Mercurial > repos > vijay > pancancer_targene_cell_line_predictions
view targene_cell_line_predictions.xml @ 0:872aab514d37 draft default tip
"planemo upload for repository http://github.com/nvk747/papaa/galaxy/ commit 954b283ef7f82f59f55476a4b3a230d655187ac1"
author | vijay |
---|---|
date | Wed, 16 Dec 2020 23:30:22 +0000 |
parents | |
children |
line wrap: on
line source
<tool id="pancancer_targene_cell_line_predictions" name="PAPAA: PanCancer targene cell line predictions" version="@VERSION@"> <description>targene status in ccle cell lines </description> <macros> <import>macros.xml</import> </macros> <expand macro="requirements"/> <expand macro="stdio"/> <version_command><![CDATA['papaa_targene_cell_line_predictions.py' --version]]></version_command> <command><![CDATA[ mkdir 'classifier' && mkdir -p 'classifier/figures' && mkdir -p 'classifier/figures/cell_line' && mkdir -p 'classifier/tables' && mkdir -p 'classifier/results' && ln -s '${classifier_summary}' 'classifier/classifier_summary.txt' && ln -s '${pancan_classifier_coefficients}' 'classifier/classifier_coefficients.tsv' && ln -s '${nucleotide_mutation_scores}' 'classifier/tables/nucleotide_mutation_scores.tsv' && ln -s '${amino_acid_mutation_scores}' 'classifier/tables/amino_acid_mutation_scores.tsv' && papaa_targene_cell_line_predictions.py --classifier_summary 'classifier' #if $targenes and str($targenes): --targenes '$targenes' #end if #if $path_genes and str($path_genes): --path_genes '$path_genes' #end if #if $ccle_rnaseq and $ccle_rnaseq is not None: --ccle_rnaseq '$ccle_rnaseq' #end if #if $ccle_mut and $ccle_mut is not None: --ccle_mut '$ccle_mut' #end if #if $ccle_maf and $ccle_maf is not None: --ccle_maf '$ccle_maf' #end if #if $gdsc_rnaseq and $gdsc_rnaseq is not None: --gdsc_rnaseq '$gdsc_rnaseq' #end if #if $gdsc_mut and $gdsc_mut is not None: --gdsc_mut '$gdsc_mut' #end if #if $gdsc1_phar and $gdsc1_phar is not None: --gdsc1_phar '$gdsc1_phar' #end if #if $gdsc2_phar and $gdsc2_phar is not None: --gdsc2_phar '$gdsc2_phar' #end if > '${log}' ]]> </command> <inputs> <param argument="--classifier_summary" label="Classifier data" name="classifier_summary" optional="false" type="data" format="txt" help="classifer_summary.txt"/> <param label="pancancer classifier coefficients" name="pancan_classifier_coefficients" optional="false" type="data" format="tabular" help="classifier_coefficients.tsv"/> <param label="nucleotide mutation scores" name="nucleotide_mutation_scores" optional="false" type="data" format="tabular" help="nucleotide_mutation_scores.tsv"/> <param label="amino acid mutation scores" name="amino_acid_mutation_scores" optional="false" type="data" format="tabular" help="amino_acid_mutation_scores.tsv"/> <param argument="--targenes" label="Comma separated string of HUGO targene symbols" name="targenes" optional="False" type="text" value="ERBB2_MUT,PIK3CA_MUT,KRAS_MUT,AKT1_MUT"/> <param argument="--path_genes" label="string of the genes to extract or genelist file" name="path_genes" optional="true" type= "data" format="txt"/> <param argument="--ccle_rnaseq" label="Filename ccle rnaseq data" name="ccle_rnaseq" optional="false" type="data" format="tabular" help="data/ccle_rnaseq_genes_rpkm_20180929_mod.tsv"/> <param argument="--ccle_mut" label="Filename ccle mutational data" name="ccle_mut" optional="true" type="data" format="txt" help="data/CCLE_MUT_CNA_AMP_DEL_binary_Revealer.gct"/> <param argument="--ccle_maf" label="Filename ccle variant data" name="ccle_maf" optional="true" type="data" format="txt" help="data/CCLE_DepMap_18Q1_maf_20180207.txt" /> <param argument="--gdsc_rnaseq" label="Filename gdsc rnaseq data" name="gdsc_rnaseq" optional="false" type="data" format="tabular" help="data/GDSC_EXP_CCLE_converted_name.tsv"/> <param argument="--gdsc_mut" label="Filename gdsc mutational data" name="gdsc_mut" optional="true" type="data" format="tabular" help="data/GDSC_CCLE_common_mut_cnv_binary.tsv"/> <param argument="--gdsc1_phar" label="Filename for gdsc1 pharmacological data file" name="gdsc1_phar" optional="false" type="data" format="txt" help="data/gdsc1_ccle_pharm_fitted_dose_data.txt"/> <param