Mercurial > repos > vipints > rdiff
comparison rDiff/src/locfit/Source/liblocf.c @ 0:0f80a5141704
version 0.3 uploaded
| author | vipints |
|---|---|
| date | Thu, 14 Feb 2013 23:38:36 -0500 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:0f80a5141704 |
|---|---|
| 1 /* | |
| 2 * Copyright 1996-2006 Catherine Loader. | |
| 3 */ | |
| 4 | |
| 5 #include "mex.h" | |
| 6 /* | |
| 7 * Copyright 1996-2006 Catherine Loader. | |
| 8 */ | |
| 9 /* | |
| 10 * Integration for hazard rate estimation. The functions in this | |
| 11 * file are used to evaluate | |
| 12 * sum int_0^{Ti} W_i(t,x) A()A()' exp( P() ) dt | |
| 13 * for hazard rate models. | |
| 14 * | |
| 15 * These routines assume the weight function is supported on [-1,1]. | |
| 16 * hasint_sph multiplies by exp(base(lf,i)), which allows estimating | |
| 17 * the baseline in a proportional hazards model, when the covariate | |
| 18 * effect base(lf,i) is known. | |
| 19 * | |
| 20 * TODO: | |
| 21 * hazint_sph, should be able to reduce mint in some cases with | |
| 22 * small integration range. onedint could be used for beta-family | |
| 23 * (RECT,EPAN,BISQ,TRWT) kernels. | |
| 24 * hazint_prod, restrict terms from the sum based on x values. | |
| 25 * I should count obs >= max, and only do that integration once. | |
| 26 */ | |
| 27 | |
| 28 #include "locf.h" | |
| 29 | |
| 30 static double ilim[2*MXDIM], *ff, tmax; | |
| 31 static lfdata *haz_lfd; | |
| 32 static smpar *haz_sp; | |
| 33 | |
| 34 /* | |
| 35 * hrao returns 0 if integration region is empty. | |
| 36 * 1 otherwise. | |
| 37 */ | |
| 38 int haz_sph_int(dfx,cf,h,r1) | |
| 39 double *dfx, *cf, h, *r1; | |
| 40 { double s, t0, t1, wt, th; | |
| 41 int j, dim, p; | |
| 42 s = 0; p = npar(haz_sp); | |
| 43 dim = haz_lfd->d; | |
| 44 for (j=1; j<dim; j++) s += SQR(dfx[j]/(h*haz_lfd->sca[j])); | |
| 45 if (s>1) return(0); | |
| 46 | |
| 47 setzero(r1,p*p); | |
| 48 t1 = sqrt(1-s)*h*haz_lfd->sca[0]; | |
| 49 t0 = -t1; | |
| 50 if (t0<ilim[0]) t0 = ilim[0]; | |
| 51 if (t1>ilim[dim]) t1 = ilim[dim]; | |
| 52 if (t1>dfx[0]) t1 = dfx[0]; | |
| 53 if (t1<t0) return(0); | |
| 54 | |
| 55 /* Numerical integration by Simpson's rule. | |
| 56 */ | |
| 57 for (j=0; j<=de_mint; j++) | |
| 58 { dfx[0] = t0+(t1-t0)*j/de_mint; | |
| 59 wt = weight(haz_lfd, haz_sp, dfx, NULL, h, 0, 0.0); | |
| 60 fitfun(haz_lfd, haz_sp, dfx,NULL,ff,NULL); | |
| 61 th = innerprod(cf,ff,p); | |
| 62 if (link(haz_sp)==LLOG) th = exp(th); | |
| 63 wt *= 2+2*(j&1)-(j==0)-(j==de_mint); | |
| 64 addouter(r1,ff,ff,p,wt*th); | |
| 65 } | |
| 66 multmatscal(r1,(t1-t0)/(3*de_mint),p*p); | |
| 67 | |
| 68 return(1); | |
| 69 } | |
| 70 | |
| 71 int hazint_sph(t,resp,r1,cf,h) | |
| 72 double *t, *resp, *r1, *cf, h; | |
| 73 { int i, j, n, p, st; | |
| 74 double dfx[MXDIM], eb, sb; | |
| 75 p = npar(haz_sp); | |
| 76 setzero(resp,p*p); | |
| 77 sb = 0.0; | |
| 78 | |
| 79 n = haz_lfd->n; | |
| 80 for (i=0; i<=n; i++) | |
| 81 { | |
| 82 if (i==n) | |
| 83 { dfx[0] = tmax-t[0]; | |
| 84 for (j=1; j<haz_lfd->d; j++) dfx[j] = 0.0; | |
| 85 eb = exp(sb/n); | |
| 86 } | |
| 87 else | |
| 88 { eb = exp(base(haz_lfd,i)); sb += base(haz_lfd,i); | |
| 89 for (j=0; j<haz_lfd->d; j++) dfx[j] = datum(haz_lfd,j,i)-t[j]; | |
| 90 } | |
| 91 | |
| 92 st = haz_sph_int(dfx,cf,h,r1); | |
| 93 if (st) | |
| 94 for (j=0; j<p*p; j++) resp[j] += eb*r1[j]; | |
| 95 } | |
| 96 return(LF_OK); | |
| 97 } | |
| 98 | |
| 99 int hazint_prod(t,resp,x,cf,h) | |
| 100 double *t, *resp, *x, *cf, h; | |
| 101 { int d, p, i, j, k, st; | |
| 102 double dfx[MXDIM], t_prev, | |
| 103 hj, hs, ncf[MXDEG], ef, il1; | |
| 104 double prod_wk[MXDIM][2*MXDEG+1], eb, sb; | |
| 105 | |
| 106 p = npar(haz_sp); | |
| 107 d = haz_lfd->d; | |
| 108 setzero(resp,p*p); | |
| 109 hj = hs = h*haz_lfd->sca[0]; | |
| 110 | |
| 111 ncf[0] = cf[0]; | |
| 112 for (i=1; i<=deg(haz_sp); i++) | |
| 113 { ncf[i] = hj*cf[(i-1)*d+1]; hj *= hs; | |
| 114 } | |
| 115 | |
| 116 /* for i=0..n.... | |
| 117 * First we compute prod_wk[j], j=0..d. | |
| 118 * For j=0, this is int_0^T_i (u-t)^k W((u-t)/h) exp(b0*(u-t)) du | |
| 119 * For remaining j, (x(i,j)-x(j))^k Wj exp(bj*(x..-x.)) | |
| 120 * | |
| 121 * Second, we add to the integration (exp(a) incl. in integral) | |
| 122 * with the right factorial denominators. | |
| 123 */ | |
| 124 t_prev = ilim[0]; sb = 0.0; | |
| 125 for (i=0; i<=haz_lfd->n; i++) | |
| 126 { if (i==haz_lfd->n) | |
| 127 { dfx[0] = tmax-t[0]; | |
| 128 for (j=1; j<d; j++) dfx[j] = 0.0; | |
| 129 eb = exp(sb/haz_lfd->n); | |
| 130 } | |
| 131 else | |
| 132 { eb = exp(base(haz_lfd,i)); sb += base(haz_lfd,i); | |
| 133 for (j=0; j<d; j++) dfx[j] = datum(haz_lfd,j,i)-t[j]; | |
| 134 } | |
| 135 | |
| 136 if (dfx[0]>ilim[0]) /* else it doesn't contribute */ | |
| 137 { | |
| 138 /* time integral */ | |
| 139 il1 = (dfx[0]>ilim[d]) ? ilim[d] : dfx[0]; | |
| 140 if (il1 != t_prev) /* don't repeat! */ | |
| 141 { st = onedint(haz_sp,ncf,ilim[0]/hs,il1/hs,prod_wk[0]); | |
| 142 if (st>0) return(st); | |
| 143 hj = eb; | |
| 144 for (j=0; j<=2*deg(haz_sp); j++) | |
| 145 { hj *= hs; | |
| 146 prod_wk[0][j] *= hj; | |
| 147 } | |
| 148 t_prev = il1; | |
| 149 } | |
| 150 | |
| 151 /* covariate terms */ | |
| 152 for (j=1; j<d; j++) | |
| 153 { | |
| 154 ef = 0.0; | |
| 155 for (k=deg(haz_sp); k>0; k--) ef = (ef+dfx[j])*cf[1+(k-1)*d+j]; | |
| 156 ef = exp(ef); | |
| 157 prod_wk[j][0] = ef * W(dfx[j]/(h*haz_lfd->sca[j]),ker(haz_sp)); | |
| 158 for (k=1; k<=2*deg(haz_sp); k++) | |
| 159 prod_wk[j][k] = prod_wk[j][k-1] * dfx[j]; | |
| 160 } | |
| 161 | |
| 162 /* add to the integration. */ | |
| 163 prodintresp(resp,prod_wk,d,deg(haz_sp),p); | |
| 164 } /* if dfx0 > ilim0 */ | |
| 165 } /* n loop */ | |
| 166 | |
| 167 /* symmetrize */ | |
| 168 for (k=0; k<p; k++) | |
| 169 for (j=k; j<p; j++) | |
| 170 resp[j*p+k] = resp[k*p+j]; | |
| 171 return(LF_OK); | |
| 172 } | |
| 173 | |
| 174 int hazint(t,resp,resp1,cf,h) | |
| 175 double *t, *resp, *resp1, *cf, h; | |
| 176 { if (haz_lfd->d==1) return(hazint_prod(t,resp,resp1,cf,h)); | |
| 177 if (kt(haz_sp)==KPROD) return(hazint_prod(t,resp,resp1,cf,h)); | |
| 178 | |
| 179 return(hazint_sph(t,resp,resp1,cf,h)); | |
| 180 } | |
| 181 | |
| 182 void haz_init(lfd,des,sp,il) | |
| 183 lfdata *lfd; | |
| 184 design *des; | |
| 185 smpar *sp; | |
| 186 double *il; | |
| 187 { int i; | |
| 188 | |
| 189 haz_lfd = lfd; | |
| 190 haz_sp = sp; | |
| 191 | |
| 192 tmax = datum(lfd,0,0); | |
| 193 for (i=1; i<lfd->n; i++) tmax = MAX(tmax,datum(lfd,0,i)); | |
| 194 ff = des->xtwx.wk; | |
| 195 for (i=0; i<2*lfd->d; i++) ilim[i] = il[i]; | |
| 196 } | |
| 197 /* | |
| 198 * Copyright 1996-2006 Catherine Loader. | |
| 199 */ | |
| 200 /* | |
| 201 * | |
| 202 * Routines for one-dimensional numerical integration | |
| 203 * in density estimation. The entry point is | |
| 204 * | |
| 205 * onedint(cf,mi,l0,l1,resp) | |
| 206 * | |
| 207 * which evaluates int W(u)u^j exp( P(u) ), j=0..2*deg. | |
| 208 * P(u) = cf[0] + cf[1]u + cf[2]u^2/2 + ... + cf[deg]u^deg/deg! | |
| 209 * l0 and l1 are the integration limits. | |
| 210 * The results are returned through the vector resp. | |
| 211 * | |
| 212 */ | |
| 213 | |
| 214 #include "locf.h" | |
| 215 | |
| 216 static int debug; | |
| 217 | |
| 218 int exbctay(b,c,n,z) /* n-term taylor series of e^(bx+cx^2) */ | |
| 219 double b, c, *z; | |
| 220 int n; | |
| 221 { double ec[20]; | |
| 222 int i, j; | |
| 223 z[0] = 1; | |
| 224 for (i=1; i<=n; i++) z[i] = z[i-1]*b/i; | |
| 225 if (c==0.0) return(n); | |
| 226 if (n>=40) | |
| 227 { WARN(("exbctay limit to n<40")); | |
| 228 n = 39; | |
| 229 } | |
| 230 ec[0] = 1; | |
| 231 for (i=1; 2*i<=n; i++) ec[i] = ec[i-1]*c/i; | |
| 232 for (i=n; i>1; i--) | |
| 233 for (j=1; 2*j<=i; j++) | |
| 234 z[i] += ec[j]*z[i-2*j]; | |
| 235 return(n); | |
| 236 } | |
| 237 | |
| 238 double explinjtay(l0,l1,j,cf) | |
| 239 /* int_l0^l1 x^j e^(a+bx+cx^2); exbctay aroud l1 */ | |
| 240 double l0, l1, *cf; | |
| 241 int j; | |
| 242 { double tc[40], f, s; | |
| 243 int k, n; | |
| 244 if ((l0!=0.0) | (l1!=1.0)) WARN(("explinjtay: invalid l0, l1")); | |
| 245 n = exbctay(cf[1]+2*cf[2]*l1,cf[2],20,tc); | |
| 246 s = tc[0]/(j+1); | |
| 247 f = 1/(j+1); | |
| 248 for (k=1; k<=n; k++) | |
| 249 { f *= -k/(j+k+1.0); | |
| 250 s += tc[k]*f; | |
| 251 } | |
| 252 return(f); | |
| 253 } | |
| 254 | |
| 255 void explint1(l0,l1,cf,I,p) /* int x^j exp(a+bx); j=0..p-1 */ | |
| 256 double l0, l1, *cf, *I; | |
| 257 int p; | |
| 258 { double y0, y1, f; | |
| 259 int j, k, k1; | |
| 260 y0 = mut_exp(cf[0]+l0*cf[1]); | |
| 261 y1 = mut_exp(cf[0]+l1*cf[1]); | |
| 262 if (p<2*fabs(cf[1])) k = p; else k = (int)fabs(cf[1]); | |
| 263 | |
| 264 if (k>0) | |
| 265 { I[0] = (y1-y0)/cf[1]; | |
| 266 for (j=1; j<k; j++) /* forward steps for small j */ | |
| 267 { y1 *= l1; y0 *= l0; | |
| 268 I[j] = (y1-y0-j*I[j-1])/cf[1]; | |
| 269 } | |
| 270 if (k==p) return; | |
| 271 y1 *= l1; y0 *= l0; | |
| 272 } | |
| 273 | |
| 274 f = 1; k1 = k; | |
| 275 while ((k<50) && (f>1.0e-8)) /* initially Ik = diff(x^{k+1}e^{a+bx}) */ | |
| 276 { y1 *= l1; y0 *= l0; | |
| 277 I[k] = y1-y0; | |
| 278 if (k>=p) f *= fabs(cf[1])/(k+1); | |
| 279 k++; | |
| 280 } | |
| 281 if (k==50) WARN(("explint1: want k>50")); | |
| 282 I[k] = 0.0; | |
| 283 for (j=k-1; j>=k1; j--) /* now do back step recursion */ | |
| 284 I[j] = (I[j]-cf[1]*I[j+1])/(j+1); | |
| 285 } | |
| 286 | |
| 287 void explintyl(l0,l1,cf,I,p) /* small c, use taylor series and explint1 */ | |
| 288 double l0, l1, *cf, *I; | |
| 289 int p; | |
| 290 { int i; | |
| 291 double c; | |
| 292 explint1(l0,l1,cf,I,p+8); | |
| 293 c = cf[2]; | |
| 294 for (i=0; i<p; i++) | |
| 295 I[i] = (((I[i+8]*c/4+I[i+6])*c/3+I[i+4])*c/2+I[i+2])*c+I[i]; | |
| 296 } | |
| 297 | |
| 298 void solvetrid(X,y,m) | |
| 299 double *X, *y; | |
| 300 int m; | |
| 301 { int i; | |
| 302 double s; | |
| 303 for (i=1; i<m; i++) | |
| 304 { s = X[3*i]/X[3*i-2]; | |
| 305 X[3*i] = 0; X[3*i+1] -= s*X[3*i-1]; | |
| 306 y[i] -= s*y[i-1]; | |
| 307 } | |
| 308 for (i=m-2; i>=0; i--) | |
| 309 { s = X[3*i+2]/X[3*i+4]; | |
| 310 X[3*i+2] = 0; | |
| 311 y[i] -= s*y[i+1]; | |
| 312 } | |
| 313 for (i=0; i<m; i++) y[i] /= X[3*i+1]; | |
| 314 } | |
| 315 | |
| 316 void initi0i1(I,cf,y0,y1,l0,l1) | |
| 317 double *I, *cf, y0, y1, l0, l1; | |
| 318 { double a0, a1, c, d, bi; | |
| 319 d = -cf[1]/(2*cf[2]); c = sqrt(2*fabs(cf[2])); | |
| 320 a0 = c*(l0-d); a1 = c*(l1-d); | |
| 321 if (cf[2]<0) | |
| 322 { bi = mut_exp(cf[0]+cf[1]*d+cf[2]*d*d)/c; | |
| 323 if (a0>0) | |
| 324 { if (a0>6) I[0] = (y0*ptail(-a0)-y1*ptail(-a1))/c; | |
| 325 else I[0] = S2PI*(mut_pnorm(-a0)-mut_pnorm(-a1))*bi; | |
| 326 } | |
| 327 else | |
| 328 { if (a1< -6) I[0] = (y1*ptail(a1)-y0*ptail(a0))/c; | |
| 329 else I[0] = S2PI*(mut_pnorm(a1)-mut_pnorm(a0))*bi; | |
| 330 } | |
| 331 } | |
| 332 else | |
| 333 I[0] = (y1*mut_daws(a1)-y0*mut_daws(a0))/c; | |
| 334 I[1] = (y1-y0)/(2*cf[2])+d*I[0]; | |
| 335 } | |
| 336 | |
| 337 void explinsid(l0,l1,cf,I,p) /* large b; don't use fwd recursion */ | |
| 338 double l0, l1, *cf, *I; | |
| 339 int p; | |
| 340 { int k, k0, k1, k2; | |
| 341 double y0, y1, Z[150]; | |
| 342 if (debug) mut_printf("side: %8.5f %8.5f %8.5f limt %8.5f %8.5f p %2d\n",cf[0],cf[1],cf[2],l0,l1,p); | |
| 343 | |
| 344 k0 = 2; | |
| 345 k1 = (int)(fabs(cf[1])+fabs(2*cf[2])); | |
| 346 if (k1<2) k1 = 2; | |
| 347 if (k1>p+20) k1 = p+20; | |
| 348 k2 = p+20; | |
| 349 | |
| 350 if (k2>50) { mut_printf("onedint: k2 warning\n"); k2 = 50; } | |
| 351 if (debug) mut_printf("k0 %2d k1 %2d k2 %2d p %2d\n",k0,k1,k2,p); | |
| 352 | |
| 353 y0 = mut_exp(cf[0]+l0*(cf[1]+l0*cf[2])); | |
| 354 y1 = mut_exp(cf[0]+l1*(cf[1]+l1*cf[2])); | |
| 355 initi0i1(I,cf,y0,y1,l0,l1); | |
| 356 if (debug) mut_printf("i0 %8.5f i1 %8.5f\n",I[0],I[1]); | |
| 357 | |
| 358 y1 *= l1; y0 *= l0; /* should be x^(k1)*exp(..) */ | |
| 359 if (k0<k1) /* center steps; initially x^k*exp(...) */ | |
| 360 for (k=k0; k<k1; k++) | |
| 361 { y1 *= l1; y0 *= l0; | |
| 362 I[k] = y1-y0; | |
| 363 Z[3*k] = k; Z[3*k+1] = cf[1]; Z[3*k+2] = 2*cf[2]; | |
| 364 } | |
| 365 | |
| 366 y1 *= l1; y0 *= l0; /* should be x^(k1)*exp(..) */ | |
| 367 if (debug) mut_printf("k1 %2d y0 %8.5f y1 %8.5f\n",k1,y0,y1); | |
| 368 for (k=k1; k<k2; k++) | |
| 369 { y1 *= l1; y0 *= l0; | |
| 370 I[k] = y1-y0; | |
| 371 } | |
| 372 I[k2] = I[k2+1] = 0.0; | |
| 373 for (k=k2-1; k>=k1; k--) | |
| 374 I[k] = (I[k]-cf[1]*I[k+1]-2*cf[2]*I[k+2])/(k+1); | |
| 375 | |
| 376 if (k0<k1) | |
| 377 { I[k0] -= k0*I[k0-1]; | |
| 378 I[k1-1] -= 2*cf[2]*I[k1]; | |
| 379 Z[3*k0] = Z[3*k1-1] = 0; | |
| 380 solvetrid(&Z[3*k0],&I[k0],k1-k0); | |
| 381 } | |
| 382 if (debug) | |
| 383 { mut_printf("explinsid:\n"); | |
| 384 for (k=0; k<p; k++) mut_printf(" %8.5f\n",I[k]); | |
| 385 } | |
| 386 } | |
| 387 | |
| 388 void explinbkr(l0,l1,cf,I,p) /* small b,c; use back recursion */ | |
| 389 double l0, l1, *cf, *I; | |
| 390 int p; | |
| 391 { int k, km; | |
| 392 double y0, y1; | |
| 393 y0 = mut_exp(cf[0]+l0*(cf[1]+cf[2]*l0)); | |
| 394 y1 = mut_exp(cf[0]+l1*(cf[1]+cf[2]*l1)); | |
| 395 km = p+10; | |
| 396 for (k=0; k<=km; k++) | |
| 397 { y1 *= l1; y0 *= l0; | |
| 398 I[k] = y1-y0; | |
| 399 } | |
| 400 I[km+1] = I[km+2] = 0; | |
| 401 for (k=km; k>=0; k--) | |
| 402 I[k] = (I[k]-cf[1]*I[k+1]-2*cf[2]*I[k+2])/(k+1); | |
| 403 } | |
| 404 | |
| 405 void explinfbk0(l0,l1,cf,I,p) /* fwd and bac recur; b=0; c<0 */ | |
| 406 double l0, l1, *cf, *I; | |
| 407 int p; | |
| 408 { double y0, y1, f1, f2, f, ml2; | |
| 409 int k, ks; | |
| 410 | |
| 411 y0 = mut_exp(cf[0]+l0*l0*cf[2]); | |
| 412 y1 = mut_exp(cf[0]+l1*l1*cf[2]); | |
| 413 initi0i1(I,cf,y0,y1,l0,l1); | |
| 414 | |
| 415 ml2 = MAX(l0*l0,l1*l1); | |
| 416 ks = 1+(int)(2*fabs(cf[2])*ml2); | |
| 417 if (ks<2) ks = 2; | |
| 418 if (ks>p-3) ks = p; | |
| 419 | |
| 420 /* forward recursion for k < ks */ | |
| 421 for (k=2; k<ks; k++) | |
| 422 { y1 *= l1; y0 *= l0; | |
| 423 I[k] = (y1-y0-(k-1)*I[k-2])/(2*cf[2]); | |
| 424 } | |
| 425 if (ks==p) return; | |
| 426 | |
| 427 y1 *= l1*l1; y0 *= l0*l0; | |
| 428 for (k=ks; k<p; k++) /* set I[k] = x^{k+1}e^(a+cx^2) | {l0,l1} */ | |
| 429 { y1 *= l1; y0 *= l0; | |
| 430 I[k] = y1-y0; | |
| 431 } | |
| 432 | |
| 433 /* initialize I[p-2] and I[p-1] */ | |
| 434 f1 = 1.0/p; f2 = 1.0/(p-1); | |
| 435 I[p-1] *= f1; I[p-2] *= f2; | |
| 436 k = p; f = 1.0; | |
| 437 while (f>1.0e-8) | |
| 438 { y1 *= l1; y0 *= l0; | |
| 439 if ((k-p)%2==0) /* add to I[p-2] */ | |
| 440 { f2 *= -2*cf[2]/(k+1); | |
| 441 I[p-2] += (y1-y0)*f2; | |
| 442 } | |
| 443 else /* add to I[p-1] */ | |
| 444 { f1 *= -2*cf[2]/(k+1); | |
| 445 I[p-1] += (y1-y0)*f1; | |
| 446 f *= 2*fabs(cf[2])*ml2/(k+1); | |
| 447 } | |
| 448 k++; | |
| 449 } | |
| 450 | |
| 451 /* use back recursion for I[ks..(p-3)] */ | |
| 452 for (k=p-3; k>=ks; k--) | |
| 453 I[k] = (I[k]-2*cf[2]*I[k+2])/(k+1); | |
| 454 } | |
| 455 | |
| 456 void explinfbk(l0,l1,cf,I,p) /* fwd and bac recur; b not too large */ | |
| 457 double l0, l1, *cf, *I; | |
| 458 int p; | |
| 459 { double y0, y1; | |
| 460 int k, ks, km; | |
| 461 | |
| 462 y0 = mut_exp(cf[0]+l0*(cf[1]+l0*cf[2])); | |
| 463 y1 = mut_exp(cf[0]+l1*(cf[1]+l1*cf[2])); | |
| 464 initi0i1(I,cf,y0,y1,l0,l1); | |
| 465 | |
| 466 ks = (int)(3*fabs(cf[2])); | |
| 467 if (ks<3) ks = 3; | |
| 468 if (ks>0.75*p) ks = p; /* stretch the forward recurs as far as poss. */ | |
| 469 /* forward recursion for k < ks */ | |
| 470 for (k=2; k<ks; k++) | |
| 471 { y1 *= l1; y0 *= l0; | |
| 472 I[k] = (y1-y0-cf[1]*I[k-1]-(k-1)*I[k-2])/(2*cf[2]); | |
| 473 } | |
| 474 if (ks==p) return; | |
| 475 | |
| 476 km = p+15; | |
| 477 y1 *= l1*l1; y0 *= l0*l0; | |
| 478 for (k=ks; k<=km; k++) | |
| 479 { y1 *= l1; y0 *= l0; | |
| 480 I[k] = y1-y0; | |
| 481 } | |
| 482 I[km+1] = I[km+2] = 0.0; | |
| 483 for (k=km; k>=ks; k--) | |
| 484 I[k] = (I[k]-cf[1]*I[k+1]-2*cf[2]*I[k+2])/(k+1); | |
| 485 } | |
| 486 | |
| 487 void recent(I,resp,wt,p,s,x) | |
| 488 double *I, *resp, *wt, x; | |
| 489 int p, s; | |
| 490 { int i, j; | |
| 491 | |
| 492 /* first, use W taylor series I -> resp */ | |
| 493 for (i=0; i<=p; i++) | |
| 494 { resp[i] = 0.0; | |
| 495 for (j=0; j<s; j++) resp[i] += wt[j]*I[i+j]; | |
| 496 } | |
| 497 | |
| 498 /* now, recenter x -> 0 */ | |
| 499 if (x==0) return; | |
| 500 for (j=0; j<=p; j++) for (i=p; i>j; i--) resp[i] += x*resp[i-1]; | |
| 501 } | |
| 502 | |
| 503 void recurint(l0,l2,cf,resp,p,ker) | |
| 504 double l0, l2, *cf, *resp; | |
| 505 int p, ker; | |
| 506 { int i, s; | |
| 507 double l1, d0, d1, d2, dl, z0, z1, z2, wt[20], ncf[3], I[50], r1[5], r2[5]; | |
| 508 if (debug) mut_printf("\nrecurint: %8.5f %8.5f %8.5f %8.5f %8.5f\n",cf[0],cf[1],cf[2],l0,l2); | |
| 509 | |
| 510 if (cf[2]==0) /* go straight to explint1 */ | |
| 511 { s = wtaylor(wt,0.0,ker); | |
| 512 if (debug) mut_printf("case 1\n"); | |
| 513 explint1(l0,l2,cf,I,p+s); | |
| 514 recent(I,resp,wt,p,s,0.0); | |
| 515 return; | |
| 516 } | |
| 517 | |
| 518 dl = l2-l0; | |
| 519 d0 = cf[1]+2*l0*cf[2]; | |
| 520 d2 = cf[1]+2*l2*cf[2]; | |
| 521 z0 = cf[0]+l0*(cf[1]+l0*cf[2]); | |
| 522 z2 = cf[0]+l2*(cf[1]+l2*cf[2]); | |
| 523 | |
| 524 if ((fabs(cf[1]*dl)<1) && (fabs(cf[2]*dl*dl)<1)) | |
| 525 { ncf[0] = z0; ncf[1] = d0; ncf[2] = cf[2]; | |
| 526 if (debug) mut_printf("case 2\n"); | |
| 527 s = wtaylor(wt,l0,ker); | |
| 528 explinbkr(0.0,dl,ncf,I,p+s); | |
| 529 recent(I,resp,wt,p,s,l0); | |
| 530 return; | |
| 531 } | |
| 532 | |
| 533 if (fabs(cf[2]*dl*dl)<0.001) /* small c, use explint1+tay.ser */ | |
