Mercurial > repos > vipints > fml_gff3togtf
comparison GFFParser.py @ 5:6e589f267c14
Uploaded
author | devteam |
---|---|
date | Tue, 04 Nov 2014 12:15:19 -0500 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
4:619e0fcd9126 | 5:6e589f267c14 |
---|---|
1 #!/usr/bin/env python | |
2 """ | |
3 Extract genome annotation from a GFF (a tab delimited format for storing sequence features and annotations) file. | |
4 | |
5 Requirements: | |
6 Numpy :- http://numpy.org/ | |
7 Scipy :- http://scipy.org/ | |
8 | |
9 Copyright (C) | |
10 | |
11 2009-2012 Friedrich Miescher Laboratory of the Max Planck Society, Tubingen, Germany. | |
12 2012-2014 Memorial Sloan Kettering Cancer Center, New York City, USA. | |
13 """ | |
14 | |
15 import re | |
16 import os | |
17 import sys | |
18 import urllib | |
19 import numpy as np | |
20 import scipy.io as sio | |
21 from collections import defaultdict | |
22 import helper as utils | |
23 | |
24 def attribute_tags(col9): | |
25 """ | |
26 Split the key-value tags from the attribute column, it takes column number 9 from GTF/GFF file | |
27 | |
28 @args col9: attribute column from GFF file | |
29 @type col9: str | |
30 """ | |
31 info = defaultdict(list) | |
32 is_gff = False | |
33 | |
34 if not col9: | |
35 return is_gff, info | |
36 | |
37 # trim the line ending semi-colon ucsc may have some white-space | |
38 col9 = col9.rstrip(';| ') | |
39 # attributes from 9th column | |
40 atbs = col9.split(" ; ") | |
41 if len(atbs) == 1: | |
42 atbs = col9.split("; ") | |
43 if len(atbs) == 1: | |
44 atbs = col9.split(";") | |
45 # check the GFF3 pattern which has key value pairs like: | |
46 gff3_pat = re.compile("\w+=") | |
47 # sometime GTF have: gene_id uc002zkg.1; | |
48 gtf_pat = re.compile("\s?\w+\s") | |
49 | |
50 key_vals = [] | |
51 | |
52 if gff3_pat.match(atbs[0]): # gff3 pattern | |
53 is_gff = True | |
54 key_vals = [at.split('=') for at in atbs] | |
55 elif gtf_pat.match(atbs[0]): # gtf pattern | |
56 for at in atbs: | |
57 key_vals.append(at.strip().split(" ",1)) | |
58 else: | |
59 # to handle attribute column has only single value | |
60 key_vals.append(['ID', atbs[0]]) | |
61 # get key, val items | |
62 for item in key_vals: | |
63 key, val = item | |
64 # replace the double qoutes from feature identifier | |
65 val = re.sub('"', '', val) | |
66 # replace the web formating place holders to plain text format | |
67 info[key].extend([urllib.unquote(v) for v in val.split(',') if v]) | |
68 | |
69 return is_gff, info | |
70 | |
71 def spec_features_keywd(gff_parts): | |
72 """ | |
73 Specify the feature key word according to the GFF specifications | |
74 | |
75 @args gff_parts: attribute field key | |
76 @type gff_parts: str | |
77 """ | |
78 for t_id in ["transcript_id", "transcriptId", "proteinId"]: | |
79 try: | |
80 gff_parts["info"]["Parent"] = gff_parts["info"][t_id] | |
81 break | |
82 except KeyError: | |
83 pass | |
84 for g_id in ["gene_id", "geneid", "geneId", "name", "gene_name", "genename"]: | |
85 try: | |
86 gff_parts["info"]["GParent"] = gff_parts["info"][g_id] | |
