove,] } ##geom_text(aes(label=Experiments,hjust=1, vjust=1.3), y = PC2+0.01) PACres = prcomp(t(dataFiltered),scale.=TRUE) if(!is.null(opt$screePlot)){ #scree plot #p <- fviz_eig(PACres) dataToPlot=data.frame(compo=seq(1,length(PACres$sdev)),var=(PACres$sdev^2/sum(PACres$sdev^2))*100) p<-ggplot(data=dataToPlot, aes(x=compo, y=var)) + geom_bar(stat="identity", fill="steelblue") + geom_line() + geom_point() + ggtitle("Scree plot") + theme_bw() + theme(panel.border=element_blank(),plot.title = element_text(hjust = 0.5)) + xlab(label="Dimensions") + ylab(label="% explained variances") + scale_x_discrete(limits=dataToPlot$compo) pp <- ggplotly(p) if(opt$format=="pdf"){ pdf(paste(c("./plotDir/",opt$screePlot,".pdf"),collapse=""))}else{ png(paste(c("./plotDir/",opt$screePlot,".png"),collapse="")) } plot(p) dev.off() htmlwidgets::saveWidget(as_widget(pp), paste(c(file.path(getwd(), "plotLyDir"),"/",opt$screePlot,".html"),collapse=""),selfcontained = F) } #now plot pca plots if(!is.null(opt$factorInfo)){ fileIdent="" symbolset = c("circle","cross","square","diamond","circle-open","square-open","diamond-open","x") #save equivalence between real factor names and generic ones in correspondanceNameTable correspondanceNameTable=rbind(correspondanceNameTable,matrix(c(paste("Factor",1:(ncol(factorInfoMatrix)-1),sep=""),colnames(factorInfoMatrix)[-1]),ncol=2,nrow=ncol(factorInfoMatrix)-1)) rownames(correspondanceNameTable)=correspondanceNameTable[,2] #first order factors from decreasing groups number orderedFactors=colnames(factorInfoMatrix)[-1][order(unlist(lapply(colnames(factorInfoMatrix)[-1],function(x)length(table(factorInfoMatrix[,x])))),decreasing = T)] allFactorsBigger=length(table(factorInfoMatrix[,orderedFactors[length(orderedFactors)]]))>length(symbolset) if(allFactorsBigger)addComment("[WARNING]All factors are composed of too many groups to display two factors at same time, each PCA plot will display only one factor groups",T,opt$log,display=FALSE) for(iFactor in 1:length(orderedFactors)){ #if it is the last factor of the list or if all factor if(iFactor==length(orderedFactors) || allFactorsBigger){ if(length(orderedFactors)==1 || allFactorsBigger){ dataToPlot=data.frame(PC1=PACres$x[,1],PC2=PACres$x[,2],PC3=PACres$x[,3],Experiments=rownames(PACres$x), Attribute1=factorInfoMatrix[rownames(PACres$x),orderedFactors[iFactor]], hoverLabel=unlist(lapply(rownames(PACres$x),function(x)paste(factorInfoMatrix[x,-1],collapse=",")))) p <- plot_ly(dataToPlot,x = ~PC1, y = ~PC2, z = ~PC3, type = 'scatter3d', mode="markers", color=~Attribute1,colors=rainbow(length(levels(dataToPlot$Attribute1))+2),hoverinfo = 'text', text = ~paste(Experiments,"\n",hoverLabel),marker=list(size=5))%>% layout(title = "Principal Component Analysis", scene = list(xaxis = list(title = "Component 1"),yaxis = list(title = "Component 2"),zaxis = list(title = "Component 3")), legend=list(font = list(family = "sans-serif",size = 15,color = "#000"))) fileIdent=correspondanceNameTable[orderedFactors[iFactor],1] #add text label to plot ##p <- add_text(p,x = dataToPlot$PC1, y = dataToPlot$PC2 + (max(PACres$x[,2])-min(PACres$x[,2]))*0.02, z = dataToPlot$PC3, mode = 'text', inherit = F, text=rownames(PACres$x), hoverinfo='skip', showlegend = FALSE, color=I('black')) #save the plotly plot htmlwidgets::saveWidget(as_widget(p), paste(c(file.path(getwd(), "plotLyDir"),"/",opt$acp,"_",fileIdent,".html"),collapse=""),selfcontained = F) } }else{ for(iFactorBis in (iFactor+1):length(orderedFactors)){ if(length(table(factorInfoMatrix[,orderedFactors[iFactorBis]]))<=length(symbolset)){ dataToPlot=data.frame(PC1=PACres$x[,1],PC2=PACres$x[,2],PC3=PACres$x[,3],Experiments=rownames(PACres$x), Attribute1=factorInfoMatrix[rownames(PACres$x),orderedFactors[iFactor]], Attribute2=factorInfoMatrix[rownames(PACres$x),orderedFactors[iFactorBis]], hoverLabel=unlist(lapply(rownames(PACres$x),function(x)paste(factorInfoMatrix[x,-1],collapse=",")))) p <- plot_ly(dataToPlot,x = ~PC1, y = ~PC2, z = ~PC3, type = 'scatter3d', mode="markers", color=~Attribute1,colors=rainbow(length(levels(dataToPlot$Attribute1))+2),symbol=~Attribute2,symbols = symbolset,hoverinfo = 'text', text = ~paste(Experiments,"\n",hoverLabel),marker=list(size=5))%>% layout(title = "Principal Component Analysis", scene = list(xaxis = list(title = "Component 1"),yaxis = list(title = "Component 2"),zaxis = list(title = "Component 3")), legend=list(font = list(family = "sans-serif",size = 15,color = "#000"))) fileIdent=paste(correspondanceNameTable[orderedFactors[c(iFactor,iFactorBis)],1],collapse="_AND_") #add text label to plot ##p <- add_text(p,x = dataToPlot$PC1, y = dataToPlot$PC2 + (max(PACres$x[,2])-min(PACres$x[,2]))*0.02, z = dataToPlot$PC3, mode = 'text', inherit = F, text=rownames(PACres$x), hoverinfo='skip', showlegend = FALSE, color=I('black')) #save the plotly plot htmlwidgets::saveWidget(as_widget(p), paste(c(file.path(getwd(), "plotLyDir"),"/",opt$acp,"_",fileIdent,".html"),collapse=""),selfcontained = F) }else{ addComment(c("[WARNING]PCA with",orderedFactors[iFactor],"and",orderedFactors[iFactorBis],"groups cannot be displayed, too many groups (max",length(symbolset),")"),T,opt$log,display=FALSE) } } } } }else{ dataToPlot=data.frame(PC1=PACres$x[,1],PC2=PACres$x[,2],PC3=PACres$x[,3],Experiments=rownames(PACres$x)) p <- plot_ly(dataToPlot,x = ~PC1, y = ~PC2, z = ~PC3, type = 'scatter3d', mode="markers",marker=list(size=5,color="salmon"),hoverinfo = 'text',text = ~paste(Experiments))%>% layout(title = "Principal Component Analysis", scene = list(xaxis = list(title = "Component 1"),yaxis = list(title = "Component 2"),zaxis = list(title = "Component 3")), legend=list(font = list(family = "sans-serif",size = 15,color = "#000"))) ##p <- add_text(p,x = dataToPlot$PC1, y = dataToPlot$PC2 + (max(PACres$x[,2])-min(PACres$x[,2]))*0.02, z = dataToPlot$PC3, mode = 'text', inherit = F, text=rownames(PACres$x), hoverinfo='skip', showlegend = FALSE, color=I('black')) #save plotly files htmlwidgets::saveWidget(as_widget(p), paste(c(file.path(getwd(), "plotLyDir"),"/",opt$acp,"_plot.html"),collapse=""),selfcontained = F) } remove(p,dataToPlot,dataFiltered) addComment("[INFO]ACP plot drawn",T,opt$log,display=FALSE) } #write correspondances between plot file names and displayed names in figure legends, usefull to define html items in xml file write.table(correspondanceNameTable,file=file.path(getwd(), "correspondanceFileNames.csv"),quote=FALSE,sep="\t",col.names = F,row.names = F) end.time <- Sys.time() addComment(c("[INFO]Total execution time for R script:",as.numeric(end.time - start.time,units="mins"),"mins"),T,opt$log,display=FALSE) addComment("[INFO]End of R script",T,opt$log,display=FALSE) printSessionInfo(opt$log) #sessionInfo()