| 534 { ncf[0] = z0; ncf[1] = d0; ncf[2] = cf[2]; | |
| 535 if (debug) mut_printf("case small c\n"); | |
| 536 s = wtaylor(wt,l0,ker); | |
| 537 explintyl(0.0,l2-l0,ncf,I,p+s); | |
| 538 recent(I,resp,wt,p,s,l0); | |
| 539 return; | |
| 540 } | |
| 541 | |
| 542 if (d0*d2<=0) /* max/min in [l0,l2] */ | |
| 543 { l1 = -cf[1]/(2*cf[2]); | |
| 544 z1 = cf[0]+l1*(cf[1]+l1*cf[2]); | |
| 545 d1 = 0.0; | |
| 546 if (cf[2]<0) /* peak, integrate around l1 */ | |
| 547 { s = wtaylor(wt,l1,ker); | |
| 548 ncf[0] = z1; ncf[1] = 0.0; ncf[2] = cf[2]; | |
| 549 if (debug) mut_printf("case peak p %2d s %2d\n",p,s); | |
| 550 explinfbk0(l0-l1,l2-l1,ncf,I,p+s); | |
| 551 recent(I,resp,wt,p,s,l1); | |
| 552 return; | |
| 553 } | |
| 554 } | |
| 555 | |
| 556 if ((d0-2*cf[2]*dl)*(d2+2*cf[2]*dl)<0) /* max/min is close to [l0,l2] */ | |
| 557 { l1 = -cf[1]/(2*cf[2]); | |
| 558 z1 = cf[0]+l1*(cf[1]+l1*cf[2]); | |
| 559 if (l1<l0) { l1 = l0; z1 = z0; } | |
| 560 if (l1>l2) { l1 = l2; z1 = z2; } | |
| 561 | |
| 562 if ((z1>=z0) & (z1>=z2)) /* peak; integrate around l1 */ | |
| 563 { s = wtaylor(wt,l1,ker); | |
| 564 if (debug) mut_printf("case 4\n"); | |
| 565 d1 = cf[1]+2*l1*cf[2]; | |
| 566 ncf[0] = z1; ncf[1] = d1; ncf[2] = cf[2]; | |
| 567 explinfbk(l0-l1,l2-l1,ncf,I,p+s); | |
| 568 recent(I,resp,wt,p,s,l1); | |
| 569 return; | |
| 570 } | |
| 571 | |
| 572 /* trough; integrate [l0,l1] and [l1,l2] */ | |
| 573 for (i=0; i<=p; i++) r1[i] = r2[i] = 0.0; | |
| 574 if (l0<l1) | |
| 575 { s = wtaylor(wt,l0,ker); | |
| 576 if (debug) mut_printf("case 5\n"); | |
| 577 ncf[0] = z0; ncf[1] = d0; ncf[2] = cf[2]; | |
| 578 explinfbk(0.0,l1-l0,ncf,I,p+s); | |
| 579 recent(I,r1,wt,p,s,l0); | |
| 580 } | |
| 581 if (l1<l2) | |
| 582 { s = wtaylor(wt,l2,ker); | |
| 583 if (debug) mut_printf("case 6\n"); | |
| 584 ncf[0] = z2; ncf[1] = d2; ncf[2] = cf[2]; | |
| 585 explinfbk(l1-l2,0.0,ncf,I,p+s); | |
| 586 recent(I,r2,wt,p,s,l2); | |
| 587 } | |
| 588 for (i=0; i<=p; i++) resp[i] = r1[i]+r2[i]; | |
| 589 return; | |
| 590 } | |
| 591 | |
| 592 /* Now, quadratic is monotone on [l0,l2]; big b; moderate c */ | |
| 593 if (z2>z0+3) /* steep increase, expand around l2 */ | |
| 594 { s = wtaylor(wt,l2,ker); | |
| 595 if (debug) mut_printf("case 7\n"); | |
| 596 | |
| 597 | |
| 598 ncf[0] = z2; ncf[1] = d2; ncf[2] = cf[2]; | |
| 599 explinsid(l0-l2,0.0,ncf,I,p+s); | |
| 600 recent(I,resp,wt,p,s,l2); | |
| 601 if (debug) mut_printf("7 resp: %8.5f %8.5f %8.5f %8.5f\n",resp[0],resp[1],resp[2],resp[3]); | |
| 602 return; | |
| 603 } | |
| 604 | |
| 605 /* bias towards expansion around l0, because it's often 0 */ | |
| 606 if (debug) mut_printf("case 8\n"); | |
| 607 s = wtaylor(wt,l0,ker); | |
| 608 ncf[0] = z0; ncf[1] = d0; ncf[2] = cf[2]; | |
| 609 explinsid(0.0,l2-l0,ncf,I,p+s); | |
| 610 recent(I,resp,wt,p,s,l0); | |
| 611 return; | |
| 612 } | |
| 613 | |
| 614 int onedexpl(cf,deg,resp) | |
| 615 double *cf, *resp; | |
| 616 int deg; | |
| 617 { int i; | |
| 618 double f0, fr, fl; | |
| 619 if (deg>=2) LERR(("onedexpl only valid for deg=0,1")); | |
| 620 if (fabs(cf[1])>=EFACT) return(LF_BADP); | |
| 621 | |
| 622 f0 = exp(cf[0]); fl = fr = 1.0; | |
| 623 for (i=0; i<=2*deg; i++) | |
| 624 { f0 *= i+1; | |
| 625 fl /=-(EFACT+cf[1]); | |
| 626 fr /= EFACT-cf[1]; | |
| 627 resp[i] = f0*(fr-fl); | |
| 628 } | |
| 629 return(LF_OK); | |
| 630 } | |
| 631 | |
| 632 int onedgaus(cf,deg,resp) | |
| 633 double *cf, *resp; | |
| 634 int deg; | |
| 635 { int i; | |
| 636 double f0, mu, s2; | |
| 637 if (deg==3) | |
| 638 { LERR(("onedgaus only valid for deg=0,1,2")); | |
| 639 return(LF_ERR); | |
| 640 } | |
| 641 if (2*cf[2]>=GFACT*GFACT) return(LF_BADP); | |
| 642 | |
| 643 s2 = 1/(GFACT*GFACT-2*cf[2]); | |
| 644 mu = cf[1]*s2; | |
| 645 resp[0] = 1.0; | |
| 646 if (deg>=1) | |
| 647 { resp[1] = mu; | |
| 648 resp[2] = s2+mu*mu; | |
| 649 if (deg==2) | |
| 650 { resp[3] = mu*(3*s2+mu*mu); | |
| 651 resp[4] = 3*s2*s2 + mu*mu*(6*s2+mu*mu); | |
| 652 } | |
| 653 } | |
| 654 f0 = S2PI * exp(cf[0]+mu*mu/(2*s2))*sqrt(s2); | |
| 655 for (i=0; i<=2*deg; i++) resp[i] *= f0; | |
| 656 return(LF_OK); | |
| 657 } | |
| 658 | |
| 659 int onedint(sp,cf,l0,l1,resp) /* int W(u)u^j exp(..), j=0..2*deg */ | |
| 660 smpar *sp; | |
| 661 double *cf, l0, l1, *resp; | |
| 662 { double u, uj, y, ncf[4], rr[5]; | |
| 663 int i, j; | |
| 664 | |
| 665 if (debug) mut_printf("onedint: %f %f %f %f %f\n",cf[0],cf[1],cf[2],l0,l1); | |
| 666 | |
| 667 if (deg(sp)<=2) | |
| 668 { for (i=0; i<3; i++) ncf[i] = (i>deg(sp)) ? 0.0 : cf[i]; | |
| 669 ncf[2] /= 2; | |
| 670 | |
| 671 if (ker(sp)==WEXPL) return(onedexpl(ncf,deg(sp),resp)); | |
| 672 if (ker(sp)==WGAUS) return(onedgaus(ncf,deg(sp),resp)); | |
| 673 | |
| 674 if (l1>0) | |
| 675 recurint(MAX(l0,0.0),l1,ncf,resp,2*deg(sp),ker(sp)); | |
| 676 else for (i=0; i<=2*deg(sp); i++) resp[i] = 0; | |
| 677 | |
| 678 if (l0<0) | |
| 679 { ncf[1] = -ncf[1]; | |
| 680 l0 = -l0; l1 = -l1; | |
| 681 recurint(MAX(l1,0.0),l0,ncf,rr,2*deg(sp),ker(sp)); | |
| 682 } | |
| 683 else for (i=0; i<=2*deg(sp); i++) rr[i] = 0.0; | |
| 684 | |
| 685 for (i=0; i<=2*deg(sp); i++) | |
| 686 resp[i] += (i%2==0) ? rr[i] : -rr[i]; | |
| 687 | |
| 688 return(LF_OK); | |
| 689 } | |
| 690 | |
| 691 /* For degree >= 3, we use Simpson's rule. */ | |
| 692 for (j=0; j<=2*deg(sp); j++) resp[j] = 0.0; | |
| 693 for (i=0; i<=de_mint; i++) | |
| 694 { u = l0+(l1-l0)*i/de_mint; | |
| 695 y = cf[0]; uj = 1; | |
| 696 for (j=1; j<=deg(sp); j++) | |
| 697 { uj *= u; | |
| 698 y += cf[j]*uj/fact[j]; | |
| 699 } | |
| 700 y = (4-2*(i%2==0)-(i==0)-(i==de_mint)) * | |
| 701 W(fabs(u),ker(sp))*exp(MIN(y,300.0)); | |
| 702 for (j=0; j<=2*deg(sp); j++) | |
| 703 { resp[j] += y; | |
| 704 y *= u; | |
| 705 } | |
| 706 } | |
| 707 for (j=0; j<=2*deg(sp); j++) resp[j] = resp[j]*(l1-l0)/(3*de_mint); | |
| 708 return(LF_OK); | |
| 709 } | |
| 710 /* | |
| 711 * Copyright 1996-2006 Catherine Loader. | |
| 712 */ | |
| 713 #include "locf.h" | |
| 714 | |
| 715 extern int lf_status; | |
| 716 static double u[MXDIM], ilim[2*MXDIM], *ff, hh, *cff; | |
| 717 static lfdata *den_lfd; | |
| 718 static design *den_des; | |
| 719 static smpar *den_sp; | |
| 720 int fact[] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800}; | |
| 721 int de_mint = 20; | |
| 722 int de_itype = IDEFA; | |
| 723 int de_renorm= 0; | |
| 724 | |
| 725 int multint(), prodint(), gausint(), mlinint(); | |
| 726 | |
| 727 #define NITYPE 7 | |
| 728 static char *itype[NITYPE] = { "default", "multi", "product", "mlinear", | |
| 729 "hazard", "sphere", "monte" }; | |
| 730 static int ivals[NITYPE] = | |
| 731 { IDEFA, IMULT, IPROD, IMLIN, IHAZD, ISPHR, IMONT }; | |
| 732 int deitype(char *z) | |
| 733 { return(pmatch(z, itype, ivals, NITYPE, IDEFA)); | |
| 734 } | |
| 735 | |
| 736 void prresp(coef,resp,p) | |
| 737 double *coef, *resp; | |
| 738 int p; | |
| 739 { int i, j; | |
| 740 mut_printf("Coefficients:\n"); | |
| 741 for (i=0; i<p; i++) mut_printf("%8.5f ",coef[i]); | |
| 742 mut_printf("\n"); | |
| 743 mut_printf("Response matrix:\n"); | |
| 744 for (i=0; i<p; i++) | |
| 745 { for (j=0; j<p; j++) mut_printf("%9.6f, ",resp[i+j*p]); | |
| 746 mut_printf("\n"); | |
| 747 } | |
| 748 } | |
| 749 | |
| 750 int mif(u,d,resp,M) | |
| 751 double *u, *resp, *M; | |
| 752 int d; | |
| 753 { double wt; | |
| 754 int i, j, p; | |
| 755 | |
| 756 p = den_des->p; | |
| 757 wt = weight(den_lfd, den_sp, u, NULL, hh, 0, 0.0); | |
| 758 if (wt==0) | |
| 759 { setzero(resp,p*p); | |
| 760 return(p*p); | |
| 761 } | |
| 762 | |
| 763 fitfun(den_lfd, den_sp, u,NULL,ff,NULL); | |
| 764 if (link(den_sp)==LLOG) | |
| 765 wt *= mut_exp(innerprod(ff,cff,p)); | |
| 766 for (i=0; i<p; i++) | |
| 767 for (j=0; j<p; j++) | |
| 768 resp[i*p+j] = wt*ff[i]*ff[j]; | |
| 769 return(p*p); | |
| 770 } | |
| 771 | |
| 772 int multint(t,resp1,resp2,cf,h) | |
| 773 double *t, *resp1, *resp2, *cf, h; | |
| 774 { int d, i, mg[MXDIM]; | |
| 775 | |
| 776 if (ker(den_sp)==WGAUS) return(gausint(t,resp1,resp2,cf,h,den_lfd->sca)); | |
| 777 | |
| 778 d = den_lfd->d; | |
| 779 for (i=0; i<d; i++) mg[i] = de_mint; | |
| 780 | |
| 781 hh = h; | |
| 782 cff= cf; | |
| 783 simpsonm(mif,ilim,&ilim[d],d,resp1,mg,resp2); | |
| 784 return(LF_OK); | |
| 785 } | |
| 786 | |
| 787 int mlinint(t,resp1,resp2,cf,h) | |
| 788 double *t, *resp1, *resp2, *cf, h; | |
| 789 { | |
| 790 double hd, nb, wt, wu, g[4], w0, w1, v, *sca; | |
| 791 int d, p, i, j, jmax, k, l, z, jj[2]; | |
| 792 | |
| 793 d = den_lfd->d; p = den_des->p; sca = den_lfd->sca; | |
| 794 hd = 1; | |
| 795 for (i=0; i<d; i++) hd *= h*sca[i]; | |
| 796 | |
| 797 if (link(den_sp)==LIDENT) | |
| 798 { setzero(resp1,p*p); | |
| 799 resp1[0] = wint(d,NULL,0,ker(den_sp))*hd; | |
| 800 if (deg(den_sp)==0) return(LF_OK); | |
| 801 jj[0] = 2; w0 = wint(d,jj,1,ker(den_sp))*hd*h*h; | |
| 802 for (i=0; i<d; i++) resp1[(i+1)*p+i+1] = w0*sca[i]*sca[i]; | |
| 803 if (deg(den_sp)==1) return(LF_OK); | |
| 804 for (i=0; i<d; i++) | |
| 805 { j = p-(d-i)*(d-i+1)/2; | |
| 806 resp1[j] = resp1[p*j] = w0*sca[i]*sca[i]/2; | |
| 807 } | |
| 808 if (d>1) | |
| 809 { jj[1] = 2; | |
| 810 w0 = wint(d,jj,2,ker(den_sp)) * hd*h*h*h*h; | |
| 811 } | |
| 812 jj[0] = 4; | |
| 813 w1 = wint(d,jj,1,ker(den_sp)) * hd*h*h*h*h/4; | |
| 814 z = d+1; | |
| 815 for (i=0; i<d; i++) | |
| 816 { k = p-(d-i)*(d-i+1)/2; | |
| 817 for (j=i; j<d; j++) | |
| 818 { l = p-(d-j)*(d-j+1)/2; | |
| 819 if (i==j) resp1[z*p+z] = w1*SQR(sca[i])*SQR(sca[i]); | |
| 820 else | |
| 821 { resp1[z*p+z] = w0*SQR(sca[i])*SQR(sca[j]); | |
| 822 resp1[k*p+l] = resp1[k+p*l] = w0/4*SQR(sca[i])*SQR(sca[j]); | |
| 823 } | |
| 824 z++; | |
| 825 } } | |
| 826 return(LF_OK); | |
| 827 } | |
| 828 switch(deg(den_sp)) | |
| 829 { case 0: | |
| 830 resp1[0] = mut_exp(cf[0])*wint(d,NULL,0,ker(den_sp))*hd; | |
| 831 return(LF_OK); | |
| 832 case 1: | |
| 833 nb = 0.0; | |
| 834 for (i=1; i<=d; i++) | |
| 835 { v = h*cf[i]*sca[i-1]; | |
| 836 nb += v*v; | |
| 837 } | |
| 838 if (ker(den_sp)==WGAUS) | |
| 839 { w0 = 1/(GFACT*GFACT); | |
| 840 g[0] = mut_exp(cf[0]+w0*nb/2+d*log(S2PI/2.5)); | |
| 841 g[1] = g[3] = g[0]*w0; | |
| 842 g[2] = g[0]*w0*w0; | |
| 843 } | |
| 844 else | |
| 845 { wt = wu = mut_exp(cf[0]); | |
| 846 w0 = wint(d,NULL,0,ker(den_sp)); g[0] = wt*w0; | |
| 847 g[1] = g[2] = g[3] = 0.0; | |
| 848 j = 0; jmax = (d+2)*de_mint; | |
| 849 while ((j<jmax) && (wt*w0/g[0]>1.0e-8)) | |
| 850 { j++; | |
| 851 jj[0] = 2*j; w0 = wint(d,jj,1,ker(den_sp)); | |
| 852 if (d==1) g[3] += wt * w0; | |
| 853 else | |
| 854 { jj[0] = 2; jj[1] = 2*j-2; w1 = wint(d,jj,2,ker(den_sp)); | |
| 855 g[3] += wt*w1; | |
| 856 g[2] += wu*(w0-w1); | |
| 857 } | |
| 858 wt /= (2*j-1.0); g[1] += wt*w0; | |
| 859 wt *= nb/(2*j); g[0] += wt*w0; | |
| 860 wu /= (2*j-1.0)*(2*j); | |
| 861 if (j>1) wu *= nb; | |
| 862 } | |
| 863 if (j==jmax) WARN(("mlinint: series not converged")); | |
| 864 } | |
| 865 g[0] *= hd; g[1] *= hd; | |
| 866 g[2] *= hd; g[3] *= hd; | |
| 867 resp1[0] = g[0]; | |
| 868 for (i=1; i<=d; i++) | |
| 869 { resp1[i] = resp1[(d+1)*i] = cf[i]*SQR(h*sca[i-1])*g[1]; | |
| 870 for (j=1; j<=d; j++) | |
| 871 { resp1[(d+1)*i+j] = (i==j) ? g[3]*SQR(h*sca[i-1]) : 0; | |
| 872 resp1[(d+1)*i+j] += g[2]*SQR(h*h*sca[i-1]*sca[j-1])*cf[i]*cf[j]; | |
| 873 } | |
| 874 } | |
| 875 return(LF_OK); | |
| 876 } | |
| 877 LERR(("mlinint: deg=0,1 only")); | |
| 878 return(LF_ERR); | |
| 879 } | |
| 880 | |
| 881 void prodintresp(resp,prod_wk,dim,deg,p) | |
| 882 double *resp, prod_wk[MXDIM][2*MXDEG+1]; | |
| 883 int dim, deg, p; | |
| 884 { double prod; | |
| 885 int i, j, k, j1, k1; | |
| 886 | |
| 887 prod = 1.0; | |
| 888 for (i=0; i<dim; i++) prod *= prod_wk[i][0]; | |
| 889 resp[0] += prod; | |
| 890 if (deg==0) return; | |
| 891 | |
| 892 for (j1=1; j1<=deg; j1++) | |
| 893 { for (j=0; j<dim; j++) | |
| 894 { prod = 1.0; | |
| 895 for (i=0; i<dim; i++) prod *= prod_wk[i][j1*(j==i)]; | |
| 896 prod /= fact[j1]; | |
| 897 resp[1 + (j1-1)*dim +j] += prod; | |
| 898 } | |
| 899 } | |
| 900 | |
| 901 for (k1=1; k1<=deg; k1++) | |
| 902 for (j1=k1; j1<=deg; j1++) | |
| 903 { for (k=0; k<dim; k++) | |
| 904 for (j=0; j<dim; j++) | |
| 905 { prod = 1.0; | |
| 906 for (i=0; i<dim; i++) prod *= prod_wk[i][k1*(k==i) + j1*(j==i)]; | |
| 907 prod /= fact[k1]*fact[j1]; | |
| 908 resp[ (1+(k1-1)*dim+k)*p + 1+(j1-1)*dim+j] += prod; | |
| 909 } | |
| 910 } | |
| 911 } | |
| 912 | |
| 913 int prodint(t,resp,resp2,coef,h) | |
| 914 double *t, *resp, *resp2, *coef, h; | |
| 915 { int dim, p, i, j, k, st; | |
| 916 double cf[MXDEG+1], hj, hs, prod_wk[MXDIM][2*MXDEG+1]; | |
| 917 | |
| 918 dim = den_lfd->d; | |
| 919 p = den_des->p; | |
| 920 for (i=0; i<p*p; i++) resp[i] = 0.0; | |
| 921 cf[0] = coef[0]; | |
| 922 | |
| 923 /* compute the one dimensional terms | |
| 924 */ | |
| 925 for (i=0; i<dim; i++) | |
| 926 { hj = 1; hs = h*den_lfd->sca[i]; | |
| 927 for (j=0; j<deg(den_sp); j++) | |
| 928 { hj *= hs; | |
| 929 cf[j+1] = hj*coef[ j*dim+i+1 ]; | |
| 930 } | |
| 931 st = onedint(den_sp,cf,ilim[i]/hs,ilim[i+dim]/hs,prod_wk[i]); | |
| 932 if (st==LF_BADP) return(st); | |
| 933 hj = 1; | |
| 934 for (j=0; j<=2*deg(den_sp); j++) | |
| 935 { hj *= hs; | |
| 936 prod_wk[i][j] *= hj; | |
| 937 } | |
| 938 cf[0] = 0.0; /* so we only include it once, when d>=2 */ | |
| 939 } | |
| 940 | |
| 941 /* transfer to the resp array | |
| 942 */ | |
| 943 prodintresp(resp,prod_wk,dim,deg(den_sp),p); | |
| 944 | |
| 945 /* Symmetrize. | |
| 946 */ | |
| 947 for (k=0; k<p; k++) | |
| 948 for (j=k; j<p; j++) | |
| 949 resp[j*p+k] = resp[k*p+j]; | |
| 950 | |
| 951 return(st); | |
| 952 } | |
| 953 | |
| 954 int gausint(t,resp,C,cf,h,sca) | |
| 955 double *t, *resp, *C, *cf, h, *sca; | |
| 956 { double nb, det, z, *P; | |
| 957 int d, p, i, j, k, l, m1, m2, f; | |
| 958 d = den_lfd->d; p = den_des->p; | |
| 959 m1 = d+1; nb = 0; | |
| 960 P = &C[d*d]; | |
| 961 resp[0] = 1; | |
| 962 for (i=0; i<d; i++) | |
| 963 { C[i*d+i] = SQR(GFACT/(h*sca[i]))-cf[m1++]; | |
| 964 for (j=i+1; j<d; j++) C[i*d+j] = C[j*d+i] = -cf[m1++]; | |
| 965 } | |
| 966 eig_dec(C,P,d); | |
| 967 det = 1; | |
| 968 for (i=1; i<=d; i++) | |
| 969 { det *= C[(i-1)*(d+1)]; | |
| 970 if (det <= 0) return(LF_BADP); | |
| 971 resp[i] = cf[i]; | |
| 972 for (j=1; j<=d; j++) resp[j+i*p] = 0; | |
| 973 resp[i+i*p] = 1; | |
| 974 svdsolve(&resp[i*p+1],u,P,C,P,d,0.0); | |
| 975 } | |
| 976 svdsolve(&resp[1],u,P,C,P,d,0.0); | |
| 977 det = sqrt(det); | |
| 978 for (i=1; i<=d; i++) | |
| 979 { nb += cf[i]*resp[i]; | |
| 980 resp[i*p] = resp[i]; | |
| 981 for (j=1; j<=d; j++) | |
| 982 resp[i+p*j] += resp[i]*resp[j]; | |
| 983 } | |
| 984 m1 = d; | |
| 985 for (i=1; i<=d; i++) | |
| 986 for (j=i; j<=d; j++) | |
| 987 { m1++; f = 1+(i==j); | |
| 988 resp[m1] = resp[m1*p] = resp[i*p+j]/f; | |
| 989 m2 = d; | |
| 990 for (k=1; k<=d; k++) | |
| 991 { resp[m1+k*p] = resp[k+m1*p] = | |
| 992 ( resp[i]*resp[j*p+k] + resp[j]*resp[i*p+k] | |
| 993 + resp[k]*resp[i*p+j] - 2*resp[i]*resp[j]*resp[k] )/f; | |
| 994 for (l=k; l<=d; l++) | |
| 995 { m2++; f = (1+(i==j))*(1+(k==l)); | |
| 996 resp[m1+m2*p] = resp[m2+m1*p] = ( resp[i+j*p]*resp[k+l*p] | |
| 997 + resp[i+k*p]*resp[j+l*p] + resp[i+l*p]*resp[j+k*p] | |
| 998 - 2*resp[i]*resp[j]*resp[k]*resp[l] )/f; | |
| 999 } } } | |
| 1000 z = mut_exp(d*0.918938533+cf[0]+nb/2)/det; | |
| 1001 multmatscal(resp,z,p*p); | |
| 1002 return(LF_OK); | |
| 1003 } | |
| 1004 | |
| 1005 int likeden(coef, lk0, f1, A) | |
| 1006 double *coef, *lk0, *f1, *A; | |
| 1007 { double lk, r; | |
| 1008 int i, j, p, rstat; | |
| 1009 | |
| 1010 lf_status = LF_OK; | |
| 1011 p = den_des->p; | |
| 1012 if ((link(den_sp)==LIDENT) && (coef[0] != 0.0)) return(NR_BREAK); | |
| 1013 lf_status = (den_des->itype)(den_des->xev,A,den_des->xtwx.Q,coef,den_des->h); | |
| 1014 if (lf_error) lf_status = LF_ERR; | |
| 1015 if (lf_status==LF_BADP) | |
| 1016 { *lk0 = -1.0e300; | |
| 1017 return(NR_REDUCE); | |
| 1018 } | |
| 1019 if (lf_status!=LF_OK) return(NR_BREAK); | |
| 1020 if (lf_debug>2) prresp(coef,A,p); | |
| 1021 | |
| 1022 den_des->xtwx.p = p; | |
| 1023 rstat = NR_OK; | |
| 1024 switch(link(den_sp)) | |
| 1025 { case LLOG: | |
| 1026 r = den_des->ss[0]/A[0]; | |
| 1027 coef[0] += log(r); | |
| 1028 multmatscal(A,r,p*p); | |
| 1029 A[0] = den_des->ss[0]; | |
| 1030 lk = -A[0]; | |
| 1031 if (fabs(coef[0]) > 700) | |
| 1032 { lf_status = LF_OOB; | |
| 1033 rstat = NR_REDUCE; | |
| 1034 } | |
| 1035 for (i=0; i<p; i++) | |
| 1036 { lk += coef[i]*den_des->ss[i]; | |
| 1037 f1[i] = den_des->ss[i]-A[i]; | |
| 1038 } | |
| 1039 break; | |
| 1040 case LIDENT: | |
| 1041 lk = 0.0; | |
| 1042 for (i=0; i<p; i++) | |
| 1043 { f1[i] = den_des->ss[i]; | |
| 1044 for (j=0; j<p; j++) | |
| 1045 den_des->res[i] -= A[i*p+j]*coef[j]; | |
| 1046 } | |
| 1047 break; | |
| 1048 } | |
| 1049 *lk0 = den_des->llk = lk; | |
| 1050 | |
| 1051 return(rstat); | |
| 1052 } | |
| 1053 | |
| 1054 int inre(x,bound,d) | |
| 1055 double *x, *bound; | |
| 1056 int d; | |
| 1057 { int i, z; | |
| 1058 z = 1; | |
| 1059 for (i=0; i<d; i++) | |
| 1060 if (bound[i]<bound[i+d]) | |
| 1061 z &= (x[i]>=bound[i]) & (x[i]<=bound[i+d]); | |
| 1062 return(z); | |
| 1063 } | |
| 1064 | |
| 1065 int setintlimits(lfd, x, h, ang, lset) | |
| 1066 lfdata *lfd; | |
| 1067 int *ang, *lset; | |
| 1068 double *x, h; | |
| 1069 { int d, i; | |
| 1070 d = lfd->d; | |
| 1071 *ang = *lset = 0; | |
| 1072 for (i=0; i<d; i++) | |
| 1073 { if (lfd->sty[i]==STANGL) | |
| 1074 { ilim[i+d] = ((h<2) ? 2*asin(h/2) : PI)*lfd->sca[i]; | |