87 break | |
88 except KeyError: | |
89 pass | |
90 ## TODO key words | |
91 for flat_name in ["Transcript", "CDS"]: | |
92 if gff_parts["info"].has_key(flat_name): | |
93 # parents | |
94 if gff_parts['type'] in [flat_name] or re.search(r'transcript', gff_parts['type'], re.IGNORECASE): | |
95 if not gff_parts['id']: | |
96 gff_parts['id'] = gff_parts['info'][flat_name][0] | |
97 #gff_parts["info"]["ID"] = [gff_parts["id"]] | |
98 # children | |
99 elif gff_parts["type"] in ["intron", "exon", "three_prime_UTR", | |
100 "coding_exon", "five_prime_UTR", "CDS", "stop_codon", | |
101 "start_codon"]: | |
102 gff_parts["info"]["Parent"] = gff_parts["info"][flat_name] | |
103 break | |
104 return gff_parts | |
105 | |
106 def Parse(ga_file): | |
107 """ | |
108 Parsing GFF/GTF file based on feature relationship, it takes the input file. | |
109 | |
110 @args ga_file: input file name | |
111 @type ga_file: str | |
112 """ | |
113 child_map = defaultdict(list) | |
114 parent_map = dict() | |
115 | |
116 ga_handle = utils.open_file(ga_file) | |
117 | |
118 for rec in ga_handle: | |
119 rec = rec.strip('\n\r') | |
120 | |
121 # skip empty line fasta identifier and commented line | |
122 if not rec or rec[0] in ['#', '>']: | |
123 continue | |
124 # skip the genome sequence | |
125 if not re.search('\t', rec): | |
126 continue | |
127 | |
128 parts = rec.split('\t') | |
129 assert len(parts) >= 8, rec | |
130 | |
131 # process the attribute column (9th column) | |
132 ftype, tags = attribute_tags(parts[-1]) | |
133 if not tags: # skip the line if no attribute column. | |
134 continue | |
135 | |
136 # extract fields | |
137 if parts[1]: | |
138 tags["source"] = parts[1] | |
139 if parts[7]: | |
140 tags["phase"] = parts[7] | |
141 | |
142 gff_info = dict() | |
143 gff_info['info'] = dict(tags) | |
144 gff_info["is_gff3"] = ftype | |
145 gff_info['chr'] = parts[0] | |
146 gff_info['score'] = parts[5] | |
147 | |
148 if parts[3] and parts[4]: | |
149 gff_info['location'] = [int(parts[3]) , | |
150 int(parts[4])] | |
151 gff_info['type'] = parts[2] | |
152 gff_info['id'] = tags.get('ID', [''])[0] | |
153 if parts[6] in ['?', '.']: | |
154 parts[6] = None | |
155 gff_info['strand'] = parts[6] | |
156 | |
157 # key word according to the GFF spec. | |
158 # is_gff3 flag is false check this condition and get the attribute fields | |
159 if not ftype: | |
160 gff_info = spec_features_keywd(gff_info) | |
161 | |
162 # link the feature relationships | |
163 if gff_info['info'].has_key('Parent'): | |
164 for p in gff_info['info']['Parent']: | |
165 if p == gff_info['id']: | |
166 gff_info['id'] = '' | |
167 break | |
168 rec_category = 'child' | |
169 elif gff_info['id']: | |
170 rec_category = 'parent' | |
171 else: | |
172 rec_category = 'record' | |
173 | |
174 # depends on the record category organize the features | |
175 if rec_category == 'child': | |
176 for p in gff_info['info']['Parent']: | |
177 # create the data structure based on source and feature id | |