argument="--gdsc2_phar" label="Filename for gdsc2 pharmacological data file" name="gdsc2_phar" optional="false" type="data" format="txt" help="data/gdsc2_ccle_pharm_fitted_dose_data.txt"/> </inputs> <outputs> <data format="txt" name="log" label="${tool.name} on ${on_string} (Log)"/> <data format="png" name="ccle_histogram" label="${tool.name} on ${on_string} (ccle_histogram.png)" from_work_dir="classifier/figures/ccle_histogram.png"/> <data format="tabular" name="ccle_targene_classifier_scores" label="${tool.name} on ${on_string} (ccle_targene_classifier_scores.tsv)" from_work_dir="classifier/tables/ccle_targene_classifier_scores.tsv"/> <data format="pdf" name="ccle_targene_WT_MUT_predictions" label="${tool.name} on ${on_string} (ccle_targene_WT_MUT_predictions.pdf)" from_work_dir="classifier/figures/cell_line/ccle_targene_WT_MUT_predictions.pdf"/> <data format="csv" name="updated_data_nucleotide_scores" label="${tool.name} on ${on_string} (updated_data_nucleotide_scores.csv)" from_work_dir="classifier/tables/updated_data_nucleotide_scores.csv"/> <data format="csv" name="updated_data_aminoacid_scores" label="${tool.name} on ${on_string} (updated_data_aminoacid_scores.csv)" from_work_dir="classifier/tables/updated_data_aminoacid_scores.csv"/> <data format="png" name="gdsc_scores_histogram" label="${tool.name} on ${on_string} (gdsc_scores_histogram.png)" from_work_dir="classifier/figures/gdsc_scores_histogram.png"/> <data format="tabular" name="gdsc_targene_classifier_scores" label="${tool.name} on ${on_string} (gdsc_targene_classifier_scores.tsv)" from_work_dir="classifier/tables/gdsc_targene_classifier_scores.tsv"/> <data format="pdf" name="gdsc_targene_WT_MUT_predictions" label="${tool.name} on ${on_string} (gdsc_targene_WT_MUT_predictions.pdf)" from_work_dir="classifier/figures/cell_line/gdsc_targene_WT_MUT_predictions.pdf"/> <data format="tabular" name="gdsc1_targene_pharmacology_predictions" label="${tool.name} on ${on_string} (gdsc1_targene_pharmacology_predictions.tsv)" from_work_dir="classifier/tables/gdsc1_targene_pharmacology_predictions.tsv"/> <data format="tabular" name="gdsc2_targene_pharmacology_predictions" label="${tool.name} on ${on_string} (gdsc2_targene_pharmacology_predictions.tsv)" from_work_dir="classifier/tables/gdsc2_targene_pharmacology_predictions.tsv"/> <data format="tabular" name="gdsc1_ccle_targene_pharmacology_predictions" label="${tool.name} on ${on_string} (gdsc1_ccle_targene_pharmacology_predictions.tsv)" from_work_dir="classifier/tables/gdsc1_ccle_targene_pharmacology_predictions.tsv"/> <data format="tabular" name="gdsc2_ccle_targene_pharmacology_predictions" label="${tool.name} on ${on_string} (gdsc2_ccle_targene_pharmacology_predictions.tsv)" from_work_dir="classifier/tables/gdsc2_ccle_targene_pharmacology_predictions.tsv"/> </outputs> <tests> <test> <param name="classifier_summary" value="classifier_summary.txt" ftype="txt"/> <param name="pancan_classifier_coefficients" value="classifier_coefficients.tsv" ftype="tabular"/> <param name="nucleotide_mutation_scores" value="nucleotide_mutation_scores.tsv" ftype="tabular"/> <param name="amino_acid_mutation_scores" value="amino_acid_mutation_scores.tsv" ftype="tabular"/> <param name="targenes" value="ERBB2_MUT,PIK3CA_MUT,KRAS_MUT,AKT1_MUT"/> <param name="path_genes" value="path_genes.txt" ftype="txt"/> <param name="ccle_rnaseq" value="ccle_rnaseq_genes_rpkm_20180929_mod_t5p.tsv.gz" ftype="tabular"/> <param name="ccle_mut" value="CCLE_MUT_CNA_AMP_DEL_binary_Revealer.gct.gz" ftype="tabular"/> <param name="ccle_maf" value="CCLE_DepMap_18Q1_maf_20180207_t1p.txt.gz" ftype="txt"/> <param name="gdsc_rnaseq" value="GDSC_EXP_CCLE_converted_name_t10p.tsv.gz" ftype="tabular"/> <param name="gdsc_mut" value="GDSC_CCLE_common_mut_cnv_binary.tsv.gz" ftype="tabular"/> <param name="gdsc1_phar" value="gdsc1_ccle_pharm_fitted_dose_data_t10p.txt.gz" ftype="txt"/> <param name="gdsc2_phar" value="gdsc2_ccle_pharm_fitted_dose_data_t10p.txt.gz" ftype="txt"/> <output name="log" file="targene_cell_line_predictions_Log.txt" lines_diff="2"/> <output name="ccle_histogram" file="ccle_histogram.png" compare="sim_size" delta="50"/> <output