| 1075 ilim[i] = -ilim[i+d]; | |
| 1076 *ang = 1; | |
| 1077 } | |
| 1078 else | |
| 1079 { ilim[i+d] = h*lfd->sca[i]; | |
| 1080 ilim[i] = -ilim[i+d]; | |
| 1081 | |
| 1082 if (lfd->sty[i]==STLEFT) { ilim[i+d] = 0; *lset = 1; } | |
| 1083 if (lfd->sty[i]==STRIGH) { ilim[i] = 0; *lset = 1; } | |
| 1084 | |
| 1085 if (lfd->xl[i]<lfd->xl[i+d]) /* user limits for this variable */ | |
| 1086 { if (lfd->xl[i]-x[i]> ilim[i]) | |
| 1087 { ilim[i] = lfd->xl[i]-x[i]; *lset=1; } | |
| 1088 if (lfd->xl[i+d]-x[i]< ilim[i+d]) | |
| 1089 { ilim[i+d] = lfd->xl[i+d]-x[i]; *lset=1; } | |
| 1090 } | |
| 1091 } | |
| 1092 if (ilim[i]==ilim[i+d]) return(LF_DEMP); /* empty integration */ | |
| 1093 } | |
| 1094 return(LF_OK); | |
| 1095 } | |
| 1096 | |
| 1097 int selectintmeth(itype,lset,ang) | |
| 1098 int itype, lset, ang; | |
| 1099 { | |
| 1100 if (itype==IDEFA) /* select the default method */ | |
| 1101 { if (fam(den_sp)==THAZ) | |
| 1102 { if (ang) return(IDEFA); | |
| 1103 return( IHAZD ); | |
| 1104 } | |
| 1105 | |
| 1106 if (ubas(den_sp)) return(IMULT); | |
| 1107 | |
| 1108 if (ang) return(IMULT); | |
| 1109 | |
| 1110 if (iscompact(ker(den_sp))) | |
| 1111 { if (kt(den_sp)==KPROD) return(IPROD); | |
| 1112 if (lset) | |
| 1113 return( (den_lfd->d==1) ? IPROD : IMULT ); | |
| 1114 if (deg(den_sp)<=1) return(IMLIN); | |
| 1115 if (den_lfd->d==1) return(IPROD); | |
| 1116 return(IMULT); | |
| 1117 } | |
| 1118 | |
| 1119 if (ker(den_sp)==WGAUS) | |
| 1120 { if (lset) WARN(("Integration for Gaussian weights ignores limits")); | |
| 1121 if ((den_lfd->d==1)|(kt(den_sp)==KPROD)) return(IPROD); | |
| 1122 if (deg(den_sp)<=1) return(IMLIN); | |
| 1123 if (deg(den_sp)==2) return(IMULT); | |
| 1124 } | |
| 1125 | |
| 1126 return(IDEFA); | |
| 1127 } | |
| 1128 | |
| 1129 /* user provided an integration method, check it is valid */ | |
| 1130 | |
| 1131 if (fam(den_sp)==THAZ) | |
| 1132 { if (ang) return(INVLD); | |
| 1133 if (!iscompact(ker(den_sp))) return(INVLD); | |
| 1134 return( ((kt(den_sp)==KPROD) | (kt(den_sp)==KSPH)) ? IHAZD : INVLD ); | |
| 1135 } | |
| 1136 | |
| 1137 if ((ang) && (itype != IMULT)) return(INVLD); | |
| 1138 | |
| 1139 switch(itype) | |
| 1140 { case IMULT: | |
| 1141 if (ker(den_sp)==WGAUS) return(deg(den_sp)==2); | |
| 1142 return( iscompact(ker(den_sp)) ? IMULT : INVLD ); | |
| 1143 case IPROD: return( ((den_lfd->d==1) | (kt(den_sp)==KPROD)) ? IPROD : INVLD ); | |
| 1144 case IMLIN: return( ((kt(den_sp)==KSPH) && (!lset) && | |
| 1145 (deg(den_sp)<=1)) ? IMLIN : INVLD ); | |
| 1146 } | |
| 1147 | |
| 1148 return(INVLD); | |
| 1149 } | |
| 1150 | |
| 1151 extern double lf_tol; | |
| 1152 | |
| 1153 int densinit(lfd,des,sp) | |
| 1154 lfdata *lfd; | |
| 1155 design *des; | |
| 1156 smpar *sp; | |
| 1157 { int p, i, ii, j, nnz, rnz, ang, lset, status; | |
| 1158 double w, *cf; | |
| 1159 | |
| 1160 den_lfd = lfd; | |
| 1161 den_des = des; | |
| 1162 den_sp = sp; | |
| 1163 cf = des->cf; | |
| 1164 | |
| 1165 lf_tol = (link(sp)==LLOG) ? 1.0e-6 : 0.0; | |
| 1166 | |
| 1167 p = des->p; | |
| 1168 ff = des->xtwx.wk; | |
| 1169 cf[0] = NOSLN; | |
| 1170 for (i=1; i<p; i++) cf[i] = 0.0; | |
| 1171 | |
| 1172 if (!inre(des->xev,lfd->xl,lfd->d)) return(LF_XOOR); | |
| 1173 | |
| 1174 status = setintlimits(lfd,des->xev,des->h,&ang,&lset); | |
| 1175 if (status != LF_OK) return(status); | |
| 1176 | |
| 1177 switch(selectintmeth(de_itype,lset,ang)) | |
| 1178 { case IMULT: des->itype = multint; break; | |
| 1179 case IPROD: des->itype = prodint; break; | |
| 1180 case IMLIN: des->itype = mlinint; break; | |
| 1181 case IHAZD: des->itype = hazint; break; | |
| 1182 case INVLD: LERR(("Invalid integration method %d",de_itype)); | |
| 1183 break; | |
| 1184 case IDEFA: LERR(("No integration type available for this model")); | |
| 1185 break; | |
| 1186 default: LERR(("densinit: unknown integral type")); | |
| 1187 } | |
| 1188 | |
| 1189 switch(deg(den_sp)) | |
| 1190 { case 0: rnz = 1; break; | |
| 1191 case 1: rnz = 1; break; | |
| 1192 case 2: rnz = lfd->d+1; break; | |
| 1193 case 3: rnz = lfd->d+2; break; | |
| 1194 default: LERR(("densinit: invalid degree %d",deg(den_sp))); | |
| 1195 } | |
| 1196 if (lf_error) return(LF_ERR); | |
| 1197 | |
| 1198 setzero(des->ss,p); | |
| 1199 nnz = 0; | |
| 1200 for (i=0; i<des->n; i++) | |
| 1201 { ii = des->ind[i]; | |
| 1202 if (!cens(lfd,ii)) | |
| 1203 { w = wght(des,ii)*prwt(lfd,ii); | |
| 1204 for (j=0; j<p; j++) des->ss[j] += d_xij(des,ii,j)*w; | |
| 1205 if (wght(des,ii)>0.00001) nnz++; | |
| 1206 } } | |
| 1207 | |
| 1208 if (fam(den_sp)==THAZ) haz_init(lfd,des,sp,ilim); | |
| 1209 /* this should really only be done once. Not sure how to enforce that, | |
| 1210 * esp. when locfit() has been called directly. | |
| 1211 */ | |
| 1212 if (fam(den_sp)==TDEN) | |
| 1213 des->smwt = (lfd->w==NULL) ? lfd->n : vecsum(lfd->w,lfd->n); | |
| 1214 | |
| 1215 if (lf_debug>2) | |
| 1216 { mut_printf(" LHS: "); | |
| 1217 for (i=0; i<p; i++) mut_printf(" %8.5f",des->ss[i]); | |
| 1218 mut_printf("\n"); | |
| 1219 } | |
| 1220 | |
| 1221 switch(link(den_sp)) | |
| 1222 { case LIDENT: | |
| 1223 cf[0] = 0.0; | |
| 1224 return(LF_OK); | |
| 1225 case LLOG: | |
| 1226 if (nnz<rnz) { cf[0] = -1000; return(LF_DNOP); } | |
| 1227 cf[0] = 0.0; | |
| 1228 return(LF_OK); | |
| 1229 default: | |
| 1230 LERR(("unknown link in densinit")); | |
| 1231 return(LF_ERR); | |
| 1232 } | |
| 1233 } | |
| 1234 /* | |
| 1235 * Copyright 1996-2006 Catherine Loader. | |
| 1236 */ | |
| 1237 #include "locf.h" | |
| 1238 | |
| 1239 int bino_vallink(link) | |
| 1240 int link; | |
| 1241 { return((link==LLOGIT) | (link==LIDENT) | (link==LASIN)); | |
| 1242 } | |
| 1243 | |
| 1244 int bino_fam(y,p,th,link,res,cens,w) | |
| 1245 double y, p, th, *res, w; | |
| 1246 int link, cens; | |
| 1247 { double wp; | |
| 1248 if (link==LINIT) | |
| 1249 { if (y<0) y = 0; | |
| 1250 if (y>w) y = w; | |
| 1251 res[ZDLL] = y; | |
| 1252 return(LF_OK); | |
| 1253 } | |
| 1254 wp = w*p; | |
| 1255 if (link==LIDENT) | |
| 1256 { if ((p<=0) && (y>0)) return(LF_BADP); | |
| 1257 if ((p>=1) && (y<w)) return(LF_BADP); | |
| 1258 res[ZLIK] = res[ZDLL] = res[ZDDLL] = 0.0; | |
| 1259 if (y>0) | |
| 1260 { res[ZLIK] += y*log(wp/y); | |
| 1261 res[ZDLL] += y/p; | |
| 1262 res[ZDDLL]+= y/(p*p); | |
| 1263 } | |
| 1264 if (y<w) | |
| 1265 { res[ZLIK] += (w-y)*log((w-wp)/(w-y)); | |
| 1266 res[ZDLL] -= (w-y)/(1-p); | |
| 1267 res[ZDDLL]+= (w-y)/SQR(1-p); | |
| 1268 } | |
| 1269 return(LF_OK); | |
| 1270 } | |
| 1271 if (link==LLOGIT) | |
| 1272 { if ((y<0) | (y>w)) /* goon observation; delete it */ | |
| 1273 { res[ZLIK] = res[ZDLL] = res[ZDDLL] = 0.0; | |
| 1274 return(LF_OK); | |
| 1275 } | |
| 1276 res[ZLIK] = (th<0) ? th*y-w*log(1+exp(th)) : th*(y-w)-w*log(1+exp(-th)); | |
| 1277 if (y>0) res[ZLIK] -= y*log(y/w); | |
| 1278 if (y<w) res[ZLIK] -= (w-y)*log(1-y/w); | |
| 1279 res[ZDLL] = (y-wp); | |
| 1280 res[ZDDLL]= wp*(1-p); | |
| 1281 return(LF_OK); | |
| 1282 } | |
| 1283 if (link==LASIN) | |
| 1284 { if ((p<=0) && (y>0)) return(LF_BADP); | |
| 1285 if ((p>=1) && (y<w)) return(LF_BADP); | |
| 1286 if ((th<0) | (th>PI/2)) return(LF_BADP); | |
| 1287 res[ZDLL] = res[ZDDLL] = res[ZLIK] = 0; | |
| 1288 if (y>0) | |
| 1289 { res[ZDLL] += 2*y*sqrt((1-p)/p); | |
| 1290 res[ZLIK] += y*log(wp/y); | |
| 1291 } | |
| 1292 if (y<w) | |
| 1293 { res[ZDLL] -= 2*(w-y)*sqrt(p/(1-p)); | |
| 1294 res[ZLIK] += (w-y)*log((w-wp)/(w-y)); | |
| 1295 } | |
| 1296 res[ZDDLL] = 4*w; | |
| 1297 return(LF_OK); | |
| 1298 } | |
| 1299 LERR(("link %d invalid for binomial family",link)); | |
| 1300 return(LF_LNK); | |
| 1301 } | |
| 1302 | |
| 1303 int bino_check(sp,des,lfd) | |
| 1304 smpar *sp; | |
| 1305 design *des; | |
| 1306 lfdata *lfd; | |
| 1307 { int i, ii; | |
| 1308 double t0, t1; | |
| 1309 | |
| 1310 if (fabs(des->cf[0])>700) return(LF_OOB); | |
| 1311 | |
| 1312 /* check for separation. | |
| 1313 * this won't detect separation if there's boundary points with | |
| 1314 * both 0 and 1 responses. | |
| 1315 */ | |
| 1316 t0 = -1e100; t1 = 1e100; | |
| 1317 for (i=0; i<des->n; i++) | |
| 1318 { ii = des->ind[i]; | |
| 1319 if ((resp(lfd,ii)<prwt(lfd,ii)) && (fitv(des,ii) > t0)) t0 = fitv(des,ii); | |
| 1320 if ((resp(lfd,ii)>0) && (fitv(des,ii) < t1)) t1 = fitv(des,ii); | |
| 1321 if (t1 <= t0) return(LF_OK); | |
| 1322 } | |
| 1323 mut_printf("separated %8.5f %8.5f\n",t0,t1); | |
| 1324 return(LF_NSLN); | |
| 1325 } | |
| 1326 | |
| 1327 void setfbino(fam) | |
| 1328 family *fam; | |
| 1329 { fam->deflink = LLOGIT; | |
| 1330 fam->canlink = LLOGIT; | |
| 1331 fam->vallink = bino_vallink; | |
| 1332 fam->family = bino_fam; | |
| 1333 fam->pcheck = bino_check; | |
| 1334 } | |
| 1335 | |
| 1336 int rbin_vallink(link) | |
| 1337 int link; | |
| 1338 { return(link==LLOGIT); | |
| 1339 } | |
| 1340 | |
| 1341 int rbin_fam(y,p,th,link,res,cens,w) | |
| 1342 double y, p, th, *res, w; | |
| 1343 int link, cens; | |
| 1344 { double s2y; | |
| 1345 if (link==LINIT) | |
| 1346 { res[ZDLL] = y; | |
| 1347 return(LF_OK); | |
| 1348 } | |
| 1349 if ((y<0) | (y>w)) /* goon observation; delete it */ | |
| 1350 { res[ZLIK] = res[ZDLL] = res[ZDDLL] = 0.0; | |
| 1351 return(LF_OK); | |
| 1352 } | |
| 1353 res[ZLIK] = (th<0) ? th*y-w*log(1+exp(th)) : th*(y-w)-w*log(1+exp(-th)); | |
| 1354 if (y>0) res[ZLIK] -= y*log(y/w); | |
| 1355 if (y<w) res[ZLIK] -= (w-y)*log(1-y/w); | |
| 1356 res[ZDLL] = (y-w*p); | |
| 1357 res[ZDDLL]= w*p*(1-p); | |
| 1358 if (-res[ZLIK]>HUBERC*HUBERC/2.0) | |
| 1359 { s2y = sqrt(-2*res[ZLIK]); | |
| 1360 res[ZLIK] = HUBERC*(HUBERC/2.0-s2y); | |
| 1361 res[ZDLL] *= HUBERC/s2y; | |
| 1362 res[ZDDLL] = HUBERC/s2y*(res[ZDDLL]-1/(s2y*s2y)*w*p*(1-p)); | |
| 1363 } | |
| 1364 return(LF_OK); | |
| 1365 } | |
| 1366 | |
| 1367 void setfrbino(fam) | |
| 1368 family *fam; | |
| 1369 { fam->deflink = LLOGIT; | |
| 1370 fam->canlink = LLOGIT; | |
| 1371 fam->vallink = rbin_vallink; | |
| 1372 fam->family = rbin_fam; | |
| 1373 fam->pcheck = bino_check; | |
| 1374 } | |
| 1375 /* | |
| 1376 * Copyright 1996-2006 Catherine Loader. | |
| 1377 */ | |
| 1378 #include "locf.h" | |
| 1379 | |
| 1380 int circ_vallink(link) | |
| 1381 int link; | |
| 1382 { return(link==LIDENT); | |
| 1383 } | |
| 1384 | |
| 1385 int circ_fam(y,mean,th,link,res,cens,w) | |
| 1386 double y, mean, th, *res, w; | |
| 1387 int link, cens; | |
| 1388 { if (link==LINIT) | |
| 1389 { res[ZDLL] = w*sin(y); | |
| 1390 res[ZLIK] = w*cos(y); | |
| 1391 return(LF_OK); | |
| 1392 } | |
| 1393 res[ZDLL] = w*sin(y-mean); | |
| 1394 res[ZDDLL]= w*cos(y-mean); | |
| 1395 res[ZLIK] = res[ZDDLL]-w; | |
| 1396 return(LF_OK); | |
| 1397 } | |
| 1398 | |
| 1399 extern double lf_tol; | |
| 1400 int circ_init(lfd,des,sp) | |
| 1401 lfdata *lfd; | |
| 1402 design *des; | |
| 1403 smpar *sp; | |
| 1404 { int i, ii; | |
| 1405 double s0, s1; | |
| 1406 s0 = s1 = 0.0; | |
| 1407 for (i=0; i<des->n; i++) | |
| 1408 { ii = des->ind[i]; | |
| 1409 s0 += wght(des,ii)*prwt(lfd,ii)*sin(resp(lfd,ii)-base(lfd,ii)); | |
| 1410 s1 += wght(des,ii)*prwt(lfd,ii)*cos(resp(lfd,ii)-base(lfd,ii)); | |
| 1411 } | |
| 1412 des->cf[0] = atan2(s0,s1); | |
| 1413 for (i=1; i<des->p; i++) des->cf[i] = 0.0; | |
| 1414 lf_tol = 1.0e-6; | |
| 1415 return(LF_OK); | |
| 1416 } | |
| 1417 | |
| 1418 | |
| 1419 void setfcirc(fam) | |
| 1420 family *fam; | |
| 1421 { fam->deflink = LIDENT; | |
| 1422 fam->canlink = LIDENT; | |
| 1423 fam->vallink = circ_vallink; | |
| 1424 fam->family = circ_fam; | |
| 1425 fam->initial = circ_init; | |
| 1426 } | |
| 1427 /* | |
| 1428 * Copyright 1996-2006 Catherine Loader. | |
| 1429 */ | |
| 1430 #include "locf.h" | |
| 1431 | |
| 1432 int dens_vallink(link) | |
| 1433 int link; | |
| 1434 { return((link==LIDENT) | (link==LLOG)); | |
| 1435 } | |
| 1436 | |
| 1437 int dens_fam(y,mean,th,link,res,cens,w) | |
| 1438 double y, mean, th, *res, w; | |
| 1439 int link, cens; | |
| 1440 { if (cens) | |
| 1441 res[ZLIK] = res[ZDLL] = res[ZDDLL] = 0.0; | |
| 1442 else | |
| 1443 { res[ZLIK] = w*th; | |
| 1444 res[ZDLL] = res[ZDDLL] = w; | |
| 1445 } | |
| 1446 return(LF_OK); | |
| 1447 } | |
| 1448 | |
| 1449 void setfdensity(fam) | |
| 1450 family *fam; | |
| 1451 { fam->deflink = LLOG; | |
| 1452 fam->canlink = LLOG; | |
| 1453 fam->vallink = dens_vallink; | |
| 1454 fam->family = dens_fam; | |
| 1455 fam->initial = densinit; | |
| 1456 fam->like = likeden; | |
| 1457 } | |
| 1458 /* | |
| 1459 * Copyright 1996-2006 Catherine Loader. | |
| 1460 */ | |
| 1461 #include "locf.h" | |
| 1462 | |
| 1463 int gamma_vallink(link) | |
| 1464 int link; | |
| 1465 { return((link==LIDENT) | (link==LLOG) | (link==LINVER)); | |
| 1466 } | |
| 1467 | |
| 1468 int gamma_fam(y,mean,th,link,res,cens,w) | |
| 1469 double y, mean, th, *res, w; | |
| 1470 int link, cens; | |
| 1471 { double lb, pt, dg; | |
| 1472 if (link==LINIT) | |
| 1473 { res[ZDLL] = MAX(y,0.0); | |
| 1474 return(LF_OK); | |
| 1475 } | |
| 1476 res[ZLIK] = res[ZDLL] = res[ZDDLL] = 0.0; | |
| 1477 if (w==0.0) return(LF_OK); | |
| 1478 if ((mean<=0) & (y>0)) return(LF_BADP); | |
| 1479 if (link==LIDENT) lb = 1/th; | |
| 1480 if (link==LINVER) lb = th; | |
| 1481 if (link==LLOG) lb = mut_exp(-th); | |
| 1482 if (cens) | |
| 1483 { if (y<=0) return(LF_OK); | |
| 1484 pt = 1-igamma(lb*y,w); | |
| 1485 dg = dgamma(lb*y,w,1.0,0); | |
| 1486 res[ZLIK] = log(pt); | |
| 1487 res[ZDLL] = -y*dg/pt; | |
| 1488 /* | |
| 1489 * res[ZDLL] = -y*dg/pt * dlb/dth. | |
| 1490 * res[ZDDLL] = y*dg/pt * (d2lb/dth2 + ((w-1)/lb-y)*(dlb/dth)^2) | |
| 1491 * + res[ZDLL]^2. | |
| 1492 */ | |
| 1493 if (link==LLOG) /* lambda = exp(-theta) */ | |
| 1494 { res[ZDLL] *= -lb; | |
| 1495 res[ZDDLL] = dg*y*lb*(w-lb*y)/pt + SQR(res[ZDLL]); | |
| 1496 return(LF_OK); | |
| 1497 } | |
| 1498 if (link==LINVER) /* lambda = theta */ | |
| 1499 { res[ZDLL] *= 1.0; | |
| 1500 res[ZDDLL] = dg*y*((w-1)*mean-y)/pt + SQR(res[ZDLL]); | |
| 1501 return(LF_OK); | |
| 1502 } | |
| 1503 if (link==LIDENT) /* lambda = 1/theta */ | |
| 1504 { res[ZDLL] *= -lb*lb; | |
| 1505 res[ZDDLL] = dg*y*lb*lb*lb*(1+w-lb*y)/pt + SQR(res[ZDLL]); | |
| 1506 return(LF_OK); | |
| 1507 } | |
| 1508 } | |
| 1509 else | |
| 1510 { if (y<0) WARN(("Negative Gamma observation")); | |
| 1511 if (link==LLOG) | |
| 1512 { res[ZLIK] = -lb*y+w*(1-th); | |
| 1513 if (y>0) res[ZLIK] += w*log(y/w); | |
| 1514 res[ZDLL] = lb*y-w; | |
| 1515 res[ZDDLL]= lb*y; | |
| 1516 return(LF_OK); | |
| 1517 } | |
| 1518 if (link==LINVER) | |
| 1519 { res[ZLIK] = -lb*y+w-w*log(mean); | |
| 1520 if (y>0) res[ZLIK] += w*log(y/w); | |
| 1521 res[ZDLL] = -y+w*mean; | |
| 1522 res[ZDDLL]= w*mean*mean; | |
| 1523 return(LF_OK); | |
| 1524 } | |
| 1525 if (link==LIDENT) | |
| 1526 { res[ZLIK] = -lb*y+w-w*log(mean); | |
| 1527 if (y>0) res[ZLIK] += w*log(y/w); | |
| 1528 res[ZDLL] = lb*lb*(y-w*mean); | |
| 1529 res[ZDDLL]= lb*lb*lb*(2*y-w*mean); | |
| 1530 return(LF_OK); | |
| 1531 } | |
| 1532 } | |
| 1533 LERR(("link %d invalid for Gamma family",link)); | |
| 1534 return(LF_LNK); | |
| 1535 } | |
| 1536 | |
| 1537 void setfgamma(fam) | |
| 1538 family *fam; | |
| 1539 { fam->deflink = LLOG; | |
| 1540 fam->canlink = LINVER; | |
| 1541 fam->vallink = gamma_vallink; | |
| 1542 fam->family = gamma_fam; | |
| 1543 } | |
| 1544 /* | |
| 1545 * Copyright 1996-2006 Catherine Loader. | |
| 1546 */ | |
| 1547 #include "locf.h" | |
| 1548 | |
| 1549 int gaus_vallink(link) | |
| 1550 int link; | |
| 1551 { return((link==LIDENT) | (link==LLOG) | (link==LLOGIT)); | |
| 1552 } | |
| 1553 | |
| 1554 int gaus_fam(y,mean,th,link,res,cens,w) | |
| 1555 double y, mean, th, *res, w; | |
| 1556 int link, cens; | |
| 1557 { double z, pz, dp; | |
| 1558 if (link==LINIT) | |
| 1559 { res[ZDLL] = w*y; | |
| 1560 return(LF_OK); | |
| 1561 } | |
| 1562 z = y-mean; | |
| 1563 if (cens) | |
| 1564 { if (link!=LIDENT) | |
| 1565 { LERR(("Link invalid for censored Gaussian family")); | |
| 1566 return(LF_LNK); | |
| 1567 } | |
| 1568 pz = mut_pnorm(-z); | |
| 1569 dp = ((z>6) ? ptail(-z) : exp(-z*z/2)/pz)/2.5066283; | |
| 1570 res[ZLIK] = w*log(pz); | |
| 1571 res[ZDLL] = w*dp; | |
| 1572 res[ZDDLL]= w*dp*(dp-z); | |
| 1573 return(LF_OK); | |
| 1574 } | |
| 1575 res[ZLIK] = -w*z*z/2; | |
| 1576 switch(link) | |
| 1577 { case LIDENT: | |
| 1578 res[ZDLL] = w*z; | |
| 1579 res[ZDDLL]= w; | |
| 1580 break; | |
| 1581 case LLOG: | |
| 1582 res[ZDLL] = w*z*mean; | |
| 1583 res[ZDDLL]= w*mean*mean; | |
| 1584 break; | |
| 1585 case LLOGIT: | |
| 1586 res[ZDLL] = w*z*mean*(1-mean); | |
| 1587 res[ZDDLL]= w*mean*mean*(1-mean)*(1-mean); | |
| 1588 break; | |
| 1589 default: | |
| 1590 LERR(("Invalid link for Gaussian family")); | |
| 1591 return(LF_LNK); | |
| 1592 } | |
| 1593 return(LF_OK); | |
| 1594 } | |
| 1595 | |
| 1596 int gaus_check(sp,des,lfd) | |
| 1597 smpar *sp; | |
| 1598 design *des; | |
| 1599 lfdata *lfd; | |
| 1600 { int i, ii; | |
| 1601 if (fami(sp)->robust) return(LF_OK); | |
| 1602 if (link(sp)==LIDENT) | |
| 1603 { for (i=0; i<des->n; i++) | |
| 1604 { ii = des->ind[i]; | |
| 1605 if (cens(lfd,ii)) return(LF_OK); | |
| 1606 } | |
| 1607 return(LF_DONE); | |
| 1608 } | |
| 1609 return(LF_OK); | |
| 1610 } | |
| 1611 | |
| 1612 void setfgauss(fam) | |
| 1613 family *fam; | |
| 1614 { fam->deflink = LIDENT; | |
| 1615 fam->canlink = LIDENT; | |
| 1616 fam->vallink = gaus_vallink; | |
| 1617 fam->family = gaus_fam; | |
| 1618 fam->pcheck = gaus_check; | |
| 1619 } | |
| 1620 /* | |
| 1621 * Copyright 1996-2006 Catherine Loader. | |
| 1622 */ | |
| 1623 #include "locf.h" | |