178 child_map[(gff_info['chr'], gff_info['info']['source'], p)].append( | |
179 dict( type = gff_info['type'], | |
180 location = gff_info['location'], | |
181 strand = gff_info['strand'], | |
182 score = gff_info['score'], | |
183 ID = gff_info['id'], | |
184 gene_id = gff_info['info'].get('GParent', '') | |
185 )) | |
186 elif rec_category == 'parent': | |
187 parent_map[(gff_info['chr'], gff_info['info']['source'], gff_info['id'])] = dict( | |
188 type = gff_info['type'], | |
189 location = gff_info['location'], | |
190 strand = gff_info['strand'], | |
191 score = gff_info['score'], | |
192 name = tags.get('Name', [''])[0]) | |
193 elif rec_category == 'record': | |
194 #TODO how to handle plain records? | |
195 c = 1 | |
196 ga_handle.close() | |
197 | |
198 # depends on file type create parent feature | |
199 if not ftype: | |
200 parent_map, child_map = create_missing_feature_type(parent_map, child_map) | |
201 | |
202 # connecting parent child relations | |
203 # essentially the parent child features are here from any type of GTF/GFF2/GFF3 file | |
204 gene_mat = format_gene_models(parent_map, child_map) | |
205 | |
206 return gene_mat | |
207 | |
208 def format_gene_models(parent_nf_map, child_nf_map): | |
209 """ | |
210 Genarate GeneObject based on the parsed file contents | |
211 | |
212 @args parent_nf_map: parent features with source and chromosome information | |
213 @type parent_nf_map: collections defaultdict | |
214 @args child_nf_map: transctipt and exon information are encoded | |
215 @type child_nf_map: collections defaultdict | |
216 """ | |
217 | |
218 g_cnt = 0 | |
219 gene = np.zeros((len(parent_nf_map),), dtype = utils.init_gene()) | |
220 | |
221 for pkey, pdet in parent_nf_map.items(): | |
222 # considering only gene features | |
223 #if not re.search(r'gene', pdet.get('type', '')): | |
224 # continue | |
225 | |
226 # infer the gene start and stop if not there in the | |
227 if not pdet.get('location', []): | |
228 GNS, GNE = [], [] | |
229 # multiple number of transcripts | |
230 for L1 in child_nf_map[pkey]: | |
231 GNS.append(L1.get('location', [])[0]) | |
232 GNE.append(L1.get('location', [])[1]) | |
233 GNS.sort() | |
234 GNE.sort() | |
235 pdet['location'] = [GNS[0], GNE[-1]] | |
236 | |
237 orient = pdet.get('strand', '') | |
238 gene[g_cnt]['id'] = g_cnt +1 | |
239 gene[g_cnt]['chr'] = pkey[0] | |
240 gene[g_cnt]['source'] = pkey[1] | |
241 gene[g_cnt]['name'] = pkey[-1] | |
242 gene[g_cnt]['start'] = pdet.get('location', [])[0] | |
243 gene[g_cnt]['stop'] = pdet.get('location', [])[1] | |
244 gene[g_cnt]['strand'] = orient | |
245 gene[g_cnt]['score'] = pdet.get('score','') | |
246 | |
247 # default value | |
248 gene[g_cnt]['is_alt_spliced'] = gene[g_cnt]['is_alt'] = 0 | |
249 if len(child_nf_map[pkey]) > 1: | |
250 gene[g_cnt]['is_alt_spliced'] = gene[g_cnt]['is_alt'] = 1 | |
251 | |
252 # complete sub-feature for all transcripts | |
253 dim = len(child_nf_map[pkey]) | |
254 TRS = np.zeros((dim,), dtype=np.object) | |
255 TR_TYP = np.zeros((dim,), dtype=np.object) | |
256 EXON = np.zeros((dim,), dtype=np.object) | |
