Mercurial > repos > vipints > fml_gff3togtf
diff GFFtools-GX/GFFParser.py @ 3:ff2c2e6f4ab3
Uploaded version 2.0.0 of gfftools ready to import to local instance
author | vipints |
---|---|
date | Wed, 11 Jun 2014 16:29:25 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/GFFtools-GX/GFFParser.py Wed Jun 11 16:29:25 2014 -0400 @@ -0,0 +1,491 @@ +#!/usr/bin/env python +""" +Extract genome annotation from a GFF (a tab delimited format for storing sequence features and annotations) file. + +Requirements: + Numpy :- http://numpy.org/ + Scipy :- http://scipy.org/ + +Copyright (C) + +2009-2012 Friedrich Miescher Laboratory of the Max Planck Society, Tubingen, Germany. +2012-2014 Memorial Sloan Kettering Cancer Center, New York City, USA. +""" + +import re +import os +import sys +import urllib +import numpy as np +import scipy.io as sio +from collections import defaultdict +import helper as utils + +def attribute_tags(col9): + """ + Split the key-value tags from the attribute column, it takes column number 9 from GTF/GFF file + + @args col9: attribute column from GFF file + @type col9: str + """ + info = defaultdict(list) + is_gff = False + + if not col9: + return is_gff, info + + # trim the line ending semi-colon ucsc may have some white-space + col9 = col9.rstrip(';| ') + # attributes from 9th column + atbs = col9.split(" ; ") + if len(atbs) == 1: + atbs = col9.split("; ") + if len(atbs) == 1: + atbs = col9.split(";") + # check the GFF3 pattern which has key value pairs like: + gff3_pat = re.compile("\w+=") + # sometime GTF have: gene_id uc002zkg.1; + gtf_pat = re.compile("\s?\w+\s") + + key_vals = [] + + if gff3_pat.match(atbs[0]): # gff3 pattern + is_gff = True + key_vals = [at.split('=') for at in atbs] + elif gtf_pat.match(atbs[0]): # gtf pattern + for at in atbs: + key_vals.append(at.strip().split(" ",1)) + else: + # to handle attribute column has only single value + key_vals.append(['ID', atbs[0]]) + # get key, val items + for item in key_vals: + key, val = item + # replace the double qoutes from feature identifier + val = re.sub('"', '', val) + # replace the web formating place holders to plain text format + info[key].extend([urllib.unquote(v) for v in val.split(',') if v]) + + return is_gff, info + +def spec_features_keywd(gff_parts): + """ + Specify the feature key word according to the GFF specifications + + @args gff_parts: attribute field key + @type gff_parts: str + """ + for t_id in ["transcript_id", "transcriptId", "proteinId"]: + try: + gff_parts["info"]["Parent"] = gff_parts["info"][t_id] + break + except KeyError: + pass + for g_id in ["gene_id", "geneid", "geneId", "name", "gene_name", "genename"]: + try: + gff_parts["info"]["GParent"] = gff_parts["info"][g_id] + break + except KeyError: + pass + ## TODO key words + for flat_name in ["Transcript", "CDS"]: + if gff_parts["info"].has_key(flat_name): + # parents + if gff_parts['type'] in [flat_name] or re.search(r'transcript', gff_parts['type'], re.IGNORECASE): + if not gff_parts['id']: + gff_parts['id'] = gff_parts['info'][flat_name][0] + #gff_parts["info"]["ID"] = [gff_parts["id"]] + # children + elif gff_parts["type"] in ["intron", "exon", "three_prime_UTR", + "coding_exon", "five_prime_UTR", "CDS", "stop_codon", + "start_codon"]: + gff_parts["info"]["Parent"] = gff_parts["info"][flat_name] + break + return gff_parts + +def Parse(ga_file): + """ + Parsing GFF/GTF file based on feature relationship, it takes the input file. + + @args ga_file: input file name + @type ga_file: str + """ + child_map = defaultdict(list) + parent_map = dict() + + ga_handle = utils.open_file(ga_file) + + for rec in ga_handle: + rec = rec.strip('\n\r') + + # skip empty line fasta identifier and commented line + if not rec or rec[0] in ['#', '>']: + continue + # skip the genome sequence + if not re.search('\t', rec): + continue + + parts = rec.split('\t') + assert len(parts) >= 8, rec + + # process the attribute column (9th column) + ftype, tags = attribute_tags(parts[-1]) + if not tags: # skip the line if no attribute column. + continue + + # extract fields + if parts[1]: + tags["source"] = parts[1] + if parts[7]: + tags["phase"] = parts[7] + + gff_info = dict() + gff_info['info'] = dict(tags) + #gff_info["is_gff3"] = ftype + gff_info['chr'] = parts[0] + gff_info['score'] = parts[5] + + if parts[3] and parts[4]: + gff_info['location'] = [int(parts[3]) , + int(parts[4])] + gff_info['type'] = parts[2] + gff_info['id'] = tags.get('ID', [''])[0] + if parts[6] in ['?', '.']: + parts[6] = None + gff_info['strand'] = parts[6] + + # key word according to the GFF spec. + if not ftype: + gff_info = spec_features_keywd(gff_info) + + # link the feature relationships + if gff_info['info'].has_key('Parent'): + for p in gff_info['info']['Parent']: + if p == gff_info['id']: + gff_info['id'] = '' + break + rec_category = 'child' + elif gff_info['id']: + rec_category = 'parent' + else: + rec_category = 'record' + + # depends on the record category organize the features + if rec_category == 'child': + for p in gff_info['info']['Parent']: + # create the data structure based on source and feature id + child_map[(gff_info['chr'], gff_info['info']['source'], p)].append( + dict( type = gff_info['type'], + location = gff_info['location'], + strand = gff_info['strand'], + score = gff_info['score'], + ID = gff_info['id'], + gene_id = gff_info['info'].get('GParent', '') + )) + elif rec_category == 'parent': + parent_map[(gff_info['chr'], gff_info['info']['source'], gff_info['id'])] = dict( + type = gff_info['type'], + location = gff_info['location'], + strand = gff_info['strand'], + score = gff_info['score'], + name = tags.get('Name', [''])[0]) + elif rec_category == 'record': + #TODO how to handle plain records? + c = 1 + ga_handle.close() + + # depends on file type create parent feature + if not ftype: + parent_map, child_map = create_missing_feature_type(parent_map, child_map) + + # connecting parent child relations + # // essentially the parent child features are here from any type of GTF/GFF2/GFF3 file + gene_mat = format_gene_models(parent_map, child_map) + + return gene_mat + +def format_gene_models(parent_nf_map, child_nf_map): + """ + Genarate GeneObject based on the parsed file contents + + @args parent_nf_map: parent features with source and chromosome information + @type parent_nf_map: collections defaultdict + @args child_nf_map: transctipt and exon information are encoded + @type child_nf_map: collections defaultdict + """ + g_cnt = 0 + gene = np.zeros((len(parent_nf_map),), dtype = utils.init_gene()) + + for pkey, pdet in parent_nf_map.items(): + + # considering only gene features + if not re.search(r'gene', pdet.get('type', '')): + continue + # infer the gene start and stop if not there in the + if not pdet.get('location', []): + GNS, GNE = [], [] + # multiple number of transcripts + for L1 in child_nf_map[pkey]: + GNS.append(L1.get('location', [])[0]) + GNE.append(L1.get('location', [])[1]) + GNS.sort() + GNE.sort() + pdet['location'] = [GNS[0], GNE[-1]] + orient = pdet.get('strand', '') + + gene[g_cnt]['id'] = g_cnt +1 + gene[g_cnt]['chr'] = pkey[0] + gene[g_cnt]['source'] = pkey[1] + gene[g_cnt]['name'] = pkey[-1] + gene[g_cnt]['start'] = pdet.get('location', [])[0] + gene[g_cnt]['stop'] = pdet.get('location', [])[1] + gene[g_cnt]['strand'] = orient + gene[g_cnt]['score'] = pdet.get('score','') + + # default value + gene[g_cnt]['is_alt_spliced'] = gene[g_cnt]['is_alt'] = 0 + if len(child_nf_map[pkey]) > 1: + gene[g_cnt]['is_alt_spliced'] = gene[g_cnt]['is_alt'] = 1 + + # complete sub-feature for all transcripts + dim = len(child_nf_map[pkey]) + TRS = np.zeros((dim,), dtype=np.object) + TR_TYP = np.zeros((dim,), dtype=np.object) + EXON = np.zeros((dim,), dtype=np.object) + UTR5 = np.zeros((dim,), dtype=np.object) + UTR3 = np.zeros((dim,), dtype=np.object) + CDS = np.zeros((dim,), dtype=np.object) + TISc = np.zeros((dim,), dtype=np.object) + TSSc = np.zeros((dim,), dtype=np.object) + CLV = np.zeros((dim,), dtype=np.object) + CSTOP = np.zeros((dim,), dtype=np.object) + TSTAT = np.zeros((dim,), dtype=np.object) + + # fetching corresponding transcripts + for xq, Lv1 in enumerate(child_nf_map[pkey]): + + TID = Lv1.get('ID', '') + TRS[xq]= np.array([TID]) + + TYPE = Lv1.get('type', '') + TR_TYP[xq] = np.array('') + TR_TYP[xq] = np.array(TYPE) if TYPE else TR_TYP[xq] + + orient = Lv1.get('strand', '') + + # fetching different sub-features + child_feat = defaultdict(list) + for Lv2 in child_nf_map[(pkey[0], pkey[1], TID)]: + E_TYP = Lv2.get('type', '') + child_feat[E_TYP].append(Lv2.get('location')) + + # make general ascending order of coordinates + if orient == '-': + for etype, excod in child_feat.items(): + if len(excod) > 1: + if excod[0][0] > excod[-1][0]: + excod.reverse() + child_feat[etype] = excod + + # make exon coordinate from cds and utr regions + if not child_feat.get('exon'): + if child_feat.get('CDS'): + exon_cod = utils.make_Exon_cod( orient, + NonetoemptyList(child_feat.get('five_prime_UTR')), + NonetoemptyList(child_feat.get('CDS')), + NonetoemptyList(child_feat.get('three_prime_UTR'))) + child_feat['exon'] = exon_cod + else: + # TODO only UTR's + # searching through keys to find a pattern describing exon feature + ex_key_pattern = [k for k in child_feat if k.endswith("exon")] + if ex_key_pattern: + child_feat['exon'] = child_feat[ex_key_pattern[0]] + + # stop_codon are seperated from CDS, add the coordinates based on strand + if child_feat.get('stop_codon'): + if orient == '+': + if child_feat.get('stop_codon')[0][0] - child_feat.get('CDS')[-1][1] == 1: + child_feat['CDS'][-1] = [child_feat.get('CDS')[-1][0], child_feat.get('stop_codon')[0][1]] + else: + child_feat['CDS'].append(child_feat.get('stop_codon')[0]) + elif orient == '-': + if child_feat.get('CDS')[0][0] - child_feat.get('stop_codon')[0][1] == 1: + child_feat['CDS'][0] = [child_feat.get('stop_codon')[0][0], child_feat.get('CDS')[0][1]] + else: + child_feat['CDS'].insert(0, child_feat.get('stop_codon')[0]) + + # transcript signal sites + TIS, cdsStop, TSS, cleave = [], [], [], [] + cds_status, exon_status, utr_status = 0, 0, 0 + + if child_feat.get('exon'): + TSS = [child_feat.get('exon')[-1][1]] + TSS = [child_feat.get('exon')[0][0]] if orient == '+' else TSS + cleave = [child_feat.get('exon')[0][0]] + cleave = [child_feat.get('exon')[-1][1]] if orient == '+' else cleave + exon_status = 1 + + if child_feat.get('CDS'): + if orient == '+': + TIS = [child_feat.get('CDS')[0][0]] + cdsStop = [child_feat.get('CDS')[-1][1]-3] + else: + TIS = [child_feat.get('CDS')[-1][1]] + cdsStop = [child_feat.get('CDS')[0][0]+3] + cds_status = 1 + # cds phase calculation + child_feat['CDS'] = utils.add_CDS_phase(orient, child_feat.get('CDS')) + + # sub-feature status + if child_feat.get('three_prime_UTR') or child_feat.get('five_prime_UTR'): + utr_status =1 + + if utr_status == cds_status == exon_status == 1: + t_status = 1 + else: + t_status = 0 + + # add sub-feature # make array for export to different out + TSTAT[xq] = t_status + EXON[xq] = np.array(child_feat.get('exon'), np.float64) + UTR5[xq] = np.array(NonetoemptyList(child_feat.get('five_prime_UTR'))) + UTR3[xq] = np.array(NonetoemptyList(child_feat.get('three_prime_UTR'))) + CDS[xq] = np.array(NonetoemptyList(child_feat.get('CDS'))) + TISc[xq] = np.array(TIS) + CSTOP[xq] = np.array(cdsStop) + TSSc[xq] = np.array(TSS) + CLV[xq] = np.array(cleave) + + # add sub-features to the parent gene feature + gene[g_cnt]['transcript_status'] = TSTAT + gene[g_cnt]['transcripts'] = TRS + gene[g_cnt]['exons'] = EXON + gene[g_cnt]['utr5_exons'] = UTR5 + gene[g_cnt]['cds_exons'] = CDS + gene[g_cnt]['utr3_exons'] = UTR3 + gene[g_cnt]['transcript_type'] = TR_TYP + gene[g_cnt]['tis'] = TISc + gene[g_cnt]['cdsStop'] = CSTOP + gene[g_cnt]['tss'] = TSSc + gene[g_cnt]['cleave'] = CLV + + gene[g_cnt]['gene_info'] = dict( ID = pkey[-1], + Name = pdet.get('name'), + Source = pkey[1]) + # few empty fields // TODO fill this: + gene[g_cnt]['anno_id'] = [] + gene[g_cnt]['confgenes_id'] = [] + gene[g_cnt]['alias'] = '' + gene[g_cnt]['name2'] = [] + gene[g_cnt]['chr_num'] = [] + gene[g_cnt]['paralogs'] = [] + gene[g_cnt]['transcript_info'] = [] + gene[g_cnt]['transcript_valid'] = [] + gene[g_cnt]['exons_confirmed'] = [] + gene[g_cnt]['tis_conf'] = [] + gene[g_cnt]['tis_info'] = [] + gene[g_cnt]['cdsStop_conf'] = [] + gene[g_cnt]['cdsStop_info'] = [] + gene[g_cnt]['tss_info'] = [] + gene[g_cnt]['tss_conf'] = [] + gene[g_cnt]['cleave_info'] = [] + gene[g_cnt]['cleave_conf'] = [] + gene[g_cnt]['polya_info'] = [] + gene[g_cnt]['polya_conf'] = [] + gene[g_cnt]['is_valid'] = [] + gene[g_cnt]['transcript_complete'] = [] + gene[g_cnt]['is_complete'] = [] + gene[g_cnt]['is_correctly_gff3_referenced'] = '' + gene[g_cnt]['splicegraph'] = [] + g_cnt += 1 + + ## deleting empty gene records from the main array + XPFLG=0 + for XP, ens in enumerate(gene): + if ens[0]==0: + XPFLG=1 + break + + if XPFLG==1: + XQC = range(XP, len(gene)+1) + gene = np.delete(gene, XQC) + + return gene + +def NonetoemptyList(XS): + """ + Convert a None type to empty list + + @args XS: None type + @type XS: str + """ + return [] if XS is None else XS + +def create_missing_feature_type(p_feat, c_feat): + """ + GFF/GTF file defines only child features. This function tries to create + the parent feature from the information provided in the attribute column. + + example: + chr21 hg19_knownGene exon 9690071 9690100 0.000000 + . gene_id "uc002zkg.1"; transcript_id "uc002zkg.1"; + chr21 hg19_knownGene exon 9692178 9692207 0.000000 + . gene_id "uc021wgt.1"; transcript_id "uc021wgt.1"; + chr21 hg19_knownGene exon 9711935 9712038 0.000000 + . gene_id "uc011abu.2"; transcript_id "uc011abu.2"; + + This function gets the parsed feature annotations. + + @args p_feat: Parent feature map + @type p_feat: collections defaultdict + @args c_feat: Child feature map + @type c_feat: collections defaultdict + """ + + child_n_map = defaultdict(list) + for fid, det in c_feat.items(): + # get the details from grand child + GID = STRD = SCR = None + SPOS, EPOS = [], [] + TYP = dict() + for gchild in det: + GID = gchild.get('gene_id', [''])[0] + SPOS.append(gchild.get('location', [])[0]) + EPOS.append(gchild.get('location', [])[1]) + STRD = gchild.get('strand', '') + SCR = gchild.get('score', '') + TYP[gchild.get('type', '')] = 1 + SPOS.sort() + EPOS.sort() + + # infer transcript type + transcript_type = 'transcript' + transcript_type = 'mRNA' if TYP.get('CDS', '') or TYP.get('cds', '') else transcript_type + + # gene id and transcript id are same + transcript_id = fid[-1] + if GID == transcript_id: + transcript_id = 'Transcript:' + str(GID) + + # level -1 feature type + p_feat[(fid[0], fid[1], GID)] = dict( type = 'gene', + location = [], ## infer location based on multiple transcripts + strand = STRD, + name = GID ) + # level -2 feature type + child_n_map[(fid[0], fid[1], GID)].append( + dict( type = transcript_type, + location = [SPOS[0], EPOS[-1]], + strand = STRD, + score = SCR, + ID = transcript_id, + gene_id = '' )) + # reorganizing the grand child + for gchild in det: + child_n_map[(fid[0], fid[1], transcript_id)].append( + dict( type = gchild.get('type', ''), + location = gchild.get('location'), + strand = gchild.get('strand'), + ID = gchild.get('ID'), + score = gchild.get('score'), + gene_id = '' )) + return p_feat, child_n_map +