| 1624 | |
| 1625 int geom_vallink(link) | |
| 1626 int link; | |
| 1627 { return((link==LIDENT) | (link==LLOG)); | |
| 1628 } | |
| 1629 | |
| 1630 int geom_fam(y,mean,th,link,res,cens,w) | |
| 1631 double y, mean, th, *res, w; | |
| 1632 int link, cens; | |
| 1633 { double p, pt, dp, p1; | |
| 1634 if (link==LINIT) | |
| 1635 { res[ZDLL] = MAX(y,0.0); | |
| 1636 return(LF_OK); | |
| 1637 } | |
| 1638 p = 1/(1+mean); | |
| 1639 if (cens) /* censored observation */ | |
| 1640 { if (y<=0) | |
| 1641 { res[ZLIK] = res[ZDLL] = res[ZDDLL] = 0; | |
| 1642 return(LF_OK); | |
| 1643 } | |
| 1644 p1 = (link==LIDENT) ? -p*p : -p*(1-p); | |
| 1645 pt = 1-ibeta(p,w,y); | |
| 1646 dp = dbeta(p,w,y,0)/pt; | |
| 1647 res[ZLIK] = log(pt); | |
| 1648 res[ZDLL] = -dp*p1; | |
| 1649 res[ZDDLL] = dp*dp*p1*p1; | |
| 1650 if (link==LIDENT) | |
| 1651 res[ZDDLL] += dp*p*p*p*(1+w*(1-p)-p*y)/(1-p); | |
| 1652 else | |
| 1653 res[ZDDLL] += dp*p*(1-p)*(w*(1-p)-p*y); | |
| 1654 return(LF_OK); | |
| 1655 } | |
| 1656 else | |
| 1657 { res[ZLIK] = (y+w)*log((y/w+1)/(mean+1)); | |
| 1658 if (y>0) res[ZLIK] += y*log(w*mean/y); | |
| 1659 if (link==LLOG) | |
| 1660 { res[ZDLL] = (y-w*mean)*p; | |
| 1661 res[ZDDLL]= (y+w)*p*(1-p); | |
| 1662 return(LF_OK); | |
| 1663 } | |
| 1664 if (link==LIDENT) | |
| 1665 { res[ZDLL] = (y-w*mean)/(mean*(1+mean)); | |
| 1666 res[ZDDLL]= w/(mean*(1+mean)); | |
| 1667 return(LF_OK); | |
| 1668 } | |
| 1669 } | |
| 1670 LERR(("link %d invalid for geometric family",link)); | |
| 1671 return(LF_LNK); | |
| 1672 } | |
| 1673 | |
| 1674 void setfgeom(fam) | |
| 1675 family *fam; | |
| 1676 { fam->deflink = LLOG; | |
| 1677 fam->canlink = LIDENT; /* this isn't correct. I haven't prog. canon */ | |
| 1678 fam->vallink = geom_vallink; | |
| 1679 fam->family = geom_fam; | |
| 1680 } | |
| 1681 /* | |
| 1682 * Copyright 1996-2006 Catherine Loader. | |
| 1683 */ | |
| 1684 #include "locf.h" | |
| 1685 | |
| 1686 #define HUBERC 2.0 | |
| 1687 | |
| 1688 double links_rs; | |
| 1689 int inllmix=0; | |
| 1690 | |
| 1691 /* | |
| 1692 * lffamily("name") converts family names into a numeric value. | |
| 1693 * typical usage is fam(&lf->sp) = lffamily("gaussian"); | |
| 1694 * Note that family can be preceded by q and/or r for quasi, robust. | |
| 1695 * | |
| 1696 * link(&lf->sp) = lflink("log") does the same for the link function. | |
| 1697 */ | |
| 1698 #define NFAMILY 18 | |
| 1699 static char *famil[NFAMILY] = | |
| 1700 { "density", "ate", "hazard", "gaussian", "binomial", | |
| 1701 "poisson", "gamma", "geometric", "circular", "obust", "huber", | |
| 1702 "weibull", "cauchy","probab", "logistic", "nbinomial", | |
| 1703 "vonmises", "quant" }; | |
| 1704 static int fvals[NFAMILY] = | |
| 1705 { TDEN, TRAT, THAZ, TGAUS, TLOGT, | |
| 1706 TPOIS, TGAMM, TGEOM, TCIRC, TROBT, TROBT, | |
| 1707 TWEIB, TCAUC, TPROB, TLOGT, TGEOM, TCIRC, TQUANT }; | |
| 1708 int lffamily(z) | |
| 1709 char *z; | |
| 1710 { int quasi, robu, f; | |
| 1711 quasi = robu = 0; | |
| 1712 while ((z[0]=='q') | (z[0]=='r')) | |
| 1713 { quasi |= (z[0]=='q'); | |
| 1714 robu |= (z[0]=='r'); | |
| 1715 z++; | |
| 1716 } | |
| 1717 z[0] = tolower(z[0]); | |
| 1718 f = pmatch(z,famil,fvals,NFAMILY,-1); | |
| 1719 if ((z[0]=='o') | (z[0]=='a')) robu = 0; | |
| 1720 if (f==-1) | |
| 1721 { WARN(("unknown family %s",z)); | |
| 1722 f = TGAUS; | |
| 1723 } | |
| 1724 if (quasi) f += 64; | |
| 1725 if (robu) f += 128; | |
| 1726 return(f); | |
| 1727 } | |
| 1728 | |
| 1729 #define NLINKS 8 | |
| 1730 static char *ltype[NLINKS] = { "default", "canonical", "identity", "log", | |
| 1731 "logi", "inverse", "sqrt", "arcsin" }; | |
| 1732 static int lvals[NLINKS] = { LDEFAU, LCANON, LIDENT, LLOG, | |
| 1733 LLOGIT, LINVER, LSQRT, LASIN }; | |
| 1734 int lflink(char *z) | |
| 1735 { int f; | |
| 1736 if (z==NULL) return(LDEFAU); | |
| 1737 z[0] = tolower(z[0]); | |
| 1738 f = pmatch(z, ltype, lvals, NLINKS, -1); | |
| 1739 if (f==-1) | |
| 1740 { WARN(("unknown link %s",z)); | |
| 1741 f = LDEFAU; | |
| 1742 } | |
| 1743 return(f); | |
| 1744 } | |
| 1745 | |
| 1746 int defaultlink(link,fam) | |
| 1747 int link; | |
| 1748 family *fam; | |
| 1749 { if (link==LDEFAU) return(fam->deflink); | |
| 1750 if (link==LCANON) return(fam->canlink); | |
| 1751 return(link); | |
| 1752 } | |
| 1753 | |
| 1754 /* | |
| 1755 void robustify(res,rs) | |
| 1756 double *res, rs; | |
| 1757 { double sc, z; | |
| 1758 sc = rs*HUBERC; | |
| 1759 if (res[ZLIK] > -sc*sc/2) return; | |
| 1760 z = sqrt(-2*res[ZLIK]); | |
| 1761 res[ZDDLL]= -sc*res[ZDLL]*res[ZDLL]/(z*z*z)+sc*res[ZDDLL]/z; | |
| 1762 res[ZDLL]*= sc/z; | |
| 1763 res[ZLIK] = sc*sc/2-sc*z; | |
| 1764 } | |
| 1765 */ | |
| 1766 void robustify(res,rs) | |
| 1767 double *res, rs; | |
| 1768 { double sc, z; | |
| 1769 sc = rs*HUBERC; | |
| 1770 if (res[ZLIK] > -sc*sc/2) | |
| 1771 { res[ZLIK] /= sc*sc; | |
| 1772 res[ZDLL] /= sc*sc; | |
| 1773 res[ZDDLL] /= sc*sc; | |
| 1774 return; | |
| 1775 } | |
| 1776 z = sqrt(-2*res[ZLIK]); | |
| 1777 res[ZDDLL]= (-sc*res[ZDLL]*res[ZDLL]/(z*z*z)+sc*res[ZDDLL]/z)/(sc*sc); | |
| 1778 res[ZDLL]*= 1.0/(z*sc); | |
| 1779 res[ZLIK] = 0.5-z/sc; | |
| 1780 } | |
| 1781 | |
| 1782 double lf_link(y,lin) | |
| 1783 double y; | |
| 1784 int lin; | |
| 1785 { switch(lin) | |
| 1786 { case LIDENT: return(y); | |
| 1787 case LLOG: return(log(y)); | |
| 1788 case LLOGIT: return(logit(y)); | |
| 1789 case LINVER: return(1/y); | |
| 1790 case LSQRT: return(sqrt(fabs(y))); | |
| 1791 case LASIN: return(asin(sqrt(y))); | |
| 1792 } | |
| 1793 LERR(("link: unknown link %d",lin)); | |
| 1794 return(0.0); | |
| 1795 } | |
| 1796 | |
| 1797 double invlink(th,lin) | |
| 1798 double th; | |
| 1799 int lin; | |
| 1800 { switch(lin) | |
| 1801 { case LIDENT: return(th); | |
| 1802 case LLOG: return(mut_exp(th)); | |
| 1803 case LLOGIT: return(expit(th)); | |
| 1804 case LINVER: return(1/th); | |
| 1805 case LSQRT: return(th*fabs(th)); | |
| 1806 case LASIN: return(sin(th)*sin(th)); | |
| 1807 case LINIT: return(0.0); | |
| 1808 } | |
| 1809 LERR(("invlink: unknown link %d",lin)); | |
| 1810 return(0.0); | |
| 1811 } | |
| 1812 | |
| 1813 /* the link and various related functions */ | |
| 1814 int links(th,y,fam,link,res,c,w,rs) | |
| 1815 double th, y, *res, w, rs; | |
| 1816 int link, c; | |
| 1817 family *fam; | |
| 1818 { double mean; | |
| 1819 int st; | |
| 1820 | |
| 1821 mean = res[ZMEAN] = invlink(th,link); | |
| 1822 if (lf_error) return(LF_LNK); | |
| 1823 links_rs = rs; | |
| 1824 /* mut_printf("links: rs %8.5f\n",rs); */ | |
| 1825 | |
| 1826 st = fam->family(y,mean,th,link,res,c,w); | |
| 1827 | |
| 1828 if (st!=LF_OK) return(st); | |
| 1829 if (link==LINIT) return(st); | |
| 1830 if (isrobust(fam)) robustify(res,rs); | |
| 1831 return(st); | |
| 1832 } | |
| 1833 | |
| 1834 /* | |
| 1835 stdlinks is a version of links when family, link, response e.t.c | |
| 1836 all come from the standard places. | |
| 1837 */ | |
| 1838 int stdlinks(res,lfd,sp,i,th,rs) | |
| 1839 lfdata *lfd; | |
| 1840 smpar *sp; | |
| 1841 double th, rs, *res; | |
| 1842 int i; | |
| 1843 { | |
| 1844 return(links(th,resp(lfd,i),fami(sp),link(sp),res,cens(lfd,i),prwt(lfd,i),rs)); | |
| 1845 } | |
| 1846 | |
| 1847 /* | |
| 1848 * functions used in variance, skewness, kurtosis calculations | |
| 1849 * in scb corrections. | |
| 1850 */ | |
| 1851 | |
| 1852 double b2(th,tg,w) | |
| 1853 double th, w; | |
| 1854 int tg; | |
| 1855 { double y; | |
| 1856 switch(tg&63) | |
| 1857 { case TGAUS: return(w); | |
| 1858 case TPOIS: return(w*mut_exp(th)); | |
| 1859 case TLOGT: | |
| 1860 y = expit(th); | |
| 1861 return(w*y*(1-y)); | |
| 1862 } | |
| 1863 LERR(("b2: invalid family %d",tg)); | |
| 1864 return(0.0); | |
| 1865 } | |
| 1866 | |
| 1867 double b3(th,tg,w) | |
| 1868 double th, w; | |
| 1869 int tg; | |
| 1870 { double y; | |
| 1871 switch(tg&63) | |
| 1872 { case TGAUS: return(0.0); | |
| 1873 case TPOIS: return(w*mut_exp(th)); | |
| 1874 case TLOGT: | |
| 1875 y = expit(th); | |
| 1876 return(w*y*(1-y)*(1-2*y)); | |
| 1877 } | |
| 1878 LERR(("b3: invalid family %d",tg)); | |
| 1879 return(0.0); | |
| 1880 } | |
| 1881 | |
| 1882 double b4(th,tg,w) | |
| 1883 double th, w; | |
| 1884 int tg; | |
| 1885 { double y; | |
| 1886 switch(tg&63) | |
| 1887 { case TGAUS: return(0.0); | |
| 1888 case TPOIS: return(w*mut_exp(th)); | |
| 1889 case TLOGT: | |
| 1890 y = expit(th); y = y*(1-y); | |
| 1891 return(w*y*(1-6*y)); | |
| 1892 } | |
| 1893 LERR(("b4: invalid family %d",tg)); | |
| 1894 return(0.0); | |
| 1895 } | |
| 1896 | |
| 1897 int def_check(sp,des,lfd) | |
| 1898 smpar *sp; | |
| 1899 design *des; | |
| 1900 lfdata *lfd; | |
| 1901 { switch(link(sp)) | |
| 1902 { case LLOG: if (des->cf[0]>700) return(LF_OOB); | |
| 1903 break; | |
| 1904 } | |
| 1905 return(LF_OK); | |
| 1906 } | |
| 1907 extern void setfdensity(), setfgauss(), setfbino(), setfpoisson(); | |
| 1908 extern void setfgamma(), setfgeom(), setfcirc(), setfweibull(); | |
| 1909 extern void setfrbino(), setfrobust(), setfcauchy(), setfquant(); | |
| 1910 | |
| 1911 void setfamily(sp) | |
| 1912 smpar *sp; | |
| 1913 { int tg, lnk; | |
| 1914 family *f; | |
| 1915 | |
| 1916 tg = fam(sp); | |
| 1917 f = fami(sp); | |
| 1918 f->quasi = tg&64; | |
| 1919 f->robust = tg&128; | |
| 1920 f->initial = reginit; | |
| 1921 f->like = likereg; | |
| 1922 f->pcheck = def_check; | |
| 1923 | |
| 1924 switch(tg&63) | |
| 1925 { case TDEN: | |
| 1926 case THAZ: | |
| 1927 case TRAT: setfdensity(f); break; | |
| 1928 case TGAUS: setfgauss(f); break; | |
| 1929 case TLOGT: setfbino(f); break; | |
| 1930 case TRBIN: setfrbino(f); break; | |
| 1931 case TPROB: | |
| 1932 case TPOIS: setfpoisson(f); break; | |
| 1933 case TGAMM: setfgamma(f); break; | |
| 1934 case TGEOM: setfgeom(f); break; | |
| 1935 case TWEIB: setfweibull(f); | |
| 1936 case TCIRC: setfcirc(f); break; | |
| 1937 case TROBT: setfrobust(f); break; | |
| 1938 case TCAUC: setfcauchy(f); break; | |
| 1939 case TQUANT: setfquant(f); break; | |
| 1940 default: LERR(("setfamily: unknown family %d",tg&63)); | |
| 1941 return; | |
| 1942 } | |
| 1943 | |
| 1944 lnk = defaultlink(link(sp),f); | |
| 1945 if (!f->vallink(lnk)) | |
| 1946 { WARN(("setfamily: invalid link %d - revert to default",link(sp))); | |
| 1947 link(sp) = f->deflink; | |
| 1948 } | |
| 1949 else | |
| 1950 link(sp) = lnk; | |
| 1951 } | |
| 1952 /* | |
| 1953 * Copyright 1996-2006 Catherine Loader. | |
| 1954 */ | |
| 1955 #include "locf.h" | |
| 1956 | |
| 1957 int pois_vallink(link) | |
| 1958 int link; | |
| 1959 { return((link==LLOG) | (link==LIDENT) | (link==LSQRT)); | |
| 1960 } | |
| 1961 | |
| 1962 int pois_fam(y,mean,th,link,res,cens,w) | |
| 1963 double y, mean, th, *res, w; | |
| 1964 int link, cens; | |
| 1965 { double wmu, pt, dp; | |
| 1966 if (link==LINIT) | |
| 1967 { res[ZDLL] = MAX(y,0.0); | |
| 1968 return(LF_OK); | |
| 1969 } | |
| 1970 wmu = w*mean; | |
| 1971 if (inllmix) y = w*y; | |
| 1972 if (cens) | |
| 1973 { if (y<=0) | |
| 1974 { res[ZLIK] = res[ZDLL] = res[ZDDLL] = 0.0; | |
| 1975 return(LF_OK); | |
| 1976 } | |
| 1977 pt = igamma(wmu,y); | |
| 1978 dp = dgamma(wmu,y,1.0,0)/pt; | |
| 1979 res[ZLIK] = log(pt); | |
| 1980 /* | |
| 1981 * res[ZDLL] = dp * w*dmu/dth | |
| 1982 * res[ZDDLL]= -dp*(w*d2mu/dth2 + (y-1)/mu*(dmu/dth)^2) + res[ZDLL]^2 | |
| 1983 */ | |
| 1984 if (link==LLOG) | |
| 1985 { res[ZDLL] = dp*wmu; | |
| 1986 res[ZDDLL]= -dp*wmu*(y-wmu) + SQR(res[ZDLL]); | |
| 1987 return(LF_OK); | |
| 1988 } | |
| 1989 if (link==LIDENT) | |
| 1990 { res[ZDLL] = dp*w; | |
| 1991 res[ZDDLL]= -dp*(y-1-wmu)*w/mean + SQR(res[ZDLL]); | |
| 1992 return(LF_OK); | |
| 1993 } | |
| 1994 if (link==LSQRT) | |
| 1995 { res[ZDLL] = dp*2*w*th; | |
| 1996 res[ZDDLL]= -dp*w*(4*y-2-4*wmu) + SQR(res[ZDLL]); | |
| 1997 return(LF_OK); | |
| 1998 } } | |
| 1999 if (link==LLOG) | |
| 2000 { if (y<0) /* goon observation - delete it */ | |
| 2001 { res[ZLIK] = res[ZDLL] = res[ZDDLL] = 0; | |
| 2002 return(LF_OK); | |
| 2003 } | |
| 2004 res[ZLIK] = res[ZDLL] = y-wmu; | |
| 2005 if (y>0) res[ZLIK] += y*(th-log(y/w)); | |
| 2006 res[ZDDLL] = wmu; | |
| 2007 return(LF_OK); | |
| 2008 } | |
| 2009 if (link==LIDENT) | |
| 2010 { if ((mean<=0) && (y>0)) return(LF_BADP); | |
| 2011 res[ZLIK] = y-wmu; | |
| 2012 res[ZDLL] = -w; | |
| 2013 res[ZDDLL] = 0; | |
| 2014 if (y>0) | |
| 2015 { res[ZLIK] += y*log(wmu/y); | |
| 2016 res[ZDLL] += y/mean; | |
| 2017 res[ZDDLL]= y/(mean*mean); | |
| 2018 } | |
| 2019 return(LF_OK); | |
| 2020 } | |
| 2021 if (link==LSQRT) | |
| 2022 { if ((mean<=0) && (y>0)) return(LF_BADP); | |
| 2023 res[ZLIK] = y-wmu; | |
| 2024 res[ZDLL] = -2*w*th; | |
| 2025 res[ZDDLL]= 2*w; | |
| 2026 if (y>0) | |
| 2027 { res[ZLIK] += y*log(wmu/y); | |
| 2028 res[ZDLL] += 2*y/th; | |
| 2029 res[ZDDLL]+= 2*y/mean; | |
| 2030 } | |
| 2031 return(LF_OK); | |
| 2032 } | |
| 2033 LERR(("link %d invalid for Poisson family",link)); | |
| 2034 return(LF_LNK); | |
| 2035 } | |
| 2036 | |
| 2037 void setfpoisson(fam) | |
| 2038 family *fam; | |
| 2039 { fam->deflink = LLOG; | |
| 2040 fam->canlink = LLOG; | |
| 2041 fam->vallink = pois_vallink; | |
| 2042 fam->family = pois_fam; | |
| 2043 } | |
| 2044 /* | |
| 2045 * Copyright 1996-2006 Catherine Loader. | |
| 2046 */ | |
| 2047 #include "locf.h" | |
| 2048 | |
| 2049 #define QTOL 1.0e-10 | |
| 2050 extern int lf_status; | |
| 2051 static double q0; | |
| 2052 | |
| 2053 int quant_vallink(int link) { return(1); } | |
| 2054 | |
| 2055 int quant_fam(y,mean,th,link,res,cens,w) | |
| 2056 double y, mean, th, *res, w; | |
| 2057 int link, cens; | |
| 2058 { double z, p; | |
| 2059 if (link==LINIT) | |
| 2060 { res[ZDLL] = w*y; | |
| 2061 return(LF_OK); | |
| 2062 } | |
| 2063 p = 0.5; /* should be pen(sp) */ | |
| 2064 z = y-mean; | |
| 2065 res[ZLIK] = (z<0) ? (w*z/p) : (-w*z/(1-p)); | |
| 2066 res[ZDLL] = (z<0) ? -w/p : w/(1-p); | |
| 2067 res[ZDDLL]= w/(p*(1-p)); | |
| 2068 return(LF_OK); | |
| 2069 } | |
| 2070 | |
| 2071 int quant_check(sp,des,lfd) | |
| 2072 smpar *sp; | |
| 2073 design *des; | |
| 2074 lfdata *lfd; | |
| 2075 { return(LF_DONE); | |
| 2076 } | |
| 2077 | |
| 2078 void setfquant(fam) | |
| 2079 family *fam; | |
| 2080 { fam->deflink = LIDENT; | |
| 2081 fam->canlink = LIDENT; | |
| 2082 fam->vallink = quant_vallink; | |
| 2083 fam->family = quant_fam; | |
| 2084 fam->pcheck = quant_check; | |
| 2085 } | |
| 2086 | |
| 2087 /* | |
| 2088 * cycling rule for choosing among ties. | |
| 2089 */ | |
| 2090 int tiecycle(ind,i0,i1,oi) | |
| 2091 int *ind, i0, i1, oi; | |
| 2092 { int i, ii, im; | |
| 2093 im = ind[i0]; | |
| 2094 for (i=i0+1; i<=i1; i++) | |
| 2095 { ii = ind[i]; | |
| 2096 if (im<=oi) | |
| 2097 { if ((ii<im) | (ii>oi)) im = ii; | |
| 2098 } | |
| 2099 else | |
| 2100 { if ((ii<im) & (ii>oi)) im = ii; | |
| 2101 } | |
| 2102 } | |
| 2103 return(im); | |
| 2104 } | |
| 2105 | |
| 2106 /* | |
| 2107 * move coefficient vector cf, as far as possible, in direction dc. | |
| 2108 */ | |
| 2109 int movecoef(lfd,des,p,cf,dc,oi) | |
| 2110 lfdata *lfd; | |
| 2111 design *des; | |
| 2112 double p, *cf, *dc; | |
| 2113 int oi; | |
| 2114 { int i, ii, im, i0, i1, j; | |
| 2115 double *lb, *el, e, sp, sn, sw, sum1, sum2, tol1; | |
| 2116 | |
| 2117 lb = des->th; | |
| 2118 el = des->res; | |
| 2119 sum1 = sum2 = 0.0; | |
| 2120 | |
| 2121 sp = sn = sw = 0.0; | |
| 2122 for (i=0; i<des->n; i++) | |
| 2123 { ii = des->ind[i]; | |
| 2124 lb[ii] = innerprod(dc,d_xi(des,ii),des->p); | |
| 2125 e = resp(lfd,ii) - innerprod(cf,d_xi(des,ii),des->p); | |
| 2126 el[ii] = (fabs(lb[ii])<QTOL) ? 1e100 : e/lb[ii]; | |
| 2127 if (lb[ii]>0) | |
| 2128 sp += prwt(lfd,ii)*wght(des,ii)*lb[ii]; | |
| 2129 else | |
| 2130 sn -= prwt(lfd,ii)*wght(des,ii)*lb[ii]; | |
| 2131 sw += prwt(lfd,ii)*wght(des,ii); | |
| 2132 } | |
| 2133 printf("sp %8.5f sn %8.5f\n",sn,sp); | |
| 2134 /* if sn, sp are both zero, should return an LF_PF. | |
| 2135 * but within numerical tolerance? what does it mean? | |
| 2136 */ | |
| 2137 if (sn+sp <= QTOL*q0) { lf_status = LF_PF; return(0); } | |
| 2138 | |
| 2139 sum1 = sp/(1-p) + sn/p; | |
| 2140 tol1 = QTOL*(sp+sn); | |
| 2141 mut_order(el,des->ind,0,des->n-1); | |
| 2142 | |
| 2143 for (i=0; i<des->n; i++) | |
| 2144 { ii = des->ind[i]; | |
| 2145 sum2 += prwt(lfd,ii)*wght(des,ii)*((lb[ii]>0) ? lb[ii]/p : -lb[ii]/(1-p) ); | |
| 2146 sum1 -= prwt(lfd,ii)*wght(des,ii)*((lb[ii]>0) ? lb[ii]/(1-p) : -lb[ii]/p ); | |
| 2147 if (sum1<=sum2+tol1) | |
| 2148 { | |
| 2149 /* determine the range of ties [i0,i1] | |
| 2150 * el[ind[i0..i1]] = el[ind[i]]. | |
| 2151 * if sum1==sum2, el[ind[i+1]]..el[ind[i1]]] = el[ind[i1]], else i1 = i. | |
| 2152 */ | |
| 2153 i0 = i1 = i; | |
| 2154 while ((i0>0) && (el[des->ind[i0-1]]==el[ii])) i0--; | |
| 2155 while ((i1<des->n-1) && (el[des->ind[i1+1]]==el[ii])) i1++; | |
| 2156 if (sum1>=sum2-tol1) | |
| 2157 while ((i1<des->n-1) && (el[des->ind[i1+1]]==el[des->ind[i+1]])) i1++; | |
| 2158 | |
| 2159 if (i0<i1) ii = tiecycle(des->ind,i0,i1,oi); | |
| 2160 for (j=0; j<des->p; j++) cf[j] += el[ii]*dc[j]; | |
| 2161 return(ii); | |
| 2162 } | |
| 2163 } | |
| 2164 mut_printf("Big finddlt problem.\n"); | |
| 2165 ii = des->ind[des->n-1]; | |
| 2166 for (j=0; j<des->p; j++) cf[j] += el[ii]*dc[j]; | |
| 2167 return(ii); | |
| 2168 } | |
| 2169 | |
| 2170 /* | |
| 2171 * special version of movecoef for min/max. | |
| 2172 */ | |
| 2173 int movemin(lfd,des,f,cf,dc,oi) | |
| 2174 design *des; | |
| 2175 lfdata *lfd; | |
| 2176 double *cf, *dc, f; | |
| 2177 int oi; | |