257 UTR5 = np.zeros((dim,), dtype=np.object) | |
258 UTR3 = np.zeros((dim,), dtype=np.object) | |
259 CDS = np.zeros((dim,), dtype=np.object) | |
260 TISc = np.zeros((dim,), dtype=np.object) | |
261 TSSc = np.zeros((dim,), dtype=np.object) | |
262 CLV = np.zeros((dim,), dtype=np.object) | |
263 CSTOP = np.zeros((dim,), dtype=np.object) | |
264 TSTAT = np.zeros((dim,), dtype=np.object) | |
265 | |
266 # fetching corresponding transcripts | |
267 for xq, Lv1 in enumerate(child_nf_map[pkey]): | |
268 | |
269 TID = Lv1.get('ID', '') | |
270 TRS[xq]= np.array([TID]) | |
271 | |
272 TYPE = Lv1.get('type', '') | |
273 TR_TYP[xq] = np.array('') | |
274 TR_TYP[xq] = np.array(TYPE) if TYPE else TR_TYP[xq] | |
275 | |
276 orient = Lv1.get('strand', '') | |
277 | |
278 # fetching different sub-features | |
279 child_feat = defaultdict(list) | |
280 for Lv2 in child_nf_map[(pkey[0], pkey[1], TID)]: | |
281 E_TYP = Lv2.get('type', '') | |
282 child_feat[E_TYP].append(Lv2.get('location')) | |
283 | |
284 # make general ascending order of coordinates | |
285 if orient == '-': | |
286 for etype, excod in child_feat.items(): | |
287 if len(excod) > 1: | |
288 if excod[0][0] > excod[-1][0]: | |
289 excod.reverse() | |
290 child_feat[etype] = excod | |
291 | |
292 # make exon coordinate from cds and utr regions | |
293 if not child_feat.get('exon'): | |
294 if child_feat.get('CDS'): | |
295 exon_cod = utils.make_Exon_cod( orient, | |
296 NonetoemptyList(child_feat.get('five_prime_UTR')), | |
297 NonetoemptyList(child_feat.get('CDS')), | |
298 NonetoemptyList(child_feat.get('three_prime_UTR'))) | |
299 child_feat['exon'] = exon_cod | |
300 else: | |
301 # TODO only UTR's | |
302 # searching through keys to find a pattern describing exon feature | |
303 ex_key_pattern = [k for k in child_feat if k.endswith("exon")] | |
304 if ex_key_pattern: | |
305 child_feat['exon'] = child_feat[ex_key_pattern[0]] | |
306 | |
307 # stop_codon are seperated from CDS, add the coordinates based on strand | |
308 if child_feat.get('stop_codon'): | |
309 if orient == '+': | |
310 if child_feat.get('stop_codon')[0][0] - child_feat.get('CDS')[-1][1] == 1: | |
311 child_feat['CDS'][-1] = [child_feat.get('CDS')[-1][0], child_feat.get('stop_codon')[0][1]] | |
312 else: | |
313 child_feat['CDS'].append(child_feat.get('stop_codon')[0]) | |
314 elif orient == '-': | |
315 if child_feat.get('CDS')[0][0] - child_feat.get('stop_codon')[0][1] == 1: | |
316 child_feat['CDS'][0] = [child_feat.get('stop_codon')[0][0], child_feat.get('CDS')[0][1]] | |
317 else: | |
318 child_feat['CDS'].insert(0, child_feat.get('stop_codon')[0]) | |
319 | |
320 # transcript signal sites | |
321 TIS, cdsStop, TSS, cleave = [], [], [], [] | |
322 cds_status, exon_status, utr_status = 0, 0, 0 | |
323 | |
324 if child_feat.get('exon'): | |
325 TSS = [child_feat.get('exon')[-1][1]] | |
326 TSS = [child_feat.get('exon')[0][0]] if orient == '+' else TSS | |
327 cleave = [child_feat.get('exon')[0][0]] | |
328 cleave = [child_feat.get('exon')[-1][1]] if orient == '+' else cleave | |