name="ccle_targene_classifier_scores" file="ccle_targene_classifier_scores.tsv" /> <output name="ccle_targene_WT_MUT_predictions" file="ccle_targene_WT_MUT_predictions.pdf" compare="sim_size" delta="100"/> <output name="updated_data_nucleotide_scores" file="updated_data_nucleotide_scores.csv" /> <output name="updated_data_aminoacid_scores" file="updated_data_aminoacid_scores.csv" /> <output name="gdsc_scores_histogram" file="gdsc_scores_histogram.png" /> <output name="gdsc_targene_classifier_scores" file="gdsc_targene_classifier_scores.tsv" /> <output name="gdsc_targene_WT_MUT_predictions" file="gdsc_targene_WT_MUT_predictions.pdf" compare="sim_size" delta="50"/> <output name="gdsc1_targene_pharmacology_predictions"> <assert_contents> <has_line line="	GDSC1_cell_line	NLME_CURVE_ID	COSMIC_ID	SANGER_MODEL_ID	TCGA_DESC	DRUG_ID	Compound	PUTATIVE_TARGET	PATHWAY_NAME	MIN_CONC	MAX_CONC	LN_IC50	AUC	RMSE	Z_SCORE	tissue	ERBB2_MUT	PIK3CA_MUT	KRAS_MUT	AKT1_MUT	targene_status	weight	sample_name	predictions" /> <has_n_columns n="25" /> <has_n_lines n="10281" /> </assert_contents> </output> <output name="gdsc2_targene_pharmacology_predictions"> <assert_contents> <has_line line="	GDSC1_cell_line	NLME_CURVE_ID	COSMIC_ID	SANGER_MODEL_ID	TCGA_DESC	DRUG_ID	Compound	PUTATIVE_TARGET	PATHWAY_NAME	MIN_CONC	MAX_CONC	LN_IC50	AUC	RMSE	Z_SCORE	tissue	ERBB2_MUT	PIK3CA_MUT	KRAS_MUT	AKT1_MUT	targene_status	weight	sample_name	predictions" /> <has_n_columns n="25" /> <has_n_lines n="10281" /> </assert_contents> </output> <output name="gdsc1_ccle_targene_pharmacology_predictions" file="gdsc1_ccle_targene_pharmacology_predictions.tsv" /> <output name="gdsc2_ccle_targene_pharmacology_predictions" file="gdsc2_ccle_targene_pharmacology_predictions.tsv" /> </test> </tests> <help><![CDATA[ **Pancancer_Aberrant_Pathway_Activity_Analysis scripts/viz/papaa_targene_cell_line_predictions_mod.py:** **Inputs:** --targenes comma separated string of HUGO symbols for target genes or targenes_list.csv file --path_genes comma separated string of HUGO symbols for all genes in the target pathway or path_genes.txt file --classifier_summary String of the location of classifier_summary file --ccle_rnaseq Filename of CCLE gene expression data file --ccle_mut Filename of CCLE cell lines/gene mutations data file --ccle_maf Filename of CCLE mutational variant level data file --gdsc_rnaseq Filename of GDSC gene expression data file --gdsc_mut Filename of GDSC cell lines/gene mutations data file --gdsc1_phar Filename of GDSC1 pharmacological response data --gdsc2_phar Filename of GDSC2 pharmacological response data **Outputs:** Generate predictions for CCLE data using targene classifier(ccle_histogram.png) Generate classifier scores for CCLE cell lines and combines CCLE mutational data and variant data with classifier scores (ccle_targene_classifier_scores.tsv) Performs t-test on classifier weights across targene mutant vs targene wildtype cell-line groups(ccle_targene_WT_MUT_predictions.pdf) Add CCLE nucleotide scores at variant level and update nucleotide_mutation_scores.tsv (updated_data_nucleotide_scores.csv) Add CCLE protein scores at variant level and update aminoacid_mutation_scores.tsv (updated_data_aminoacid_scores.csv) Generate predictions for GDSC data using targene classifier(gdsc_scores_histogram.png) Generate classifier scores for GDSC cell lines and combines CCLE mutational data and variant data with classifier scores (gdsc_targene_classifier_scores.tsv) Performs t-test on classifier weights across targene mutant vs targene wildtype cell-line groups(gdsc_targene_WT_MUT_predictions.pdf) Apply GDSC classifier scores to evaluate GDSC1 pharmacological data response(gdsc1_targene_pharmacology_predictions.tsv) Apply GDSC classifier scores to evaluate GDSC2 pharmacological data response(gdsc2_targene_pharmacology_predictions.tsv) Apply CCLE classifier scores to evaluate GDSC1 pharmacological data response(gdsc1_ccle_targene_pharmacology_predictions.tsv) Apply CCLE classifier scores to evaluate GDSC2 pharmacological data response(gdsc2_ccle_targene_pharmacology_predictions.tsv) ]]> </help> <expand macro="citations" /> </tool>