| 2178 { int i, ii, im, p, s, ssum; | |
| 2179 double *lb, sum, lb0, lb1, z0, z1; | |
| 2180 | |
| 2181 lb = des->th; | |
| 2182 s = (f<=0.0) ? 1 : -1; | |
| 2183 | |
| 2184 /* first, determine whether move should be in positive or negative direction */ | |
| 2185 p = des->p; | |
| 2186 sum = 0; | |
| 2187 for (i=0; i<des->n; i++) | |
| 2188 { ii = des->ind[i]; | |
| 2189 lb[ii] = innerprod(dc,d_xi(des,ii),des->p); | |
| 2190 sum += prwt(lfd,ii)*wght(des,ii)*lb[ii]; | |
| 2191 } | |
| 2192 if (fabs(sum) <= QTOL*q0) | |
| 2193 { lf_status = LF_PF; | |
| 2194 return(0); | |
| 2195 } | |
| 2196 ssum = (sum<=0.0) ? -1 : 1; | |
| 2197 if (ssum != s) | |
| 2198 for (i=0; i<p; i++) dc[i] = -dc[i]; | |
| 2199 | |
| 2200 /* now, move positively. How far can we move? */ | |
| 2201 lb0 = 1.0e100; im = oi; | |
| 2202 for (i=0; i<des->n; i++) | |
| 2203 { ii = des->ind[i]; | |
| 2204 lb[ii] = innerprod(dc,d_xi(des,ii),des->p); /* must recompute - signs! */ | |
| 2205 if (s*lb[ii]>QTOL) /* should have scale-free tolerance here */ | |
| 2206 { z0 = innerprod(cf,d_xi(des,ii),p); | |
| 2207 lb1 = (resp(lfd,ii) - z0)/lb[ii]; | |
| 2208 if (lb1<lb0) | |
| 2209 { if (fabs(lb1-lb0)<QTOL) /* cycle */ | |
| 2210 { if (im<=oi) | |
| 2211 { if ((ii>oi) | (ii<im)) im = ii; } | |
| 2212 else | |
| 2213 { if ((ii>oi) & (ii<im)) im = ii; } | |
| 2214 } | |
| 2215 else | |
| 2216 { im = ii; lb0 = lb1; } | |
| 2217 } | |
| 2218 } | |
| 2219 } | |
| 2220 | |
| 2221 for (i=0; i<p; i++) cf[i] = cf[i]+lb0*dc[i]; | |
| 2222 if (im==-1) lf_status = LF_PF; | |
| 2223 return(im); | |
| 2224 } | |
| 2225 | |
| 2226 double qll(lfd,spr,des,cf) | |
| 2227 lfdata *lfd; | |
| 2228 smpar *spr; | |
| 2229 design *des; | |
| 2230 double *cf; | |
| 2231 { int i, ii; | |
| 2232 double th, sp, sn, p, e; | |
| 2233 | |
| 2234 p = pen(spr); | |
| 2235 sp = sn = 0.0; | |
| 2236 for (i=0; i<des->n; i++) | |
| 2237 { ii = des->ind[i]; | |
| 2238 th = innerprod(d_xi(des,ii),cf,des->p); | |
| 2239 e = resp(lfd,ii)-th; | |
| 2240 if (e<0) sn -= prwt(lfd,ii)*wght(des,ii)*e; | |
| 2241 if (e>0) sp += prwt(lfd,ii)*wght(des,ii)*e; | |
| 2242 } | |
| 2243 if (p<=0.0) return((sn<QTOL) ? -sp : -1e300); | |
| 2244 if (p>=1.0) return((sp<QTOL) ? -sn : -1e300); | |
| 2245 return(-sp/(1-p)-sn/p); | |
| 2246 } | |
| 2247 | |
| 2248 /* | |
| 2249 * running quantile smoother. | |
| 2250 */ | |
| 2251 void lfquantile(lfd,sp,des,maxit) | |
| 2252 lfdata *lfd; | |
| 2253 smpar *sp; | |
| 2254 design *des; | |
| 2255 int maxit; | |
| 2256 { int i, ii, im, j, k, p, *ci, (*mover)(); | |
| 2257 double *cf, *db, *dc, *cm, f, q1, q2, l0; | |
| 2258 | |
| 2259 printf("in lfquantile\n"); | |
| 2260 f = pen(sp); | |
| 2261 p = des->p; | |
| 2262 cf = des->cf; | |
| 2263 dc = des->oc; | |
| 2264 db = des->ss; | |
| 2265 setzero(cf,p); | |
| 2266 setzero(dc,p); | |
| 2267 cm = des->V; | |
| 2268 setzero(cm,p*p); | |
| 2269 ci = (int *)des->fix; | |
| 2270 | |
| 2271 q1 = -qll(lfd,sp,des,cf); | |
| 2272 if (q1==0.0) { lf_status = LF_PF; return; } | |
| 2273 for (i=0; i<p; i++) cm[i*(p+1)] = 1; | |
| 2274 mover = movecoef; | |
| 2275 if ((f<=0.0) | (f>=1.0)) mover = movemin; | |
| 2276 | |
| 2277 dc[0] = 1.0; | |
| 2278 im = mover(lfd,des,f,cf,dc,-1); | |
| 2279 if (lf_status != LF_OK) return; | |
| 2280 ci[0] = im; | |
| 2281 printf("init const %2d\n",ci[0]); | |
| 2282 q0 = -qll(lfd,sp,des,cf); | |
| 2283 if (q0<QTOL*q1) { lf_status = LF_PF; return; } | |
| 2284 | |
| 2285 printf("loop 0\n"); fflush(stdout); | |
| 2286 for (i=1; i<p; i++) | |
| 2287 { | |
| 2288 printf("i %2d\n",i); | |
| 2289 memcpy(&cm[(i-1)*p],d_xi(des,im),p*sizeof(double)); | |
| 2290 setzero(db,p); | |
| 2291 db[i] = 1.0; | |
| 2292 resproj(db,cm,dc,p,i); | |
| 2293 printf("call mover\n"); fflush(stdout); | |
| 2294 im = mover(lfd,des,f,cf,dc,-1); | |
| 2295 if (lf_status != LF_OK) return; | |
| 2296 printf("mover %2d\n",im); fflush(stdout); | |
| 2297 ci[i] = im; | |
| 2298 } | |
| 2299 printf("call qll\n"); fflush(stdout); | |
| 2300 q1 = qll(lfd,sp,des,cf); | |
| 2301 | |
| 2302 printf("loop 1 %d %d %d %d\n",ci[0],ci[1],ci[2],ci[3]); fflush(stdout); | |
| 2303 for (k=0; k<maxit; k++) | |
| 2304 { for (i=0; i<p; i++) | |
| 2305 { for (j=0; j<p; j++) | |
| 2306 if (j!=i) memcpy(&cm[(j-(j>i))*p],d_xi(des,ci[j]),p*sizeof(double)); | |
| 2307 memcpy(db,d_xi(des,ci[i]),p*sizeof(double)); | |
| 2308 resproj(db,cm,dc,p,p-1); | |
| 2309 printf("call mover\n"); fflush(stdout); | |
| 2310 im = mover(lfd,des,f,cf,dc,ci[i]); | |
| 2311 if (lf_status != LF_OK) return; | |
| 2312 printf("mover %2d\n",im); fflush(stdout); | |
| 2313 ci[i] = im; | |
| 2314 } | |
| 2315 q2 = qll(lfd,sp,des,cf); | |
| 2316 /* | |
| 2317 * convergence: require no change -- reasonable, since discrete? | |
| 2318 * remember we're maximizing, and q's are negative. | |
| 2319 */ | |
| 2320 if (q2 <= q1) return; | |
| 2321 q1 = q2; | |
| 2322 } | |
| 2323 printf("loop 2\n"); | |
| 2324 mut_printf("Warning: lfquantile not converged.\n"); | |
| 2325 } | |
| 2326 /* | |
| 2327 * Copyright 1996-2006 Catherine Loader. | |
| 2328 */ | |
| 2329 #include "locf.h" | |
| 2330 | |
| 2331 extern double links_rs; | |
| 2332 | |
| 2333 int robust_vallink(link) | |
| 2334 int link; | |
| 2335 { return(link==LIDENT); | |
| 2336 } | |
| 2337 | |
| 2338 int robust_fam(y,mean,th,link,res,cens,w) | |
| 2339 double y, mean, th, *res, w; | |
| 2340 int link, cens; | |
| 2341 { double z, sw; | |
| 2342 if (link==LINIT) | |
| 2343 { res[ZDLL] = w*y; | |
| 2344 return(LF_OK); | |
| 2345 } | |
| 2346 sw = (w==1.0) ? 1.0 : sqrt(w); /* don't want unnecess. sqrt! */ | |
| 2347 z = sw*(y-mean)/links_rs; | |
| 2348 res[ZLIK] = (fabs(z)<HUBERC) ? -z*z/2 : HUBERC*(HUBERC/2.0-fabs(z)); | |
| 2349 if (z< -HUBERC) | |
| 2350 { res[ZDLL] = -sw*HUBERC/links_rs; | |
| 2351 res[ZDDLL]= 0.0; | |
| 2352 return(LF_OK); | |
| 2353 } | |
| 2354 if (z> HUBERC) | |
| 2355 { res[ZDLL] = sw*HUBERC/links_rs; | |
| 2356 res[ZDDLL]= 0.0; | |
| 2357 return(LF_OK); | |
| 2358 } | |
| 2359 res[ZDLL] = sw*z/links_rs; | |
| 2360 res[ZDDLL] = w/(links_rs*links_rs); | |
| 2361 return(LF_OK); | |
| 2362 } | |
| 2363 | |
| 2364 int cauchy_fam(y,p,th,link,res,cens,w) | |
| 2365 double y, p, th, *res, w; | |
| 2366 int link, cens; | |
| 2367 { double z; | |
| 2368 if (link!=LIDENT) | |
| 2369 { LERR(("Invalid link in famcauc")); | |
| 2370 return(LF_LNK); | |
| 2371 } | |
| 2372 z = w*(y-th)/links_rs; | |
| 2373 res[ZLIK] = -log(1+z*z); | |
| 2374 res[ZDLL] = 2*w*z/(links_rs*(1+z*z)); | |
| 2375 res[ZDDLL] = 2*w*w*(1-z*z)/(links_rs*links_rs*(1+z*z)*(1+z*z)); | |
| 2376 return(LF_OK); | |
| 2377 } | |
| 2378 | |
| 2379 extern double lf_tol; | |
| 2380 int robust_init(lfd,des,sp) | |
| 2381 lfdata *lfd; | |
| 2382 design *des; | |
| 2383 smpar *sp; | |
| 2384 { int i; | |
| 2385 for (i=0; i<des->n; i++) | |
| 2386 des->res[i] = resp(lfd,(int)des->ind[i]) - base(lfd,(int)des->ind[i]); | |
| 2387 des->cf[0] = median(des->res,des->n); | |
| 2388 for (i=1; i<des->p; i++) des->cf[i] = 0.0; | |
| 2389 lf_tol = 1.0e-6; | |
| 2390 return(LF_OK); | |
| 2391 } | |
| 2392 | |
| 2393 void setfrobust(fam) | |
| 2394 family *fam; | |
| 2395 { fam->deflink = LIDENT; | |
| 2396 fam->canlink = LIDENT; | |
| 2397 fam->vallink = robust_vallink; | |
| 2398 fam->family = robust_fam; | |
| 2399 fam->initial = robust_init; | |
| 2400 fam->robust = 0; | |
| 2401 } | |
| 2402 | |
| 2403 void setfcauchy(fam) | |
| 2404 family *fam; | |
| 2405 { fam->deflink = LIDENT; | |
| 2406 fam->canlink = LIDENT; | |
| 2407 fam->vallink = robust_vallink; | |
| 2408 fam->family = cauchy_fam; | |
| 2409 fam->initial = robust_init; | |
| 2410 fam->robust = 0; | |
| 2411 } | |
| 2412 /* | |
| 2413 * Copyright 1996-2006 Catherine Loader. | |
| 2414 */ | |
| 2415 #include "locf.h" | |
| 2416 | |
| 2417 int weibull_vallink(link) | |
| 2418 int link; | |
| 2419 { return((link==LIDENT) | (link==LLOG) | (link==LLOGIT)); | |
| 2420 } | |
| 2421 | |
| 2422 int weibull_fam(y,mean,th,link,res,cens,w) | |
| 2423 double y, mean, th, *res, w; | |
| 2424 int link, cens; | |
| 2425 { double yy; | |
| 2426 yy = pow(y,w); | |
| 2427 if (link==LINIT) | |
| 2428 { res[ZDLL] = MAX(yy,0.0); | |
| 2429 return(LF_OK); | |
| 2430 } | |
| 2431 if (cens) | |
| 2432 { res[ZLIK] = -yy/mean; | |
| 2433 res[ZDLL] = res[ZDDLL] = yy/mean; | |
| 2434 return(LF_OK); | |
| 2435 } | |
| 2436 res[ZLIK] = 1-yy/mean-th; | |
| 2437 if (yy>0) res[ZLIK] += log(w*yy); | |
| 2438 res[ZDLL] = -1+yy/mean; | |
| 2439 res[ZDDLL]= yy/mean; | |
| 2440 return(LF_OK); | |
| 2441 } | |
| 2442 | |
| 2443 void setfweibull(fam) | |
| 2444 family *fam; | |
| 2445 { fam->deflink = LLOG; | |
| 2446 fam->canlink = LLOG; | |
| 2447 fam->vallink = weibull_vallink; | |
| 2448 fam->family = weibull_fam; | |
| 2449 fam->robust = 0; | |
| 2450 } | |
| 2451 /* | |
| 2452 * Copyright 1996-2006 Catherine Loader. | |
| 2453 */ | |
| 2454 /* | |
| 2455 Functions implementing the adaptive bandwidth selection. | |
| 2456 Will make the final call to nbhd() to set smoothing weights | |
| 2457 for selected bandwidth, But will **not** make the | |
| 2458 final call to locfit(). | |
| 2459 */ | |
| 2460 | |
| 2461 #include "locf.h" | |
| 2462 | |
| 2463 static double hmin; | |
| 2464 | |
| 2465 #define NACRI 5 | |
| 2466 static char *atype[NACRI] = { "none", "cp", "ici", "mindex", "ok" }; | |
| 2467 static int avals[NACRI] = { ANONE, ACP, AKAT, AMDI, AOK }; | |
| 2468 int lfacri(char *z) | |
| 2469 { return(pmatch(z, atype, avals, NACRI, ANONE)); | |
| 2470 } | |
| 2471 | |
| 2472 double adcri(lk,t0,t2,pen) | |
| 2473 double lk, t0, t2, pen; | |
| 2474 { double y; | |
| 2475 /* return(-2*lk/(t0*exp(pen*log(1-t2/t0)))); */ | |
| 2476 /* return((-2*lk+pen*t2)/t0); */ | |
| 2477 y = (MAX(-2*lk,t0-t2)+pen*t2)/t0; | |
| 2478 return(y); | |
| 2479 } | |
| 2480 | |
| 2481 double mmse(lfd,sp,dv,des) | |
| 2482 lfdata *lfd; | |
| 2483 smpar *sp; | |
| 2484 deriv *dv; | |
| 2485 design *des; | |
| 2486 { int i, ii, j, p, p1; | |
| 2487 double sv, sb, *l, dp; | |
| 2488 | |
| 2489 l = des->wd; | |
| 2490 wdiag(lfd, sp, des,l,dv,0,1,0); | |
| 2491 sv = sb = 0; | |
| 2492 p = npar(sp); | |
| 2493 for (i=0; i<des->n; i++) | |
| 2494 { sv += l[i]*l[i]; | |
| 2495 ii = des->ind[i]; | |
| 2496 dp = dist(des,ii); | |
| 2497 for (j=0; j<deg(sp); j++) dp *= dist(des,ii); | |
| 2498 sb += fabs(l[i])*dp; | |
| 2499 } | |
| 2500 p1 = factorial(deg(sp)+1); | |
| 2501 printf("%8.5f sv %8.5f sb %8.5f %8.5f\n",des->h,sv,sb,sv+sb*sb*pen(sp)*pen(sp)/(p1*p1)); | |
| 2502 return(sv+sb*sb*pen(sp)*pen(sp)/(p1*p1)); | |
| 2503 } | |
| 2504 | |
| 2505 static double mcp, clo, cup; | |
| 2506 | |
| 2507 /* | |
| 2508 Initial bandwidth will be (by default) | |
| 2509 k-nearest neighbors for k small, just large enough to | |
| 2510 get defined estimate (unless user provided nonzero nn or fix-h components) | |
| 2511 */ | |
| 2512 | |
| 2513 int ainitband(lfd,sp,dv,des) | |
| 2514 lfdata *lfd; | |
| 2515 smpar *sp; | |
| 2516 deriv *dv; | |
| 2517 design *des; | |
| 2518 { int lf_status, p, z, cri, noit, redo; | |
| 2519 double ho, t[6]; | |
| 2520 | |
| 2521 if (lf_debug >= 2) mut_printf("ainitband:\n"); | |
| 2522 p = des->p; | |
| 2523 cri = acri(sp); | |
| 2524 noit = (cri!=AOK); | |
| 2525 z = (int)(lfd->n*nn(sp)); | |
| 2526 if ((noit) && (z<p+2)) z = p+2; | |
| 2527 redo = 0; ho = -1; | |
| 2528 do | |
| 2529 { | |
| 2530 nbhd(lfd,des,z,redo,sp); | |
| 2531 if (z<des->n) z = des->n; | |
| 2532 if (des->h>ho) lf_status = locfit(lfd,des,sp,noit,0,0); | |
| 2533 z++; | |
| 2534 redo = 1; | |
| 2535 } while ((z<=lfd->n) && ((des->h==0)||(lf_status!=LF_OK))); | |
| 2536 hmin = des->h; | |
| 2537 | |
| 2538 switch(cri) | |
| 2539 { case ACP: | |
| 2540 local_df(lfd,sp,des,t); | |
| 2541 mcp = adcri(des->llk,t[0],t[2],pen(sp)); | |
| 2542 return(lf_status); | |
| 2543 case AKAT: | |
| 2544 local_df(lfd,sp,des,t); | |
| 2545 clo = des->cf[0]-pen(sp)*t[5]; | |
| 2546 cup = des->cf[0]+pen(sp)*t[5]; | |
| 2547 return(lf_status); | |
| 2548 case AMDI: | |
| 2549 mcp = mmse(lfd,sp,dv,des); | |
| 2550 return(lf_status); | |
| 2551 case AOK: return(lf_status); | |
| 2552 } | |
| 2553 LERR(("aband1: unknown criterion")); | |
| 2554 return(LF_ERR); | |
| 2555 } | |
| 2556 | |
| 2557 /* | |
| 2558 aband2 increases the initial bandwidth until lack of fit results, | |
| 2559 or the fit is close to a global fit. Increase h by 1+0.3/d at | |
| 2560 each iteration. | |
| 2561 */ | |
| 2562 | |
| 2563 double aband2(lfd,sp,dv,des,h0) | |
| 2564 lfdata *lfd; | |
| 2565 smpar *sp; | |
| 2566 deriv *dv; | |
| 2567 design *des; | |
| 2568 double h0; | |
| 2569 { double t[6], h1, nu1, cp, ncp, tlo, tup; | |
| 2570 int d, inc, n, p, done; | |
| 2571 | |
| 2572 if (lf_debug >= 2) mut_printf("aband2:\n"); | |
| 2573 d = lfd->d; n = lfd->n; p = npar(sp); | |
| 2574 h1 = des->h = h0; | |
| 2575 done = 0; nu1 = 0.0; | |
| 2576 inc = 0; ncp = 0.0; | |
| 2577 while ((!done) & (nu1<(n-p)*0.95)) | |
| 2578 { fixh(sp) = (1+0.3/d)*des->h; | |
| 2579 nbhd(lfd,des,0,1,sp); | |
| 2580 if (locfit(lfd,des,sp,1,0,0) > 0) WARN(("aband2: failed fit")); | |
| 2581 local_df(lfd,sp,des,t); | |
| 2582 nu1 = t[0]-t[2]; /* tr(A) */ | |
| 2583 switch(acri(sp)) | |
| 2584 { case AKAT: | |
| 2585 tlo = des->cf[0]-pen(sp)*t[5]; | |
| 2586 tup = des->cf[0]+pen(sp)*t[5]; | |
| 2587 /* mut_printf("h %8.5f tlo %8.5f tup %8.5f\n",des->h,tlo,tup); */ | |
| 2588 done = ((tlo>cup) | (tup<clo)); | |
| 2589 if (!done) | |
| 2590 { clo = MAX(clo,tlo); | |
| 2591 cup = MIN(cup,tup); | |
| 2592 h1 = des->h; | |
| 2593 } | |
| 2594 break; | |
| 2595 case ACP: | |
| 2596 cp = adcri(des->llk,t[0],t[2],pen(sp)); | |
| 2597 /* mut_printf("h %8.5f lk %8.5f t0 %8.5f t2 %8.5f cp %8.5f\n",des->h,des->llk,t[0],t[2],cp); */ | |
| 2598 if (cp<mcp) { mcp = cp; h1 = des->h; } | |
| 2599 if (cp>=ncp) inc++; else inc = 0; | |
| 2600 ncp = cp; | |
| 2601 done = (inc>=10) | ((inc>=3) & ((t[0]-t[2])>=10) & (cp>1.5*mcp)); | |
| 2602 break; | |
| 2603 case AMDI: | |
| 2604 cp = mmse(lfd,sp,dv,des); | |
| 2605 if (cp<mcp) { mcp = cp; h1 = des->h; } | |
| 2606 if (cp>ncp) inc++; else inc = 0; | |
| 2607 ncp = cp; | |
| 2608 done = (inc>=3); | |
| 2609 break; | |
| 2610 } | |
| 2611 } | |
| 2612 return(h1); | |
| 2613 } | |
| 2614 | |
| 2615 /* | |
| 2616 aband3 does a finer search around best h so far. Try | |
| 2617 h*(1-0.2/d), h/(1-0.1/d), h*(1+0.1/d), h*(1+0.2/d) | |
| 2618 */ | |
| 2619 double aband3(lfd,sp,dv,des,h0) | |
| 2620 lfdata *lfd; | |
| 2621 smpar *sp; | |
| 2622 deriv *dv; | |
| 2623 design *des; | |
| 2624 double h0; | |
| 2625 { double t[6], h1, cp, tlo, tup; | |
| 2626 int i, i0, d, n; | |
| 2627 | |
| 2628 if (lf_debug >= 2) mut_printf("aband3:\n"); | |
| 2629 d = lfd->d; n = lfd->n; | |
| 2630 h1 = h0; | |
| 2631 i0 = (acri(sp)==AKAT) ? 1 : -2; | |
| 2632 if (h0==hmin) i0 = 1; | |
| 2633 | |
| 2634 for (i=i0; i<=2; i++) | |
| 2635 { if (i==0) i++; | |
| 2636 fixh(sp) = h0*(1+0.1*i/d); | |
| 2637 nbhd(lfd,des,0,1,sp); | |
| 2638 if (locfit(lfd,des,sp,1,0,0) > 0) WARN(("aband3: failed fit")); | |
| 2639 local_df(lfd,sp,des,t); | |
| 2640 switch (acri(sp)) | |
| 2641 { case AKAT: | |
| 2642 tlo = des->cf[0]-pen(sp)*t[5]; | |
| 2643 tup = des->cf[0]+pen(sp)*t[5]; | |
| 2644 if ((tlo>cup) | (tup<clo)) /* done */ | |
| 2645 i = 2; | |
| 2646 else | |
| 2647 { h1 = des->h; | |
| 2648 clo = MAX(clo,tlo); | |
| 2649 cup = MIN(cup,tup); | |
| 2650 } | |
| 2651 break; | |
| 2652 case ACP: | |
| 2653 cp = adcri(des->llk,t[0],t[2],pen(sp)); | |
| 2654 if (cp<mcp) { mcp = cp; h1 = des->h; } | |
| 2655 else | |
| 2656 { if (i>0) i = 2; } | |
| 2657 break; | |
| 2658 case AMDI: | |
| 2659 cp = mmse(lfd,sp,dv,des); | |
| 2660 if (cp<mcp) { mcp = cp; h1 = des->h; } | |
| 2661 else | |
| 2662 { if (i>0) i = 2; } | |
| 2663 } | |
| 2664 } | |
| 2665 return(h1); | |
| 2666 } | |
| 2667 | |
| 2668 int alocfit(lfd,sp,dv,des,cv) | |
| 2669 lfdata *lfd; | |
| 2670 smpar *sp; | |
| 2671 deriv *dv; | |
| 2672 design *des; | |
| 2673 int cv; | |
| 2674 { int lf_status; | |
| 2675 double h0; | |
| 2676 | |
| 2677 lf_status = ainitband(lfd,sp,dv,des); | |
| 2678 if (lf_error) return(lf_status); | |
| 2679 if (acri(sp) == AOK) return(lf_status); | |
| 2680 | |
| 2681 h0 = fixh(sp); | |
| 2682 fixh(sp) = aband2(lfd,sp,dv,des,des->h); | |
| 2683 fixh(sp) = aband3(lfd,sp,dv,des,fixh(sp)); | |
| 2684 nbhd(lfd,des,0,1,sp); | |
| 2685 lf_status = locfit(lfd,des,sp,0,0,cv); | |
| 2686 fixh(sp) = h0; | |
| 2687 | |
| 2688 return(lf_status); | |
| 2689 } | |
| 2690 /* | |
| 2691 * Copyright 1996-2006 Catherine Loader. | |
| 2692 */ | |
| 2693 /* | |
| 2694 * | |
| 2695 * Evaluate the locfit fitting functions. | |
| 2696 * calcp(sp,d) | |
| 2697 * calculates the number of fitting functions. | |
| 2698 * makecfn(sp,des,dv,d) | |
| 2699 * makes the coef.number vector. | |
| 2700 * fitfun(lfd, sp, x,t,f,dv) | |
| 2701 * lfd is the local fit structure. | |
| 2702 * sp smoothing parameter structure. | |
| 2703 * x is the data point. | |
| 2704 * t is the fitting point. | |
| 2705 * f is a vector to return the results. | |
| 2706 * dv derivative structure. | |
| 2707 * designmatrix(lfd, sp, des) | |
| 2708 * is a wrapper for fitfun to build the design matrix. | |
| 2709 * | |
| 2710 */ | |
| 2711 | |
| 2712 #include "locf.h" | |
| 2713 | |
| 2714 int calcp(sp,d) | |
| 2715 smpar *sp; | |
| 2716 int d; | |
| 2717 { int i, k; | |
| 2718 | |
| 2719 if (ubas(sp)) return(npar(sp)); | |
| 2720 | |
| 2721 switch (kt(sp)) | |
| 2722 { case KSPH: | |
| 2723 case KCE: | |
| 2724 k = 1; | |