329 exon_status = 1 | |
330 | |
331 if child_feat.get('CDS'): | |
332 if orient == '+': | |
333 TIS = [child_feat.get('CDS')[0][0]] | |
334 cdsStop = [child_feat.get('CDS')[-1][1]-3] | |
335 else: | |
336 TIS = [child_feat.get('CDS')[-1][1]] | |
337 cdsStop = [child_feat.get('CDS')[0][0]+3] | |
338 cds_status = 1 | |
339 # cds phase calculation | |
340 child_feat['CDS'] = utils.add_CDS_phase(orient, child_feat.get('CDS')) | |
341 | |
342 # sub-feature status | |
343 if child_feat.get('three_prime_UTR') or child_feat.get('five_prime_UTR'): | |
344 utr_status =1 | |
345 | |
346 if utr_status == cds_status == exon_status == 1: | |
347 t_status = 1 | |
348 else: | |
349 t_status = 0 | |
350 | |
351 # add sub-feature # make array for export to different out | |
352 TSTAT[xq] = t_status | |
353 EXON[xq] = np.array(child_feat.get('exon'), np.float64) | |
354 UTR5[xq] = np.array(NonetoemptyList(child_feat.get('five_prime_UTR'))) | |
355 UTR3[xq] = np.array(NonetoemptyList(child_feat.get('three_prime_UTR'))) | |
356 CDS[xq] = np.array(NonetoemptyList(child_feat.get('CDS'))) | |
357 TISc[xq] = np.array(TIS) | |
358 CSTOP[xq] = np.array(cdsStop) | |
359 TSSc[xq] = np.array(TSS) | |
360 CLV[xq] = np.array(cleave) | |
361 | |
362 # add sub-features to the parent gene feature | |
363 gene[g_cnt]['transcript_status'] = TSTAT | |
364 gene[g_cnt]['transcripts'] = TRS | |
365 gene[g_cnt]['exons'] = EXON | |
366 gene[g_cnt]['utr5_exons'] = UTR5 | |
367 gene[g_cnt]['cds_exons'] = CDS | |
368 gene[g_cnt]['utr3_exons'] = UTR3 | |
369 gene[g_cnt]['transcript_type'] = TR_TYP | |
370 gene[g_cnt]['tis'] = TISc | |
371 gene[g_cnt]['cdsStop'] = CSTOP | |
372 gene[g_cnt]['tss'] = TSSc | |
373 gene[g_cnt]['cleave'] = CLV | |
374 | |
375 gene[g_cnt]['gene_info'] = dict( ID = pkey[-1], | |
376 Name = pdet.get('name'), | |
377 Source = pkey[1]) | |
378 # few empty fields // TODO fill this: | |
379 gene[g_cnt]['anno_id'] = [] | |
380 gene[g_cnt]['confgenes_id'] = [] | |
381 gene[g_cnt]['alias'] = '' | |
382 gene[g_cnt]['name2'] = [] | |
383 gene[g_cnt]['chr_num'] = [] | |
384 gene[g_cnt]['paralogs'] = [] | |
385 gene[g_cnt]['transcript_info'] = [] | |
386 gene[g_cnt]['transcript_valid'] = [] | |
387 gene[g_cnt]['exons_confirmed'] = [] | |
388 gene[g_cnt]['tis_conf'] = [] | |
389 gene[g_cnt]['tis_info'] = [] | |
390 gene[g_cnt]['cdsStop_conf'] = [] | |
391 gene[g_cnt]['cdsStop_info'] = [] | |
392 gene[g_cnt]['tss_info'] = [] | |
393 gene[g_cnt]['tss_conf'] = [] | |
394 gene[g_cnt]['cleave_info'] = [] | |
395 gene[g_cnt]['cleave_conf'] = [] | |
396 gene[g_cnt]['polya_info'] = [] | |
397 gene[g_cnt]['polya_conf'] = [] | |
398 gene[g_cnt]['is_valid'] = [] | |
399 gene[g_cnt]['transcript_complete'] = [] | |
400 gene[g_cnt]['is_complete'] = [] | |
401 gene[g_cnt]['is_correctly_gff3_referenced'] = '' | |
402 gene[g_cnt]['splicegraph'] = [] | |
403 g_cnt += 1 | |
404 | |
405 ## deleting empty gene records from the main array | |
406 XPFLG=0 | |
407 for XP, ens in enumerate(gene): | |
408 if ens[0]==0: | |
409 XPFLG=1 | |