| 2725 for (i=1; i<=deg(sp); i++) k = k*(d+i)/i; | |
| 2726 return(k); | |
| 2727 case KPROD: return(d*deg(sp)+1); | |
| 2728 case KLM: return(d); | |
| 2729 case KZEON: return(1); | |
| 2730 } | |
| 2731 LERR(("calcp: invalid kt %d",kt(sp))); | |
| 2732 return(0); | |
| 2733 } | |
| 2734 | |
| 2735 int coefnumber(dv,kt,d,deg) | |
| 2736 int kt, d, deg; | |
| 2737 deriv *dv; | |
| 2738 { int d0, d1, t; | |
| 2739 | |
| 2740 if (d==1) | |
| 2741 { if (dv->nd<=deg) return(dv->nd); | |
| 2742 return(-1); | |
| 2743 } | |
| 2744 | |
| 2745 if (dv->nd==0) return(0); | |
| 2746 if (deg==0) return(-1); | |
| 2747 if (dv->nd==1) return(1+dv->deriv[0]); | |
| 2748 if (deg==1) return(-1); | |
| 2749 if (kt==KPROD) return(-1); | |
| 2750 | |
| 2751 if (dv->nd==2) | |
| 2752 { d0 = dv->deriv[0]; d1 = dv->deriv[1]; | |
| 2753 if (d0<d1) { t = d0; d0 = d1; d1 = t; } | |
| 2754 return((d+1)*(d0+1)-d0*(d0+3)/2+d1); | |
| 2755 } | |
| 2756 if (deg==2) return(-1); | |
| 2757 | |
| 2758 LERR(("coefnumber not programmed for nd>=3")); | |
| 2759 return(-1); | |
| 2760 } | |
| 2761 | |
| 2762 void makecfn(sp,des,dv,d) | |
| 2763 smpar *sp; | |
| 2764 design *des; | |
| 2765 deriv *dv; | |
| 2766 int d; | |
| 2767 { int i, nd; | |
| 2768 | |
| 2769 nd = dv->nd; | |
| 2770 | |
| 2771 des->cfn[0] = coefnumber(dv,kt(sp),d,deg(sp)); | |
| 2772 des->ncoef = 1; | |
| 2773 if (nd >= deg(sp)) return; | |
| 2774 if (kt(sp)==KZEON) return; | |
| 2775 | |
| 2776 if (d>1) | |
| 2777 { if (nd>=2) return; | |
| 2778 if ((nd>=1) && (kt(sp)==KPROD)) return; | |
| 2779 } | |
| 2780 | |
| 2781 dv->nd = nd+1; | |
| 2782 for (i=0; i<d; i++) | |
| 2783 { dv->deriv[nd] = i; | |
| 2784 des->cfn[i+1] = coefnumber(dv,kt(sp),d,deg(sp)); | |
| 2785 } | |
| 2786 dv->nd = nd; | |
| 2787 | |
| 2788 des->ncoef = 1+d; | |
| 2789 } | |
| 2790 | |
| 2791 void fitfunangl(dx,ff,sca,cd,deg) | |
| 2792 double dx, *ff, sca; | |
| 2793 int deg, cd; | |
| 2794 { | |
| 2795 if (deg>=3) WARN(("Can't handle angular model with deg>=3")); | |
| 2796 | |
| 2797 switch(cd) | |
| 2798 { case 0: | |
| 2799 ff[0] = 1; | |
| 2800 ff[1] = sin(dx/sca)*sca; | |
| 2801 ff[2] = (1-cos(dx/sca))*sca*sca; | |
| 2802 return; | |
| 2803 case 1: | |
| 2804 ff[0] = 0; | |
| 2805 ff[1] = cos(dx/sca); | |
| 2806 ff[2] = sin(dx/sca)*sca; | |
| 2807 return; | |
| 2808 case 2: | |
| 2809 ff[0] = 0; | |
| 2810 ff[1] = -sin(dx/sca)/sca; | |
| 2811 ff[2] = cos(dx/sca); | |
| 2812 return; | |
| 2813 default: WARN(("Can't handle angular model with >2 derivs")); | |
| 2814 } | |
| 2815 } | |
| 2816 | |
| 2817 void fitfun(lfd,sp,x,t,f,dv) | |
| 2818 lfdata *lfd; | |
| 2819 smpar *sp; | |
| 2820 double *x, *t, *f; | |
| 2821 deriv *dv; | |
| 2822 { int d, deg, nd, m, i, j, k, ct_deriv[MXDIM]; | |
| 2823 double ff[MXDIM][1+MXDEG], dx[MXDIM], *xx[MXDIM]; | |
| 2824 | |
| 2825 if (ubas(sp)) | |
| 2826 { for (i=0; i<lfd->d; i++) xx[i] = &x[i]; | |
| 2827 i = 0; | |
| 2828 sp->vbasis(xx,t,1,lfd->d,1,npar(sp),f); | |
| 2829 return; | |
| 2830 } | |
| 2831 | |
| 2832 d = lfd->d; | |
| 2833 deg = deg(sp); | |
| 2834 m = 0; | |
| 2835 nd = (dv==NULL) ? 0 : dv->nd; | |
| 2836 | |
| 2837 if (kt(sp)==KZEON) | |
| 2838 { f[0] = 1.0; | |
| 2839 return; | |
| 2840 } | |
| 2841 | |
| 2842 if (kt(sp)==KLM) | |
| 2843 { for (i=0; i<d; i++) f[m++] = x[i]; | |
| 2844 return; | |
| 2845 } | |
| 2846 | |
| 2847 f[m++] = (nd==0); | |
| 2848 if (deg==0) return; | |
| 2849 | |
| 2850 for (i=0; i<d; i++) | |
| 2851 { ct_deriv[i] = 0; | |
| 2852 dx[i] = (t==NULL) ? x[i] : x[i]-t[i]; | |
| 2853 } | |
| 2854 for (i=0; i<nd; i++) ct_deriv[dv->deriv[i]]++; | |
| 2855 | |
| 2856 for (i=0; i<d; i++) | |
| 2857 { switch(lfd->sty[i]) | |
| 2858 { | |
| 2859 case STANGL: | |
| 2860 fitfunangl(dx[i],ff[i],lfd->sca[i],ct_deriv[i],deg(sp)); | |
| 2861 break; | |
| 2862 default: | |
| 2863 for (j=0; j<ct_deriv[i]; j++) ff[i][j] = 0.0; | |
| 2864 ff[i][ct_deriv[i]] = 1.0; | |
| 2865 for (j=ct_deriv[i]+1; j<=deg; j++) | |
| 2866 ff[i][j] = ff[i][j-1]*dx[i]/(j-ct_deriv[i]); | |
| 2867 } | |
| 2868 } | |
| 2869 | |
| 2870 /* | |
| 2871 * Product kernels. Note that if ct_deriv[i] != nd, that implies | |
| 2872 * there is differentiation wrt another variable, and all components | |
| 2873 * involving x[i] are 0. | |
| 2874 */ | |
| 2875 if ((d==1) || (kt(sp)==KPROD)) | |
| 2876 { for (j=1; j<=deg; j++) | |
| 2877 for (i=0; i<d; i++) | |
| 2878 f[m++] = (ct_deriv[i]==nd) ? ff[i][j] : 0.0; | |
| 2879 return; | |
| 2880 } | |
| 2881 | |
| 2882 /* | |
| 2883 * Spherical kernels with the full polynomial basis. | |
| 2884 * Presently implemented up to deg=3. | |
| 2885 */ | |
| 2886 for (i=0; i<d; i++) | |
| 2887 f[m++] = (ct_deriv[i]==nd) ? ff[i][1] : 0.0; | |
| 2888 if (deg==1) return; | |
| 2889 | |
| 2890 for (i=0; i<d; i++) | |
| 2891 { | |
| 2892 /* xi^2/2 terms. */ | |
| 2893 f[m++] = (ct_deriv[i]==nd) ? ff[i][2] : 0.0; | |
| 2894 | |
| 2895 /* xi xj terms */ | |
| 2896 for (j=i+1; j<d; j++) | |
| 2897 f[m++] = (ct_deriv[i]+ct_deriv[j]==nd) ? ff[i][1]*ff[j][1] : 0.0; | |
| 2898 } | |
| 2899 if (deg==2) return; | |
| 2900 | |
| 2901 for (i=0; i<d; i++) | |
| 2902 { | |
| 2903 /* xi^3/6 terms */ | |
| 2904 f[m++] = (ct_deriv[i]==nd) ? ff[i][3] : 0.0; | |
| 2905 | |
| 2906 /* xi^2/2 xk terms */ | |
| 2907 for (k=i+1; k<d; k++) | |
| 2908 f[m++] = (ct_deriv[i]+ct_deriv[k]==nd) ? ff[i][2]*ff[k][1] : 0.0; | |
| 2909 | |
| 2910 /* xi xj xk terms */ | |
| 2911 for (j=i+1; j<d; j++) | |
| 2912 { f[m++] = (ct_deriv[i]+ct_deriv[j]==nd) ? ff[i][1]*ff[j][2] : 0.0; | |
| 2913 for (k=j+1; k<d; k++) | |
| 2914 f[m++] = (ct_deriv[i]+ct_deriv[j]+ct_deriv[k]==nd) ? | |
| 2915 ff[i][1]*ff[j][1]*ff[k][1] : 0.0; | |
| 2916 } | |
| 2917 } | |
| 2918 if (deg==3) return; | |
| 2919 | |
| 2920 LERR(("fitfun: can't handle deg=%d for spherical kernels",deg)); | |
| 2921 } | |
| 2922 | |
| 2923 /* | |
| 2924 * Build the design matrix. Assumes des->ind contains the indices of | |
| 2925 * the required data points; des->n the number of points; des->xev | |
| 2926 * the fitting point. | |
| 2927 */ | |
| 2928 void designmatrix(lfd,sp,des) | |
| 2929 lfdata *lfd; | |
| 2930 smpar *sp; | |
| 2931 design *des; | |
| 2932 { int i, ii, j, p; | |
| 2933 double *X, u[MXDIM]; | |
| 2934 | |
| 2935 X = d_x(des); | |
| 2936 p = des->p; | |
| 2937 | |
| 2938 if (ubas(sp)) | |
| 2939 { | |
| 2940 sp->vbasis(lfd->x,des->xev,lfd->n,lfd->d,des->n,p,X); | |
| 2941 return; | |
| 2942 } | |
| 2943 | |
| 2944 for (i=0; i<des->n; i++) | |
| 2945 { ii = des->ind[i]; | |
| 2946 for (j=0; j<lfd->d; j++) u[j] = datum(lfd,j,ii); | |
| 2947 fitfun(lfd,sp,u,des->xev,&X[ii*p],NULL); | |
| 2948 } | |
| 2949 } | |
| 2950 /* | |
| 2951 * Copyright 1996-2006 Catherine Loader. | |
| 2952 */ | |
| 2953 /* | |
| 2954 * | |
| 2955 * | |
| 2956 * Functions for determining bandwidth; smoothing neighborhood | |
| 2957 * and smoothing weights. | |
| 2958 */ | |
| 2959 | |
| 2960 #include "locf.h" | |
| 2961 | |
| 2962 double rho(x,sc,d,kt,sty) /* ||x|| for appropriate distance metric */ | |
| 2963 double *x, *sc; | |
| 2964 int d, kt, *sty; | |
| 2965 { double rhoi[MXDIM], s; | |
| 2966 int i; | |
| 2967 for (i=0; i<d; i++) | |
| 2968 { if (sty!=NULL) | |
| 2969 { switch(sty[i]) | |
| 2970 { case STANGL: rhoi[i] = 2*sin(x[i]/(2*sc[i])); break; | |
| 2971 case STCPAR: rhoi[i] = 0; break; | |
| 2972 default: rhoi[i] = x[i]/sc[i]; | |
| 2973 } } | |
| 2974 else rhoi[i] = x[i]/sc[i]; | |
| 2975 } | |
| 2976 | |
| 2977 if (d==1) return(fabs(rhoi[0])); | |
| 2978 | |
| 2979 s = 0; | |
| 2980 if (kt==KPROD) | |
| 2981 { for (i=0; i<d; i++) | |
| 2982 { rhoi[i] = fabs(rhoi[i]); | |
| 2983 if (rhoi[i]>s) s = rhoi[i]; | |
| 2984 } | |
| 2985 return(s); | |
| 2986 } | |
| 2987 | |
| 2988 if (kt==KSPH) | |
| 2989 { for (i=0; i<d; i++) | |
| 2990 s += rhoi[i]*rhoi[i]; | |
| 2991 return(sqrt(s)); | |
| 2992 } | |
| 2993 | |
| 2994 LERR(("rho: invalid kt")); | |
| 2995 return(0.0); | |
| 2996 } | |
| 2997 | |
| 2998 double kordstat(x,k,n,ind) | |
| 2999 double *x; | |
| 3000 int k, n, *ind; | |
| 3001 { int i, i0, i1, l, r; | |
| 3002 double piv; | |
| 3003 if (k<1) return(0.0); | |
| 3004 i0 = 0; i1 = n-1; | |
| 3005 while (1) | |
| 3006 { piv = x[ind[(i0+i1)/2]]; | |
| 3007 l = i0; r = i1; | |
| 3008 while (l<=r) | |
| 3009 { while ((l<=i1) && (x[ind[l]]<=piv)) l++; | |
| 3010 while ((r>=i0) && (x[ind[r]]>piv)) r--; | |
| 3011 if (l<=r) ISWAP(ind[l],ind[r]); | |
| 3012 } /* now, x[ind[i0..r]] <= piv < x[ind[l..i1]] */ | |
| 3013 if (r<k-1) i0 = l; /* go right */ | |
| 3014 else /* put pivots in middle */ | |
| 3015 { for (i=i0; i<=r; ) | |
| 3016 if (x[ind[i]]==piv) { ISWAP(ind[i],ind[r]); r--; } | |
| 3017 else i++; | |
| 3018 if (r<k-1) return(piv); | |
| 3019 i1 = r; | |
| 3020 } | |
| 3021 } | |
| 3022 } | |
| 3023 | |
| 3024 /* check if i'th data point is in limits */ | |
| 3025 int inlim(lfd,i) | |
| 3026 lfdata *lfd; | |
| 3027 int i; | |
| 3028 { int d, j, k; | |
| 3029 double *xlim; | |
| 3030 | |
| 3031 xlim = lfd->xl; | |
| 3032 d = lfd->d; | |
| 3033 k = 1; | |
| 3034 for (j=0; j<d; j++) | |
| 3035 { if (xlim[j]<xlim[j+d]) | |
| 3036 k &= ((datum(lfd,j,i)>=xlim[j]) & (datum(lfd,j,i)<=xlim[j+d])); | |
| 3037 } | |
| 3038 return(k); | |
| 3039 } | |
| 3040 | |
| 3041 double compbandwid(di,ind,x,n,d,nn,fxh) | |
| 3042 double *di, *x, fxh; | |
| 3043 int n, d, nn, *ind; | |
| 3044 { int i; | |
| 3045 double nnh; | |
| 3046 | |
| 3047 if (nn==0) return(fxh); | |
| 3048 | |
| 3049 if (nn<n) | |
| 3050 nnh = kordstat(di,nn,n,ind); | |
| 3051 else | |
| 3052 { nnh = 0; | |
| 3053 for (i=0; i<n; i++) nnh = MAX(nnh,di[i]); | |
| 3054 nnh = nnh*exp(log(1.0*nn/n)/d); | |
| 3055 } | |
| 3056 return(MAX(fxh,nnh)); | |
| 3057 } | |
| 3058 | |
| 3059 /* | |
| 3060 fast version of nbhd for ordered 1-d data | |
| 3061 */ | |
| 3062 void nbhd1(lfd,sp,des,k) | |
| 3063 lfdata *lfd; | |
| 3064 smpar *sp; | |
| 3065 design *des; | |
| 3066 int k; | |
| 3067 { double x, h, *xd, sc; | |
| 3068 int i, l, r, m, n, z; | |
| 3069 | |
| 3070 n = lfd->n; | |
| 3071 x = des->xev[0]; | |
| 3072 xd = dvari(lfd,0); | |
| 3073 sc = lfd->sca[0]; | |
| 3074 | |
| 3075 /* find closest data point to x */ | |
| 3076 if (x<=xd[0]) z = 0; | |
| 3077 else | |
| 3078 if (x>=xd[n-1]) z = n-1; | |
| 3079 else | |
| 3080 { l = 0; r = n-1; | |
| 3081 while (r-l>1) | |
| 3082 { z = (r+l)/2; | |
| 3083 if (xd[z]>x) r = z; | |
| 3084 else l = z; | |
| 3085 } | |
| 3086 /* now, xd[0..l] <= x < x[r..n-1] */ | |
| 3087 if ((x-xd[l])>(xd[r]-x)) z = r; else z = l; | |
| 3088 } | |
| 3089 /* closest point to x is xd[z] */ | |
| 3090 | |
| 3091 if (nn(sp)<0) /* user bandwidth */ | |
| 3092 h = sp->vb(des->xev); | |
| 3093 else | |
| 3094 { if (k>0) /* set h to nearest neighbor bandwidth */ | |
| 3095 { l = r = z; | |
| 3096 if (l==0) r = k-1; | |
| 3097 if (r==n-1) l = n-k; | |
| 3098 while (r-l<k-1) | |
| 3099 { if ((x-xd[l-1])<(xd[r+1]-x)) l--; else r++; | |
| 3100 if (l==0) r = k-1; | |
| 3101 if (r==n-1) l = n-k; | |
| 3102 } | |
| 3103 h = x-xd[l]; | |
| 3104 if (h<xd[r]-x) h = xd[r]-x; | |
| 3105 } | |
| 3106 else h = 0; | |
| 3107 h /= sc; | |
| 3108 if (h<fixh(sp)) h = fixh(sp); | |
| 3109 } | |
| 3110 | |
| 3111 m = 0; | |
| 3112 if (xd[z]>x) z--; /* so xd[z]<=x */ | |
| 3113 /* look left */ | |
| 3114 for (i=z; i>=0; i--) if (inlim(lfd,i)) | |
| 3115 { dist(des,i) = (x-xd[i])/sc; | |
| 3116 wght(des,i) = weight(lfd, sp, &xd[i], &x, h, 1, dist(des,i)); | |
| 3117 if (wght(des,i)>0) | |
| 3118 { des->ind[m] = i; | |
| 3119 m++; | |
| 3120 } else i = 0; | |
| 3121 } | |
| 3122 /* look right */ | |
| 3123 for (i=z+1; i<n; i++) if (inlim(lfd,i)) | |
| 3124 { dist(des,i) = (xd[i]-x)/sc; | |
| 3125 wght(des,i) = weight(lfd, sp, &xd[i], &x, h, 1, dist(des,i)); | |
| 3126 if (wght(des,i)>0) | |
| 3127 { des->ind[m] = i; | |
| 3128 m++; | |
| 3129 } else i = n; | |
| 3130 } | |
| 3131 | |
| 3132 des->n = m; | |
| 3133 des->h = h; | |
| 3134 } | |
| 3135 | |
| 3136 void nbhd_zeon(lfd,des) | |
| 3137 lfdata *lfd; | |
| 3138 design *des; | |
| 3139 { int i, j, m, eq; | |
| 3140 | |
| 3141 m = 0; | |
| 3142 for (i=0; i<lfd->n; i++) | |
| 3143 { eq = 1; | |
| 3144 for (j=0; j<lfd->d; j++) eq = eq && (des->xev[j] == datum(lfd,j,i)); | |
| 3145 if (eq) | |
| 3146 { wght(des,i) = 1; | |
| 3147 des->ind[m] = i; | |
| 3148 m++; | |
| 3149 } | |
| 3150 } | |
| 3151 des->n = m; | |
| 3152 des->h = 1.0; | |
| 3153 } | |
| 3154 | |
| 3155 void nbhd(lfd,des,nn,redo,sp) | |
| 3156 lfdata *lfd; | |
| 3157 design *des; | |
| 3158 int redo, nn; | |
| 3159 smpar *sp; | |
| 3160 { int d, i, j, m, n; | |
| 3161 double h, u[MXDIM]; | |
| 3162 | |
| 3163 if (lf_debug>1) mut_printf("nbhd: nn %d fixh %8.5f\n",nn,fixh(sp)); | |
| 3164 | |
| 3165 d = lfd->d; n = lfd->n; | |
| 3166 | |
| 3167 if (ker(sp)==WPARM) | |
| 3168 { for (i=0; i<n; i++) | |
| 3169 { wght(des,i) = 1.0; | |
| 3170 des->ind[i] = i; | |
| 3171 } | |
| 3172 des->n = n; | |
| 3173 return; | |
| 3174 } | |
| 3175 | |
| 3176 if (kt(sp)==KZEON) | |
| 3177 { nbhd_zeon(lfd,des); | |
| 3178 return; | |
| 3179 } | |
| 3180 | |
| 3181 if (kt(sp)==KCE) | |
| 3182 { des->h = 0.0; | |
| 3183 return; | |
| 3184 } | |
| 3185 | |
| 3186 /* ordered 1-dim; use fast searches */ | |
| 3187 if ((nn<=n) & (lfd->ord) & (ker(sp)!=WMINM) & (lfd->sty[0]!=STANGL)) | |
| 3188 { nbhd1(lfd,sp,des,nn); | |
| 3189 return; | |
| 3190 } | |
| 3191 | |
| 3192 if (!redo) | |
| 3193 { for (i=0; i<n; i++) | |
| 3194 { for (j=0; j<d; j++) u[j] = datum(lfd,j,i)-des->xev[j]; | |
| 3195 dist(des,i) = rho(u,lfd->sca,d,kt(sp),lfd->sty); | |
| 3196 des->ind[i] = i; | |
| 3197 } | |
| 3198 } | |
| 3199 else | |
| 3200 for (i=0; i<n; i++) des->ind[i] = i; | |
| 3201 | |
| 3202 if (ker(sp)==WMINM) | |
| 3203 { des->h = minmax(lfd,des,sp); | |
| 3204 return; | |
| 3205 } | |
| 3206 | |
| 3207 if (nn<0) | |
| 3208 h = sp->vb(des->xev); | |
| 3209 else | |
| 3210 h = compbandwid(des->di,des->ind,des->xev,n,lfd->d,nn,fixh(sp)); | |
| 3211 m = 0; | |
| 3212 for (i=0; i<n; i++) if (inlim(lfd,i)) | |
| 3213 { for (j=0; j<d; j++) u[j] = datum(lfd,j,i); | |
| 3214 wght(des,i) = weight(lfd, sp, u, des->xev, h, 1, dist(des,i)); | |
| 3215 if (wght(des,i)>0) | |
| 3216 { des->ind[m] = i; | |
| 3217 m++; | |
| 3218 } | |
| 3219 } | |
| 3220 des->n = m; | |
| 3221 des->h = h; | |
| 3222 } | |
| 3223 /* | |
| 3224 * Copyright 1996-2006 Catherine Loader. | |
| 3225 */ | |
| 3226 /* | |
| 3227 * | |
| 3228 * This file includes functions to solve for the scale estimate in | |
| 3229 * local robust regression and likelihood. The main entry point is | |
| 3230 * lf_robust(lfd,sp,des,mxit), | |
| 3231 * called from the locfit() function. | |
| 3232 * | |
| 3233 * The update_rs(x) accepts a residual scale x as the argument (actually, | |
| 3234 * it works on the log-scale). The function computes the local fit | |
| 3235 * assuming this residual scale, and re-estimates the scale from this | |
| 3236 * new fit. The final solution satisfies the fixed point equation | |
| 3237 * update_rs(x)=x. The function lf_robust() automatically calls | |
| 3238 * update_rs() through the fixed point iterations. | |
| 3239 * | |
| 3240 * The estimation of the scale from the fit is based on the sqrt of | |
| 3241 * the median deviance of observations with non-zero weights (in the | |
| 3242 * gaussian case, this is the median absolute residual). | |
| 3243 * | |
| 3244 * TODO: | |
| 3245 * Should use smoothing weights in the median. | |
| 3246 */ | |
| 3247 | |
| 3248 #include "locf.h" | |
| 3249 | |
| 3250 extern int lf_status; | |
| 3251 double robscale; | |
| 3252 | |
| 3253 static lfdata *rob_lfd; | |
| 3254 static smpar *rob_sp; | |
| 3255 static design *rob_des; | |
| 3256 static int rob_mxit; | |
| 3257 | |
| 3258 double median(x,n) | |
| 3259 double *x; | |
| 3260 int n; | |
| 3261 { int i, j, lt, eq, gt; | |
| 3262 double lo, hi, s; | |
| 3263 lo = hi = x[0]; | |
| 3264 for (i=0; i<n; i++) | |
| 3265 { lo = MIN(lo,x[i]); | |
| 3266 hi = MAX(hi,x[i]); | |
| 3267 } | |
| 3268 if (lo==hi) return(lo); | |
| 3269 lo -= (hi-lo); | |
| 3270 hi += (hi-lo); | |
| 3271 for (i=0; i<n; i++) | |
| 3272 { if ((x[i]>lo) & (x[i]<hi)) | |
| 3273 { s = x[i]; lt = eq = gt = 0; | |
| 3274 for (j=0; j<n; j++) | |
| 3275 { lt += (x[j]<s); | |
| 3276 eq += (x[j]==s); | |
| 3277 gt += (x[j]>s); | |
| 3278 } | |
| 3279 if ((2*(lt+eq)>n) && (2*(gt+eq)>n)) return(s); | |
| 3280 if (2*(lt+eq)<=n) lo = s; | |
| 3281 if (2*(gt+eq)<=n) hi = s; | |
| 3282 } | |
| 3283 } | |
| 3284 return((hi+lo)/2); | |
| 3285 } | |
| 3286 | |
| 3287 double nrobustscale(lfd,sp,des,rs) | |
| 3288 lfdata *lfd; | |
| 3289 smpar *sp; | |
| 3290 design *des; | |
| 3291 double rs; | |
| 3292 { int i, ii, p; | |
| 3293 double link[LLEN], sc, sd, sw, e; | |
| 3294 p = des->p; sc = sd = sw = 0.0; | |
| 3295 for (i=0; i<des->n; i++) | |
| 3296 { ii = des->ind[i]; | |
| 3297 fitv(des,ii) = base(lfd,ii)+innerprod(des->cf,d_xi(des,ii),p); | |
| 3298 e = resp(lfd,ii)-fitv(des,ii); | |
| 3299 stdlinks(link,lfd,sp,ii,fitv(des,ii),rs); | |
| 3300 sc += wght(des,ii)*e*link[ZDLL]; | |
| 3301 sd += wght(des,ii)*e*e*link[ZDDLL]; | |
| 3302 sw += wght(des,ii); | |
| 3303 } | |
| 3304 | |
| 3305 /* newton-raphson iteration for log(s) | |
| 3306 -psi(ei/s) - log(s); s = e^{-th} | |
| 3307 */ | |
| 3308 rs *= exp((sc-sw)/(sd+sc)); | |
| 3309 return(rs); | |
| 3310 } | |
| 3311 | |
| 3312 double robustscale(lfd,sp,des) | |
| 3313 lfdata *lfd; | |
| 3314 smpar *sp; | |
| 3315 design *des; | |
| 3316 { int i, ii, p, fam, lin, or; | |
| 3317 double rs, link[LLEN]; | |
| 3318 p = des->p; | |
| 3319 fam = fam(sp); | |
| 3320 lin = link(sp); | |
| 3321 or = fami(sp)->robust; | |
| 3322 fami(sp)->robust = 0; | |
| 3323 | |
| 3324 for (i=0; i<des->n; i++) | |
| 3325 { ii = des->ind[i]; | |
| 3326 fitv(des,ii) = base(lfd,ii) + innerprod(des->cf,d_xi(des,ii),p); | |
| 3327 links(fitv(des,ii),resp(lfd,ii),fami(sp),lin,link,cens(lfd,ii),prwt(lfd,ii),1.0); | |
| 3328 des->res[i] = -2*link[ZLIK]; | |
| 3329 } | |
| 3330 fami(sp)->robust = or; | |
| 3331 rs = sqrt(median(des->res,des->n)); | |
| 3332 | |
| 3333 if (rs==0.0) rs = 1.0; | |
| 3334 return(rs); | |
| 3335 } | |
| 3336 | |
| 3337 double update_rs(x) | |
| 3338 double x; | |
| 3339 { double nx; | |
| 3340 if (lf_status != LF_OK) return(x); | |
| 3341 robscale = exp(x); | |
| 3342 lfiter(rob_lfd,rob_sp,rob_des,rob_mxit); | |
| 3343 if (lf_status != LF_OK) return(x); | |
| 3344 | |
| 3345 nx = log(robustscale(rob_lfd,rob_sp,rob_des)); | |
| 3346 if (nx<x-0.2) nx = x-0.2; | |
| 3347 return(nx); | |
| 3348 } | |
| 3349 | |
| 3350 void lf_robust(lfd,sp,des,mxit) | |
| 3351 lfdata *lfd; | |
| 3352 design *des; | |
| 3353 smpar *sp; | |
| 3354 int mxit; | |
| 3355 { double x; | |
| 3356 rob_lfd = lfd; | |
| 3357 rob_des = des; | |
| 3358 rob_sp = sp; | |
| 3359 rob_mxit = mxit; | |
| 3360 lf_status = LF_OK; | |
| 3361 | |
| 3362 x = log(robustscale(lfd,sp,des)); | |
| 3363 | |
| 3364 solve_fp(update_rs, x, 1.0e-6, mxit); | |
| 3365 } | |
| 3366 /* | |
| 3367 * Copyright 1996-2006 Catherine Loader. | |
| 3368 */ | |
| 3369 /* | |
| 3370 * Post-fitting functions to compute the local variance and | |
| 3371 * influence functions. Also the local degrees of freedom | |
| 3372 * calculations for adaptive smoothing. | |
| 3373 */ | |
| 3374 | |
| 3375 #include "locf.h" | |
| 3376 | |
| 3377 extern double robscale; | |
| 3378 | |
| 3379 /* | |
| 3380 vmat() computes (after the local fit..) the matrix | |
| 3381 M2 = X^T W^2 V X. | |
| 3382 M12 = (X^T W V X)^{-1} M2 | |
| 3383 Also, for convenience, tr[0] = sum(wi) tr[1] = sum(wi^2). | |
| 3384 */ | |
| 3385 void vmat(lfd, sp, des, M12, M2) | |
| 3386 lfdata *lfd; | |
| 3387 smpar *sp; | |
| 3388 design *des; | |
| 3389 double *M12, *M2; | |
| 3390 { int i, ii, p, nk, ok; | |
| 3391 double link[LLEN], h, ww, tr0, tr1; | |
| 3392 p = des->p; | |
| 3393 setzero(M2,p*p); | |
| 3394 | |
| 3395 nk = -1; | |
| 3396 | |
| 3397 /* for density estimation, use integral rather than | |
| 3398 sum form, if W^2 is programmed... | |
| 3399 */ | |
| 3400 if ((fam(sp)<=THAZ) && (link(sp)==LLOG)) | |
| 3401 { switch(ker(sp)) | |
| 3402 { case WGAUS: nk = WGAUS; h = des->h/SQRT2; break; | |
| 3403 case WRECT: nk = WRECT; h = des->h; break; | |
| 3404 case WEPAN: nk = WBISQ; h = des->h; break; | |
| 3405 case WBISQ: nk = WQUQU; h = des->h; break; | |
| 3406 case WTCUB: nk = W6CUB; h = des->h; break; | |
| 3407 case WEXPL: nk = WEXPL; h = des->h/2; break; | |
| 3408 } | |
| 3409 } | |
| 3410 | |
| 3411 tr0 = tr1 = 0.0; | |
| 3412 if (nk != -1) | |
| 3413 { ok = ker(sp); ker(sp) = nk; | |
| 3414 /* compute M2 using integration. Use M12 as work matrix. */ | |
| 3415 (des->itype)(des->xev, M2, M12, des->cf, h); | |
| 3416 ker(sp) = ok; | |
| 3417 if (fam(sp)==TDEN) multmatscal(M2,des->smwt,p*p); | |
| 3418 tr0 = des->ss[0]; | |
| 3419 tr1 = M2[0]; /* n int W e^<a,A> */ | |
| 3420 } | |
| 3421 else | |
| 3422 { for (i=0; i<des->n; i++) | |
| 3423 { ii = des->ind[i]; | |
| 3424 stdlinks(link,lfd,sp,ii,fitv(des,ii),robscale); | |
| 3425 ww = SQR(wght(des,ii))*link[ZDDLL]; | |
| 3426 tr0 += wght(des,ii); | |
| 3427 tr1 += SQR(wght(des,ii)); | |
| 3428 addouter(M2,d_xi(des,ii),d_xi(des,ii),p,ww); | |
| 3429 } | |
| 3430 } | |
| 3431 des->tr0 = tr0; | |
| 3432 des->tr1 = tr1; | |
| 3433 | |
| 3434 memcpy(M12,M2,p*p*sizeof(double)); | |
| 3435 for (i=0; i<p; i++) | |
| 3436 jacob_solve(&des->xtwx,&M12[i*p]); | |
| 3437 } | |
| 3438 | |
| 3439 void lf_vcov(lfd,sp,des) | |
| 3440 lfdata *lfd; | |
| 3441 smpar *sp; | |
| 3442 design *des; | |
| 3443 { int i, j, k, p; | |
| 3444 double *M12, *M2; | |
| 3445 M12 = des->V; M2 = des->P; p = des->p; | |
| 3446 vmat(lfd,sp,des,M12,M2); /* M2 = X^T W^2 V X tr0=sum(W) tr1=sum(W*W) */ | |
| 3447 des->tr2 = m_trace(M12,p); /* tr (XTWVX)^{-1}(XTW^2VX) */ | |
| 3448 | |
| 3449 /* | |
| 3450 * Covariance matrix is M1^{-1} * M2 * M1^{-1} | |
| 3451 * We compute this using the cholesky decomposition of | |
| 3452 * M2; premultiplying by M1^{-1} and squaring. This | |
| 3453 * is more stable than direct computation in near-singular cases. | |
| 3454 */ | |
| 3455 chol_dec(M2,p,p); | |
| 3456 for (i=0; i<p; i++) | |
| 3457 for (j=0; j<i; j++) | |
| 3458 { M2[j*p+i] = M2[i*p+j]; | |
| 3459 M2[i*p+j] = 0.0; | |
| 3460 } | |
| 3461 for (i=0; i<p; i++) jacob_solve(&des->xtwx,&M2[i*p]); | |
| 3462 for (i=0; i<p; i++) | |
| 3463 { for (j=0; j<p; j++) | |
| 3464 { M12[i*p+j] = 0; | |
| 3465 for (k=0; k<p; k++) | |
| 3466 M12[i*p+j] += M2[k*p+i]*M2[k*p+j]; /* ith column of covariance */ | |
| 3467 } | |
| 3468 } | |
| 3469 if ((fam(sp)==TDEN) && (link(sp)==LIDENT)) | |
| 3470 multmatscal(M12,1/SQR(des->smwt),p*p); | |
| 3471 | |
| 3472 /* this computes the influence function as des->f1[0]. */ | |
| 3473 unitvec(des->f1,0,des->p); | |
| 3474 jacob_solve(&des->xtwx,des->f1); | |
| 3475 } | |
| 3476 | |
| 3477 /* local_df computes: | |
| 3478 * tr[0] = trace(W) | |
| 3479 * tr[1] = trace(W*W) | |
| 3480 * tr[2] = trace( M1^{-1} M2 ) | |
| 3481 * tr[3] = trace( M1^{-1} M3 ) | |
| 3482 * tr[4] = trace( (M1^{-1} M2)^2 ) | |
| 3483 * tr[5] = var(theta-hat). | |
| 3484 */ | |
| 3485 void local_df(lfd,sp,des,tr) | |
| 3486 lfdata *lfd; | |
| 3487 smpar *sp; | |
| 3488 design *des; | |
| 3489 double *tr; | |
| 3490 { int i, ii, j, p; | |
| 3491 double *m2, *V, ww, link[LLEN]; | |
| 3492 | |
| 3493 tr[0] = tr[1] = tr[2] = tr[3] = tr[4] = tr[5] = 0.0; | |
| 3494 m2 = des->V; V = des->P; p = des->p; | |
| 3495 | |
| 3496 vmat(lfd,sp,des,m2,V); /* M = X^T W^2 V X tr0=sum(W) tr1=sum(W*W) */ | |
| 3497 tr[0] = des->tr0; | |
| 3498 tr[1] = des->tr1; | |
| 3499 tr[2] = m_trace(m2,p); /* tr (XTWVX)^{-1}(XTW^2VX) */ | |
| 3500 | |
| 3501 unitvec(des->f1,0,p); | |
| 3502 jacob_solve(&des->xtwx,des->f1); | |
| 3503 for (i=0; i<p; i++) | |
| 3504 for (j=0; j<p; j++) | |
| 3505 { tr[4] += m2[i*p+j]*m2[j*p+i]; /* tr(M^2) */ | |
| 3506 tr[5] += des->f1[i]*V[i*p+j]*des->f1[j]; /* var(thetahat) */ | |
| 3507 } | |
| 3508 tr[5] = sqrt(tr[5]); | |
| 3509 | |
| 3510 setzero(m2,p*p); | |
| 3511 for (i=0; i<des->n; i++) | |
| 3512 { ii = des->ind[i]; | |
| 3513 stdlinks(link,lfd,sp,ii,fitv(des,ii),robscale); | |
| 3514 ww = wght(des,ii)*wght(des,ii)*wght(des,ii)*link[ZDDLL]; | |
| 3515 addouter(m2,d_xi(des,ii),d_xi(des,ii),p,ww); | |
| 3516 } | |
| 3517 for (i=0; i<p; i++) | |
| 3518 { jacob_solve(&des->xtwx,&m2[i*p]); | |
| 3519 tr[3] += m2[i*(p+1)]; | |
| 3520 } | |
| 3521 | |
| 3522 return; | |
| 3523 } | |
| 3524 /* | |
| 3525 * Copyright 1996-2006 Catherine Loader. | |
| 3526 */ | |
| 3527 /* | |
| 3528 * Routines for computing weight diagrams. | |
| 3529 * wdiag(lf,des,lx,deg,ty,exp) | |
| 3530 * Must locfit() first, unless ker==WPARM and has par. comp. | |
| 3531 * | |
| 3532 */ | |
| 3533 | |
| 3534 #include "locf.h" | |
| 3535 | |
| 3536 static double *wd; | |
| 3537 extern double robscale; | |
| 3538 void nnresproj(lfd,sp,des,u,m,p) | |
| 3539 lfdata *lfd; | |
| 3540 smpar *sp; | |
| 3541 design *des; | |
| 3542 double *u; | |
| 3543 int m, p; | |
| 3544 { int i, ii, j; | |
| 3545 double link[LLEN]; | |
| 3546 setzero(des->f1,p); | |
| 3547 for (j=0; j<m; j++) | |
| 3548 { ii = des->ind[j]; | |
| 3549 stdlinks(link,lfd,sp,ii,fitv(des,ii),robscale); | |
| 3550 for (i=0; i<p; i++) des->f1[i] += link[ZDDLL]*d_xij(des,j,ii)*u[j]; | |
| 3551 } | |
| 3552 jacob_solve(&des->xtwx,des->f1); | |
| 3553 for (i=0; i<m; i++) | |
| 3554 { ii = des->ind[i]; | |
| 3555 u[i] -= innerprod(des->f1,d_xi(des,ii),p)*wght(des,ii); | |
| 3556 } | |
| 3557 } | |
| 3558 | |
| 3559 void wdexpand(l,n,ind,m) | |
| 3560 double *l; | |
| 3561 int *ind, n, m; | |
| 3562 { int i, j, t; | |
| 3563 double z; | |
| 3564 for (j=m; j<n; j++) { l[j] = 0.0; ind[j] = -1; } | |
| 3565 j = m-1; | |
| 3566 while (j>=0) | |
| 3567 { if (ind[j]==j) j--; | |
| 3568 else | |
| 3569 { i = ind[j]; | |
| 3570 z = l[j]; l[j] = l[i]; l[i] = z; | |
| 3571 t = ind[j]; ind[j] = ind[i]; ind[i] = t; | |
| 3572 if (ind[j]==-1) j--; | |
| 3573 } | |
| 3574 } | |
| 3575 | |
| 3576 /* for (i=n-1; i>=0; i--) | |
| 3577 { l[i] = ((j>=0) && (ind[j]==i)) ? l[j--] : 0.0; } */ | |
| 3578 } | |
| 3579 | |
| 3580 int wdiagp(lfd,sp,des,lx,pc,dv,deg,ty,exp) | |
| 3581 lfdata *lfd; | |
| 3582 smpar *sp; | |
| 3583 design *des; | |
| 3584 paramcomp *pc; | |
| 3585 deriv *dv; | |
| 3586 double *lx; | |
| 3587 int deg, ty, exp; | |
| 3588 { int i, j, p, nd; | |
| 3589 double *l1; | |
| 3590 | |
| 3591 p = des->p; | |
| 3592 | |
| 3593 fitfun(lfd,sp,des->xev,pc->xbar,des->f1,dv); | |
| 3594 if (exp) | |
| 3595 { jacob_solve(&pc->xtwx,des->f1); | |
| 3596 for (i=0; i<lfd->n; i++) | |
| 3597 lx[i] = innerprod(des->f1,d_xi(des,des->ind[i]),p); | |
| 3598 return(lfd->n); | |
| 3599 } | |
| 3600 jacob_hsolve(&pc->xtwx,des->f1); | |
| 3601 for (i=0; i<p; i++) lx[i] = des->f1[i]; | |
| 3602 | |
| 3603 nd = dv->nd; | |
| 3604 dv->nd = nd+1; | |
| 3605 if (deg>=1) | |
| 3606 for (i=0; i<lfd->d; i++) | |
| 3607 { dv->deriv[nd] = i; | |
| 3608 l1 = &lx[(i+1)*p]; | |
| 3609 fitfun(lfd,sp,des->xev,pc->xbar,l1,dv); | |
| 3610 jacob_hsolve(&pc->xtwx,l1); | |
| 3611 } | |
| 3612 | |
| 3613 dv->nd = nd+2; | |
| 3614 if (deg>=2) | |
| 3615 for (i=0; i<lfd->d; i++) | |
| 3616 { dv->deriv[nd] = i; | |
| 3617 for (j=0; j<lfd->d; j++) | |
| 3618 { dv->deriv[nd+1] = j; | |
| 3619 l1 = &lx[(i*lfd->d+j+lfd->d+1)*p]; | |
| 3620 fitfun(lfd,sp,des->xev,pc->xbar,l1,dv); | |
| 3621 jacob_hsolve(&pc->xtwx,l1); | |
| 3622 } } | |
| 3623 dv->nd = nd; | |
| 3624 return(p); | |
| 3625 } | |
| 3626 | |
| 3627 int wdiag(lfd,sp,des,lx,dv,deg,ty,exp) | |
| 3628 lfdata *lfd; | |
| 3629 smpar *sp; | |
| 3630 design *des; | |
| 3631 deriv *dv; | |
| 3632 double *lx; | |
| 3633 int deg, ty, exp; | |
| 3634 /* deg=0: l(x) only. | |
| 3635 deg=1: l(x), l'(x) | |
| 3636 deg=2: l(x), l'(x), l''(x) | |
| 3637 ty = 1: e1 (X^T WVX)^{-1} X^T W -- hat matrix | |
| 3638 ty = 2: e1 (X^T WVX)^{-1} X^T WV^{1/2} -- scb's | |
| 3639 */ | |
| 3640 { double w, *X, *lxd, *lxdd, wdd, wdw, *ulx, link[LLEN], h; | |
| 3641 double dfx[MXDIM], hs[MXDIM]; | |
| 3642 int i, ii, j, k, l, m, d, p, nd; | |
| 3643 | |
| 3644 h = des->h; | |
| 3645 nd = dv->nd; | |
| 3646 wd = des->wd; | |
| 3647 d = lfd->d; p = des->p; X = d_x(des); | |
| 3648 ulx = des->res; | |
| 3649 m = des->n; | |
| 3650 for (i=0; i<d; i++) hs[i] = h*lfd->sca[i]; | |
| 3651 if (deg>0) | |
| 3652 { lxd = &lx[m]; | |
| 3653 setzero(lxd,m*d); | |
| 3654 if (deg>1) | |
| 3655 { lxdd = &lxd[d*m]; | |
| 3656 setzero(lxdd,m*d*d); | |
| 3657 } } | |
| 3658 | |
| 3659 if (nd>0) fitfun(lfd,sp,des->xev,des->xev,des->f1,dv); /* c(0) */ | |
| 3660 else unitvec(des->f1,0,p); | |
| 3661 jacob_solve(&des->xtwx,des->f1); /* c(0) (X^TWX)^{-1} */ | |
| 3662 for (i=0; i<m; i++) | |
| 3663 { ii = des->ind[i]; | |
| 3664 lx[i] = innerprod(des->f1,&X[ii*p],p); /* c(0)(XTWX)^{-1}X^T */ | |
| 3665 if (deg>0) | |
| 3666 { wd[i] = Wd(dist(des,ii)/h,ker(sp)); | |
| 3667 for (j=0; j<d; j++) | |
| 3668 { dfx[j] = datum(lfd,j,ii)-des->xev[j]; | |
| 3669 lxd[j*m+i] = lx[i]*wght(des,ii)*weightd(dfx[j],lfd->sca[j], | |
| 3670 d,ker(sp),kt(sp),h,lfd->sty[j],dist(des,ii)); | |
| 3671 /* c(0) (XTWX)^{-1}XTW' */ | |
| 3672 } | |
| 3673 if (deg>1) | |
| 3674 { wdd = Wdd(dist(des,ii)/h,ker(sp)); | |
| 3675 for (j=0; j<d; j++) | |
| 3676 for (k=0; k<d; k++) | |
| 3677 { w = (dist(des,ii)==0) ? 0 : h/dist(des,ii); | |
| 3678 w = wdd * (des->xev[k]-datum(lfd,k,ii)) * (des->xev[j]-datum(lfd,j,ii)) | |
| 3679 * w*w / (hs[k]*hs[k]*hs[j]*hs[j]); | |
| 3680 if (j==k) w += wd[i]/(hs[j]*hs[j]); | |
| 3681 lxdd[(j*d+k)*m+i] = lx[i]*w; | |
| 3682 /* c(0)(XTWX)^{-1}XTW'' */ | |
| 3683 } | |
| 3684 } | |
| 3685 } | |
| 3686 lx[i] *= wght(des,ii); | |
| 3687 } | |
| 3688 | |
| 3689 dv->nd = nd+1; | |
| 3690 if (deg==2) | |
| 3691 { for (i=0; i<d; i++) | |
| 3692 { dv->deriv[nd] = i; | |
| 3693 fitfun(lfd,sp,des->xev,des->xev,des->f1,dv); | |
| 3694 for (k=0; k<m; k++) | |
| 3695 { ii = des->ind[i]; | |
| 3696 stdlinks(link,lfd,sp,ii,fitv(des,ii),robscale); | |
| 3697 for (j=0; j<p; j++) | |
| 3698 des->f1[j] -= link[ZDDLL]*lxd[i*m+k]*X[ii*p+j]; | |
| 3699 /* c'(x)-c(x)(XTWX)^{-1}XTW'X */ | |
| 3700 } | |
| 3701 jacob_solve(&des->xtwx,des->f1); /* (...)(XTWX)^{-1} */ | |
| 3702 for (j=0; j<m; j++) | |
| 3703 { ii = des->ind[j]; | |
| 3704 ulx[j] = innerprod(des->f1,&X[ii*p],p); /* (...)XT */ | |
| 3705 } | |
| 3706 for (j=0; j<d; j++) | |
| 3707 for (k=0; k<m; k++) | |
| 3708 { ii = des->ind[k]; | |
| 3709 dfx[j] = datum(lfd,j,ii)-des->xev[j]; | |
| 3710 wdw = wght(des,ii)*weightd(dfx[j],lfd->sca[j],d,ker(sp), | |
| 3711 kt(sp),h,lfd->sty[j],dist(des,ii)); | |
| 3712 lxdd[(i*d+j)*m+k] += ulx[k]*wdw; | |
| 3713 lxdd[(j*d+i)*m+k] += ulx[k]*wdw; | |
| 3714 } /* + 2(c'-c(XTWX)^{-1}XTW'X)(XTWX)^{-1}XTW' */ | |
| 3715 } | |
| 3716 for (j=0; j<d*d; j++) nnresproj(lfd,sp,des,&lxdd[j*m],m,p); | |
| 3717 /* * (I-X(XTWX)^{-1} XTW */ | |
| 3718 } | |
| 3719 if (deg>0) | |
| 3720 { for (j=0; j<d; j++) nnresproj(lfd,sp,des,&lxd[j*m],m,p); | |
| 3721 /* c(0)(XTWX)^{-1}XTW'(I-X(XTWX)^{-1}XTW) */ | |
| 3722 for (i=0; i<d; i++) | |
| 3723 { dv->deriv[nd]=i; | |
| 3724 fitfun(lfd,sp,des->xev,des->xev,des->f1,dv); | |
| 3725 jacob_solve(&des->xtwx,des->f1); | |
| 3726 for (k=0; k<m; k++) | |
| 3727 { ii = des->ind[k]; | |
| 3728 for (l=0; l<p; l++) | |
| 3729 lxd[i*m+k] += des->f1[l]*X[ii*p+l]*wght(des,ii); | |
| 3730 } /* add c'(0)(XTWX)^{-1}XTW */ | |
| 3731 } | |
| 3732 } | |
| 3733 | |
| 3734 dv->nd = nd+2; | |
| 3735 if (deg==2) | |
| 3736 { for (i=0; i<d; i++) | |
| 3737 { dv->deriv[nd]=i; | |
| 3738 for (j=0; j<d; j++) | |
| 3739 { dv->deriv[nd+1]=j; | |
| 3740 fitfun(lfd,sp,des->xev,des->xev,des->f1,dv); | |
| 3741 jacob_solve(&des->xtwx,des->f1); | |
| 3742 for (k=0; k<m; k++) | |
| 3743 { ii = des->ind[k]; | |
| 3744 for (l=0; l<p; l++) | |
| 3745 lxdd[(i*d+j)*m+k] += des->f1[l]*X[ii*p+l]*wght(des,ii); | |
| 3746 } /* + c''(x)(XTWX)^{-1}XTW */ | |
| 3747 } | |
| 3748 } | |
| 3749 } | |
| 3750 dv->nd = nd; | |
| 3751 | |
| 3752 k = 1+d*(deg>0)+d*d*(deg==2); | |
| 3753 | |
| 3754 if (exp) wdexpand(lx,lfd->n,des->ind,m); | |
| 3755 | |
| 3756 if (ty==1) return(m); | |
| 3757 for (i=0; i<m; i++) | |
| 3758 { ii = des->ind[i]; | |
| 3759 stdlinks(link,lfd,sp,ii,fitv(des,ii),robscale); | |
| 3760 link[ZDDLL] = sqrt(fabs(link[ZDDLL])); | |
| 3761 for (j=0; j<k; j++) lx[j*m+i] *= link[ZDDLL]; | |
| 3762 } | |
| 3763 return(m); | |
| 3764 } | |
| 3765 /* | |
| 3766 * Copyright 1996-2006 Catherine Loader. | |
| 3767 */ | |
| 3768 /* | |
| 3769 * String matching functions. For a given argument string, find | |
| 3770 * the best match from an array of possibilities. Is there a library | |
| 3771 * function somewhere to do something like this? | |
| 3772 * | |
| 3773 * return values of -1 indicate failure/unknown string. | |
| 3774 */ | |
| 3775 | |
| 3776 #include "locf.h" | |
| 3777 | |
| 3778 int ct_match(z1, z2) | |
| 3779 char *z1, *z2; | |
| 3780 { int ct = 0; | |
| 3781 while (z1[ct]==z2[ct]) | |
| 3782 { if (z1[ct]=='\0') return(ct+1); | |
| 3783 ct++; | |
| 3784 } | |
| 3785 return(ct); | |
| 3786 } | |
| 3787 | |
| 3788 int pmatch(z, strings, vals, n, def) | |
| 3789 char *z, **strings; | |
| 3790 int *vals, n, def; | |
| 3791 { int i, ct, best, best_ct; | |
| 3792 best = -1; | |
| 3793 best_ct = 0; | |
| 3794 | |
| 3795 for (i=0; i<n; i++) | |
| 3796 { ct = ct_match(z,strings[i]); | |
| 3797 if (ct==strlen(z)+1) return(vals[i]); | |
| 3798 if (ct>best_ct) { best = i; best_ct = ct; } | |
| 3799 } | |
| 3800 if (best==-1) return(def); | |
| 3801 return(vals[best]); | |
| 3802 } | |
| 3803 /* | |
| 3804 * Copyright 1996-2006 Catherine Loader. | |
| 3805 */ | |
| 3806 #include "locf.h" | |
| 3807 | |
| 3808 int lf_maxit = 20; | |
| 3809 int lf_debug = 0; | |
| 3810 int lf_error = 0; | |
| 3811 | |
| 3812 double s0, s1; | |
| 3813 static lfdata *lf_lfd; | |
| 3814 static design *lf_des; | |
| 3815 static smpar *lf_sp; | |
| 3816 int lf_status; | |
| 3817 int ident=0; | |
| 3818 double lf_tol; | |
| 3819 extern double robscale; | |
| 3820 | |
| 3821 void lfdata_init(lfd) | |
| 3822 lfdata *lfd; | |
| 3823 { int i; | |
| 3824 for (i=0; i<MXDIM; i++) | |
| 3825 { lfd->sty[i] = 0; | |
| 3826 lfd->sca[i] = 1.0; | |
| 3827 lfd->xl[i] = lfd->xl[i+MXDIM] = 0.0; | |
| 3828 } | |
| 3829 lfd->y = lfd->w = lfd->c = lfd->b = NULL; | |
| 3830 lfd->d = lfd->n = 0; | |
| 3831 } | |
| 3832 | |
| 3833 void smpar_init(sp,lfd) | |
| 3834 smpar *sp; | |
| 3835 lfdata *lfd; | |
| 3836 { nn(sp) = 0.7; | |
| 3837 fixh(sp)= 0.0; | |
| 3838 pen(sp) = 0.0; | |
| 3839 acri(sp)= ANONE; | |
| 3840 deg(sp) = deg0(sp) = 2; | |
| 3841 ubas(sp) = 0; | |
| 3842 kt(sp) = KSPH; | |
| 3843 ker(sp) = WTCUB; | |
| 3844 fam(sp) = 64+TGAUS; | |
| 3845 link(sp)= LDEFAU; | |
| 3846 npar(sp) = calcp(sp,lfd->d); | |
| 3847 } | |
| 3848 | |
| 3849 void deriv_init(dv) | |
| 3850 deriv *dv; | |
| 3851 { dv->nd = 0; | |
| 3852 } | |
| 3853 | |
| 3854 int des_reqd(n,p) | |
| 3855 int n, p; | |
| 3856 { | |
| 3857 return(n*(p+5)+2*p*p+4*p + jac_reqd(p)); | |
| 3858 } | |
| 3859 int des_reqi(n,p) | |
| 3860 int n, p; | |
| 3861 { return(n+p); | |
| 3862 } | |