410 break | |
411 | |
412 if XPFLG==1: | |
413 XQC = range(XP, len(gene)+1) | |
414 gene = np.delete(gene, XQC) | |
415 | |
416 return gene | |
417 | |
418 def NonetoemptyList(XS): | |
419 """ | |
420 Convert a None type to empty list | |
421 | |
422 @args XS: None type | |
423 @type XS: str | |
424 """ | |
425 return [] if XS is None else XS | |
426 | |
427 def create_missing_feature_type(p_feat, c_feat): | |
428 """ | |
429 GFF/GTF file defines only child features. This function tries to create | |
430 the parent feature from the information provided in the attribute column. | |
431 | |
432 example: | |
433 chr21 hg19_knownGene exon 9690071 9690100 0.000000 + . gene_id "uc002zkg.1"; transcript_id "uc002zkg.1"; | |
434 chr21 hg19_knownGene exon 9692178 9692207 0.000000 + . gene_id "uc021wgt.1"; transcript_id "uc021wgt.1"; | |
435 chr21 hg19_knownGene exon 9711935 9712038 0.000000 + . gene_id "uc011abu.2"; transcript_id "uc011abu.2"; | |
436 | |
437 This function gets the parsed feature annotations. | |
438 | |
439 @args p_feat: Parent feature map | |
440 @type p_feat: collections defaultdict | |
441 @args c_feat: Child feature map | |
442 @type c_feat: collections defaultdict | |
443 """ | |
444 | |
445 child_n_map = defaultdict(list) | |
446 for fid, det in c_feat.items(): | |
447 # get the details from grand child | |
448 GID = STRD = SCR = None | |
449 SPOS, EPOS = [], [] | |
450 TYP = dict() | |
451 for gchild in det: | |
452 GID = gchild.get('gene_id', [''])[0] | |
453 SPOS.append(gchild.get('location', [])[0]) | |
454 EPOS.append(gchild.get('location', [])[1]) | |
455 STRD = gchild.get('strand', '') | |
456 SCR = gchild.get('score', '') | |
457 if gchild.get('type', '') == "gene": ## gencode GTF file has this problem | |
458 continue | |
459 TYP[gchild.get('type', '')] = 1 | |
460 SPOS.sort() | |
461 EPOS.sort() | |
462 | |
463 # infer transcript type | |
464 transcript_type = 'transcript' | |
465 transcript_type = 'mRNA' if TYP.get('CDS', '') or TYP.get('cds', '') else transcript_type | |
466 | |
467 # gene id and transcript id are same | |
468 transcript_id = fid[-1] | |
469 if GID == transcript_id: | |
470 transcript_id = 'Transcript:' + str(GID) | |
471 | |
472 # level -1 feature type | |
473 p_feat[(fid[0], fid[1], GID)] = dict( type = 'gene', | |
474 location = [], ## infer location based on multiple transcripts | |
475 strand = STRD, | |
476 name = GID ) | |
477 # level -2 feature type | |
478 child_n_map[(fid[0], fid[1], GID)].append( | |
479 dict( type = transcript_type, | |
480 location = [SPOS[0], EPOS[-1]], | |
481 strand = STRD, | |
482 score = SCR, | |
483 ID = transcript_id, | |
484 gene_id = '' )) | |
485 # reorganizing the grand child | |
486 for gchild in det: | |
487 child_n_map[(fid[0], fid[1], transcript_id)].append( | |
488 dict( type = gchild.get('type', ''), | |
489 location = gchild.get('location'), | |
490 strand = gchild.get('strand'), | |
491 ID = gchild.get('ID'), | |
492 score = gchild.get('score'), | |
493 gene_id = '' )) | |
494 return p_feat, child_n_map | |
495 |