| 3863 | |
| 3864 void des_init(des,n,p) | |
| 3865 design *des; | |
| 3866 int n, p; | |
| 3867 { double *z; | |
| 3868 int k; | |
| 3869 | |
| 3870 if (n<=0) WARN(("des_init: n <= 0")); | |
| 3871 if (p<=0) WARN(("des_init: p <= 0")); | |
| 3872 | |
| 3873 if (des->des_init_id != DES_INIT_ID) | |
| 3874 { des->lwk = des->lind = 0; | |
| 3875 des->des_init_id = DES_INIT_ID; | |
| 3876 } | |
| 3877 | |
| 3878 k = des_reqd(n,p); | |
| 3879 if (k>des->lwk) | |
| 3880 { des->wk = (double *)calloc(k,sizeof(double)); | |
| 3881 if ( des->wk == NULL ) { | |
| 3882 printf("Problem allocating memory for des->wk\n");fflush(stdout); | |
| 3883 } | |
| 3884 des->lwk = k; | |
| 3885 } | |
| 3886 z = des->wk; | |
| 3887 | |
| 3888 des->X = z; z += n*p; | |
| 3889 des->w = z; z += n; | |
| 3890 des->res=z; z += n; | |
| 3891 des->di =z; z += n; | |
| 3892 des->th =z; z += n; | |
| 3893 des->wd =z; z += n; | |
| 3894 des->V =z; z += p*p; | |
| 3895 des->P =z; z += p*p; | |
| 3896 des->f1 =z; z += p; | |
| 3897 des->ss =z; z += p; | |
| 3898 des->oc =z; z += p; | |
| 3899 des->cf =z; z += p; | |
| 3900 | |
| 3901 z = jac_alloc(&des->xtwx,p,z); | |
| 3902 | |
| 3903 k = des_reqi(n,p); | |
| 3904 if (k>des->lind) | |
| 3905 { | |
| 3906 des->ind = (int *)calloc(k,sizeof(int)); | |
| 3907 if ( des->ind == NULL ) { | |
| 3908 printf("Problem allocating memory for des->ind\n");fflush(stdout); | |
| 3909 } | |
| 3910 des->lind = k; | |
| 3911 } | |
| 3912 des->fix = &des->ind[n]; | |
| 3913 for (k=0; k<p; k++) des->fix[k] = 0; | |
| 3914 | |
| 3915 des->n = n; des->p = p; | |
| 3916 des->smwt = n; | |
| 3917 des->xtwx.p = p; | |
| 3918 } | |
| 3919 | |
| 3920 void deschk(des,n,p) | |
| 3921 design *des; | |
| 3922 int n, p; | |
| 3923 { WARN(("deschk deprecated - use des_init()")); | |
| 3924 des_init(des,n,p); | |
| 3925 } | |
| 3926 | |
| 3927 int likereg(coef, lk0, f1, Z) | |
| 3928 double *coef, *lk0, *f1, *Z; | |
| 3929 { int i, ii, j, p; | |
| 3930 double lk, ww, link[LLEN], *X; | |
| 3931 | |
| 3932 if (lf_debug>2) mut_printf(" likereg: %8.5f\n",coef[0]); | |
| 3933 lf_status = LF_OK; | |
| 3934 lk = 0.0; p = lf_des->p; | |
| 3935 setzero(Z,p*p); | |
| 3936 setzero(f1,p); | |
| 3937 for (i=0; i<lf_des->n; i++) | |
| 3938 { | |
| 3939 ii = lf_des->ind[i]; | |
| 3940 X = d_xi(lf_des,ii); | |
| 3941 fitv(lf_des,ii) = base(lf_lfd,ii)+innerprod(coef,X,p); | |
| 3942 lf_status = stdlinks(link,lf_lfd,lf_sp,ii,fitv(lf_des,ii),robscale); | |
| 3943 if (lf_status == LF_BADP) | |
| 3944 { *lk0 = -1.0e300; | |
| 3945 return(NR_REDUCE); | |
| 3946 } | |
| 3947 if (lf_error) lf_status = LF_ERR; | |
| 3948 if (lf_status != LF_OK) return(NR_BREAK); | |
| 3949 | |
| 3950 ww = wght(lf_des,ii); | |
| 3951 lk += ww*link[ZLIK]; | |
| 3952 for (j=0; j<p; j++) | |
| 3953 f1[j] += X[j]*ww*link[ZDLL]; | |
| 3954 addouter(Z, X, X, p, ww*link[ZDDLL]); | |
| 3955 } | |
| 3956 for (i=0; i<p; i++) if (lf_des->fix[i]) | |
| 3957 { for (j=0; j<p; j++) Z[i*p+j] = Z[j*p+i] = 0.0; | |
| 3958 Z[i*p+i] = 1.0; | |
| 3959 f1[i] = 0.0; | |
| 3960 } | |
| 3961 | |
| 3962 if (lf_debug>4) prresp(coef,Z,p); | |
| 3963 if (lf_debug>3) mut_printf(" likelihood: %8.5f\n",lk); | |
| 3964 *lk0 = lf_des->llk = lk; | |
| 3965 | |
| 3966 lf_status = fami(lf_sp)->pcheck(lf_sp,lf_des,lf_lfd); | |
| 3967 switch(lf_status) | |
| 3968 { case LF_DONE: return(NR_BREAK); | |
| 3969 case LF_OOB: return(NR_REDUCE); | |
| 3970 case LF_PF: return(NR_REDUCE); | |
| 3971 case LF_NSLN: return(NR_BREAK); | |
| 3972 } | |
| 3973 | |
| 3974 return(NR_OK); | |
| 3975 } | |
| 3976 | |
| 3977 int reginit(lfd,des,sp) | |
| 3978 lfdata *lfd; | |
| 3979 design *des; | |
| 3980 smpar *sp; | |
| 3981 { int i, ii; | |
| 3982 double sb, link[LLEN]; | |
| 3983 s0 = s1 = sb = 0; | |
| 3984 for (i=0; i<des->n; i++) | |
| 3985 { ii = des->ind[i]; | |
| 3986 links(base(lfd,ii),resp(lfd,ii),fami(sp),LINIT,link,cens(lfd,ii),prwt(lfd,ii),1.0); | |
| 3987 s1 += wght(des,ii)*link[ZDLL]; | |
| 3988 s0 += wght(des,ii)*prwt(lfd,ii); | |
| 3989 sb += wght(des,ii)*prwt(lfd,ii)*base(lfd,ii); | |
| 3990 } | |
| 3991 if (s0==0) return(LF_NOPT); /* no observations with W>0 */ | |
| 3992 setzero(des->cf,des->p); | |
| 3993 lf_tol = 1.0e-6*s0; | |
| 3994 switch(link(sp)) | |
| 3995 { case LIDENT: | |
| 3996 des->cf[0] = (s1-sb)/s0; | |
| 3997 return(LF_OK); | |
| 3998 case LLOG: | |
| 3999 if (s1<=0.0) | |
| 4000 { des->cf[0] = -1000; | |
| 4001 return(LF_INFA); | |
| 4002 } | |
| 4003 des->cf[0] = log(s1/s0) - sb/s0; | |
| 4004 return(LF_OK); | |
| 4005 case LLOGIT: | |
| 4006 if (s1<=0.0) | |
| 4007 { des->cf[0] = -1000; | |
| 4008 return(LF_INFA); | |
| 4009 } | |
| 4010 if (s1>=s0) | |
| 4011 { des->cf[0] = 1000; | |
| 4012 return(LF_INFA); | |
| 4013 } | |
| 4014 des->cf[0] = logit(s1/s0)-sb/s0; | |
| 4015 return(LF_OK); | |
| 4016 case LINVER: | |
| 4017 if (s1<=0.0) | |
| 4018 { des->cf[0] = 1e100; | |
| 4019 return(LF_INFA); | |
| 4020 } | |
| 4021 des->cf[0] = s0/s1-sb/s0; | |
| 4022 return(LF_OK); | |
| 4023 case LSQRT: | |
| 4024 des->cf[0] = sqrt(s1/s0)-sb/s0; | |
| 4025 return(LF_OK); | |
| 4026 case LASIN: | |
| 4027 des->cf[0] = asin(sqrt(s1/s0))-sb/s0; | |
| 4028 return(LF_OK); | |
| 4029 default: | |
| 4030 LERR(("reginit: invalid link %d",link(sp))); | |
| 4031 return(LF_ERR); | |
| 4032 } | |
| 4033 } | |
| 4034 | |
| 4035 int lfinit(lfd,sp,des) | |
| 4036 lfdata *lfd; | |
| 4037 smpar *sp; | |
| 4038 design *des; | |
| 4039 { int initstat; | |
| 4040 des->xtwx.sm = (deg0(sp)<deg(sp)) ? JAC_CHOL : JAC_EIGD; | |
| 4041 | |
| 4042 designmatrix(lfd,sp,des); | |
| 4043 setfamily(sp); | |
| 4044 initstat = fami(sp)->initial(lfd,des,sp); | |
| 4045 | |
| 4046 return(initstat); | |
| 4047 } | |
| 4048 | |
| 4049 void lfiter(lfd,sp,des,maxit) | |
| 4050 lfdata *lfd; | |
| 4051 smpar *sp; | |
| 4052 design *des; | |
| 4053 int maxit; | |
| 4054 { int err; | |
| 4055 if (lf_debug>1) mut_printf(" lfiter: %8.5f\n",des->cf[0]); | |
| 4056 | |
| 4057 lf_des = des; | |
| 4058 lf_lfd = lfd; | |
| 4059 lf_sp = sp; | |
| 4060 | |
| 4061 max_nr(fami(sp)->like, des->cf, des->oc, des->res, des->f1, | |
| 4062 &des->xtwx, des->p, maxit, lf_tol, &err); | |
| 4063 switch(err) | |
| 4064 { case NR_OK: return; | |
| 4065 case NR_NCON: | |
| 4066 WARN(("max_nr not converged")); | |
| 4067 return; | |
| 4068 case NR_NDIV: | |
| 4069 WARN(("max_nr reduction problem")); | |
| 4070 return; | |
| 4071 } | |
| 4072 WARN(("max_nr return status %d",err)); | |
| 4073 } | |
| 4074 | |
| 4075 int use_robust_scale(int tg) | |
| 4076 { if ((tg&64)==0) return(0); /* not quasi - no scale */ | |
| 4077 if (((tg&128)==0) & (((tg&63)!=TROBT) & ((tg&63)!=TCAUC))) return(0); | |
| 4078 return(1); | |
| 4079 } | |
| 4080 | |
| 4081 /* | |
| 4082 * noit not really needed any more, since | |
| 4083 * gauss->pcheck returns LF_DONE, and likereg NR_BREAK | |
| 4084 * in gaussian case. | |
| 4085 * nb: 0/1: does local neighborhood and weights need computing? | |
| 4086 * cv: 0/1: is variance/covariance matrix needed? | |
| 4087 */ | |
| 4088 int locfit(lfd,des,sp,noit,nb,cv) | |
| 4089 lfdata *lfd; | |
| 4090 design *des; | |
| 4091 smpar *sp; | |
| 4092 int noit, nb, cv; | |
| 4093 { int i; | |
| 4094 | |
| 4095 if (des->xev==NULL) | |
| 4096 { LERR(("locfit: NULL evaluation point?")); | |
| 4097 return(246); | |
| 4098 } | |
| 4099 | |
| 4100 if (lf_debug>0) | |
| 4101 { mut_printf("locfit: "); | |
| 4102 for (i=0; i<lfd->d; i++) mut_printf(" %10.6f",des->xev[i]); | |
| 4103 mut_printf("\n"); | |
| 4104 } | |
| 4105 | |
| 4106 /* the 1e-12 avoids problems that can occur with roundoff */ | |
| 4107 if (nb) nbhd(lfd,des,(int)(lfd->n*nn(sp)+1e-12),0,sp); | |
| 4108 | |
| 4109 lf_status = lfinit(lfd,sp,des); | |
| 4110 | |
| 4111 if (lf_status == LF_OK) | |
| 4112 { if (use_robust_scale(fam(sp))) | |
| 4113 lf_robust(lfd,sp,des,lf_maxit); | |
| 4114 else | |
| 4115 { if ((fam(sp)&63)==TQUANT) | |
| 4116 lfquantile(lfd,sp,des,lf_maxit); | |
| 4117 else | |
| 4118 { robscale = 1.0; | |
| 4119 lfiter(lfd,sp,des,lf_maxit); | |
| 4120 } | |
| 4121 } | |
| 4122 } | |
| 4123 | |
| 4124 if (lf_status == LF_DONE) lf_status = LF_OK; | |
| 4125 if (lf_status == LF_OOB) lf_status = LF_OK; | |
| 4126 | |
| 4127 if ((fam(sp)&63)==TDEN) /* convert from rate to density */ | |
| 4128 { switch(link(sp)) | |
| 4129 { case LLOG: | |
| 4130 des->cf[0] -= log(des->smwt); | |
| 4131 break; | |
| 4132 case LIDENT: | |
| 4133 multmatscal(des->cf,1.0/des->smwt,des->p); | |
| 4134 break; | |
| 4135 default: LERR(("Density adjustment; invalid link")); | |
| 4136 } | |
| 4137 } | |
| 4138 | |
| 4139 /* variance calculations, if requested */ | |
| 4140 if (cv) | |
| 4141 { switch(lf_status) | |
| 4142 { case LF_PF: /* for these cases, variance calc. would likely fail. */ | |
| 4143 case LF_NOPT: | |
| 4144 case LF_NSLN: | |
| 4145 case LF_INFA: | |
| 4146 case LF_DEMP: | |
| 4147 case LF_XOOR: | |
| 4148 case LF_DNOP: | |
| 4149 case LF_BADP: | |
| 4150 des->llk = des->tr0 = des->tr1 = des->tr2 = 0.0; | |
| 4151 setzero(des->V,des->p*des->p); | |
| 4152 setzero(des->f1,des->p); | |
| 4153 break; | |
| 4154 default: lf_vcov(lfd,sp,des); | |
| 4155 } | |
| 4156 } | |
| 4157 | |
| 4158 return(lf_status); | |
| 4159 } | |
| 4160 | |
| 4161 void lf_status_msg(status) | |
| 4162 int status; | |
| 4163 { switch(status) | |
| 4164 { case LF_OK: return; | |
| 4165 case LF_NCON: WARN(("locfit did not converge")); return; | |
| 4166 case LF_OOB: WARN(("parameters out of bounds")); return; | |
| 4167 case LF_PF: WARN(("perfect fit")); return; | |
| 4168 case LF_NOPT: WARN(("no points with non-zero weight")); return; | |
| 4169 case LF_NSLN: WARN(("no solution")); return; | |
| 4170 case LF_INFA: WARN(("initial value problem")); return; | |
| 4171 case LF_DEMP: WARN(("density estimate, empty integration region")); return; | |
| 4172 case LF_XOOR: WARN(("procv: fit point outside xlim region")); return; | |
| 4173 case LF_DNOP: WARN(("density estimation -- insufficient points in smoothing window")); return; | |
| 4174 case LF_BADP: WARN(("bad parameters")); return; | |
| 4175 default: WARN(("procv: unknown return code %d",status)); return; | |
| 4176 } } | |
| 4177 /* | |
| 4178 * Copyright 1996-2006 Catherine Loader. | |
| 4179 */ | |
| 4180 /* | |
| 4181 * Compute minimax weights for local regression. | |
| 4182 */ | |
| 4183 | |
| 4184 #include "locf.h" | |
| 4185 #define NR_EMPTY 834 | |
| 4186 | |
| 4187 int mmsm_ct; | |
| 4188 | |
| 4189 static int debug=0; | |
| 4190 #define CONVTOL 1.0e-8 | |
| 4191 #define SINGTOL 1.0e-10 | |
| 4192 #define NR_SINGULAR 100 | |
| 4193 | |
| 4194 static lfdata *mm_lfd; | |
| 4195 static design *mm_des; | |
| 4196 static double mm_gam, mmf, lb; | |
| 4197 static int st; | |
| 4198 | |
| 4199 double ipower(x,n) /* use for n not too large!! */ | |
| 4200 double x; | |
| 4201 int n; | |
| 4202 { if (n==0) return(1.0); | |
| 4203 if (n<0) return(1/ipower(x,-n)); | |
| 4204 return(x*ipower(x,n-1)); | |
| 4205 } | |
| 4206 | |
| 4207 double setmmwt(des,a,gam) | |
| 4208 design *des; | |
| 4209 double *a, gam; | |
| 4210 { double ip, w0, w1, sw, wt; | |
| 4211 int i; | |
| 4212 sw = 0.0; | |
| 4213 for (i=0; i<mm_lfd->n; i++) | |
| 4214 { ip = innerprod(a,d_xi(des,i),des->p); | |
| 4215 wt = prwt(mm_lfd,i); | |
| 4216 w0 = ip - gam*des->wd[i]; | |
| 4217 w1 = ip + gam*des->wd[i]; | |
| 4218 wght(des,i) = 0.0; | |
| 4219 if (w0>0) { wght(des,i) = w0; sw += wt*w0*w0; } | |
| 4220 if (w1<0) { wght(des,i) = w1; sw += wt*w1*w1; } | |
| 4221 } | |
| 4222 return(sw/2-a[0]); | |
| 4223 } | |
| 4224 | |
| 4225 /* compute sum_{w!=0} AA^T; e1-sum wA */ | |
| 4226 int mmsums(des,coef,f,z,J) | |
| 4227 design *des; | |
| 4228 double *coef, *f, *z; | |
| 4229 jacobian *J; | |
| 4230 { int ct, i, j, p, sing; | |
| 4231 double *A; | |
| 4232 | |
| 4233 mmsm_ct++; | |
| 4234 A = J->Z; | |
| 4235 *f = setmmwt(des,coef,mm_gam); | |
| 4236 | |
| 4237 p = des->p; | |
| 4238 setzero(A,p*p); | |
| 4239 setzero(z,p); | |
| 4240 z[0] = 1.0; | |
| 4241 ct = 0; | |
| 4242 | |
| 4243 for (i=0; i<mm_lfd->n; i++) | |
| 4244 if (wght(des,i)!=0.0) | |
| 4245 { addouter(A,d_xi(des,i),d_xi(des,i),p,prwt(mm_lfd,i)); | |
| 4246 for (j=0; j<p; j++) z[j] -= prwt(mm_lfd,i)*wght(des,i)*d_xij(des,i,j); | |
| 4247 ct++; | |
| 4248 } | |
| 4249 if (ct==0) return(NR_EMPTY); | |
| 4250 | |
| 4251 J->st = JAC_RAW; | |
| 4252 J->p = p; | |
| 4253 jacob_dec(J,JAC_EIGD); | |
| 4254 | |
| 4255 sing = 0; | |
| 4256 for (i=0; i<p; i++) sing |= (J->Z[i*p+i]<SINGTOL); | |
| 4257 if ((debug) & (sing)) mut_printf("SINGULAR!!!!\n"); | |
| 4258 | |
| 4259 return((sing) ? NR_SINGULAR : NR_OK); | |
| 4260 } | |
| 4261 | |
| 4262 int descenddir(des,coef,dlt,f,af) | |
| 4263 design *des; | |
| 4264 double *coef, *dlt, *f; | |
| 4265 int af; | |
| 4266 { int i, p; | |
| 4267 double f0, *oc; | |
| 4268 | |
| 4269 if (debug) mut_printf("descenddir: %8.5f %8.5f\n",dlt[0],dlt[1]); | |
| 4270 | |
| 4271 f0 = *f; | |
| 4272 oc = des->oc; | |
| 4273 p = des->p; | |
| 4274 memcpy(oc,coef,p*sizeof(double)); | |
| 4275 | |
| 4276 for (i=0; i<p; i++) coef[i] = oc[i]+lb*dlt[i]; | |
| 4277 st = mmsums(des,coef,f,des->f1,&des->xtwx); | |
| 4278 | |
| 4279 if (*f>f0) /* halve till we drop */ | |
| 4280 { while (*f>f0) | |
| 4281 { lb = lb/2.0; | |
| 4282 for (i=0; i<p; i++) coef[i] = oc[i]+lb*dlt[i]; | |
| 4283 st = mmsums(des,coef,f,des->f1,&des->xtwx); | |
| 4284 } | |
| 4285 return(st); | |
| 4286 } | |
| 4287 | |
| 4288 if (!af) return(st); | |
| 4289 | |
| 4290 /* double */ | |
| 4291 while (*f<f0) | |
| 4292 { f0 = *f; | |
| 4293 lb *= 2.0; | |
| 4294 for (i=0; i<p; i++) coef[i] = oc[i]+lb*dlt[i]; | |
| 4295 st = mmsums(des,coef,f,des->f1,&des->xtwx); | |
| 4296 } | |
| 4297 | |
| 4298 lb /= 2.0; | |
| 4299 for (i=0; i<p; i++) coef[i] = oc[i]+lb*dlt[i]; | |
| 4300 st = mmsums(des,coef,f,des->f1,&des->xtwx); | |
| 4301 | |
| 4302 return(st); | |
| 4303 } | |
| 4304 | |
| 4305 int mm_initial(des) | |
| 4306 design *des; | |
| 4307 { double *dlt; | |
| 4308 | |
| 4309 dlt = des->ss; | |
| 4310 | |
| 4311 setzero(des->cf,des->p); | |
| 4312 st = mmsums(des,des->cf,&mmf,des->f1,&des->xtwx); | |
| 4313 | |
| 4314 setzero(dlt,des->p); | |
| 4315 dlt[0] = 1; | |
| 4316 lb = 1.0; | |
| 4317 st = descenddir(des,des->cf,dlt,&mmf,1); | |
| 4318 return(st); | |
| 4319 } | |
| 4320 | |
| 4321 void getsingdir(des,dlt) | |
| 4322 design *des; | |
| 4323 double *dlt; | |
| 4324 { double f, sw, c0; | |
| 4325 int i, j, p, sd; | |
| 4326 | |
| 4327 sd = -1; p = des->p; | |
| 4328 setzero(dlt,p); | |
| 4329 for (i=0; i<p; i++) if (des->xtwx.Z[i*p+i]<SINGTOL) sd = i; | |
| 4330 if (sd==-1) | |
| 4331 { mut_printf("getsingdir: nonsing?\n"); | |
| 4332 return; | |
| 4333 } | |
| 4334 if (des->xtwx.dg[sd]>0) | |
| 4335 for (i=0; i<p; i++) dlt[i] = des->xtwx.Q[p*i+sd]*des->xtwx.dg[i]; | |
| 4336 else | |
| 4337 { dlt[sd] = 1.0; | |
| 4338 } | |
| 4339 | |
| 4340 c0 = innerprod(dlt,des->f1,p); | |
| 4341 if (c0<0) for (i=0; i<p; i++) dlt[i] = -dlt[i]; | |
| 4342 } | |
| 4343 | |
| 4344 void mmax(coef, old_coef, delta, J, p, maxit, tol, err) | |
| 4345 double *coef, *old_coef, *delta, tol; | |
| 4346 int p, maxit, *err; | |
| 4347 jacobian *J; | |
| 4348 { double old_f, lambda; | |
| 4349 int i, j; | |
| 4350 | |
| 4351 *err = NR_OK; | |
| 4352 | |
| 4353 for (j=0; j<maxit; j++) | |
| 4354 { memcpy(old_coef,coef,p*sizeof(double)); | |
| 4355 old_f = mmf; | |
| 4356 | |
| 4357 if (st == NR_SINGULAR) | |
| 4358 { | |
| 4359 getsingdir(mm_des,delta); | |
| 4360 st = descenddir(mm_des,coef,delta,&mmf,1); | |
| 4361 } | |
| 4362 if (st == NR_EMPTY) | |
| 4363 { | |
| 4364 setzero(delta,p); | |
| 4365 delta[0] = 1.0; | |
| 4366 st = descenddir(mm_des,coef,delta,&mmf,1); | |
| 4367 } | |
| 4368 if (st == NR_OK) | |
| 4369 { | |
| 4370 lb = 1.0; | |
| 4371 jacob_solve(J,mm_des->f1); | |
| 4372 memcpy(delta,mm_des->f1,p*sizeof(double)); | |
| 4373 st = descenddir(mm_des,coef,delta,&mmf,0); | |
| 4374 } | |
| 4375 | |
| 4376 if ((j>0) & (fabs(mmf-old_f)<tol)) return; | |
| 4377 } | |
| 4378 WARN(("findab not converged")); | |
| 4379 *err = NR_NCON; | |
| 4380 return; | |
| 4381 } | |
| 4382 | |
| 4383 double findab(gam) | |
| 4384 double gam; | |
| 4385 { double sl; | |
| 4386 int i, p, nr_stat; | |
| 4387 | |
| 4388 if (debug) mut_printf(" findab: gam %8.5f\n",gam); | |
| 4389 mm_gam = gam; | |
| 4390 p = mm_des->p; | |
| 4391 lb = 1.0; | |
| 4392 st = mm_initial(mm_des); | |
| 4393 | |
| 4394 mmax(mm_des->cf, mm_des->oc, mm_des->ss, | |
| 4395 &mm_des->xtwx, p, lf_maxit, CONVTOL, &nr_stat); | |
| 4396 | |
| 4397 sl = 0.0; | |
| 4398 for (i=0; i<mm_lfd->n; i++) sl += fabs(wght(mm_des,i))*mm_des->wd[i]; | |
| 4399 | |
| 4400 if (debug) mut_printf(" sl %8.5f gam %8.5f %8.5f %d\n", sl,gam,sl-gam,nr_stat); | |
| 4401 return(sl-gam); | |
| 4402 } | |
| 4403 | |
| 4404 double weightmm(coef,di,ff,gam) | |
| 4405 double *coef, di, *ff, gam; | |
| 4406 { double y1, y2, ip; | |
| 4407 ip = innerprod(ff,coef,mm_des->p); | |
| 4408 y1 = ip-gam*di; if (y1>0) return(y1/ip); | |
| 4409 y2 = ip+gam*di; if (y2<0) return(y2/ip); | |
| 4410 return(0.0); | |
| 4411 } | |
| 4412 | |
| 4413 double minmax(lfd,des,sp) | |
| 4414 lfdata *lfd; | |
| 4415 design *des; | |
| 4416 smpar *sp; | |
| 4417 { double h, u[MXDIM], gam; | |
| 4418 int i, j, m, d1, p1, err_flag; | |
| 4419 | |
| 4420 if (debug) mut_printf("minmax: x %8.5f\n",des->xev[0]); | |
| 4421 mm_lfd = lfd; | |
| 4422 mm_des = des; | |
| 4423 | |
| 4424 mmsm_ct = 0; | |
| 4425 d1 = deg(sp)+1; | |
| 4426 p1 = factorial(d1); | |
| 4427 for (i=0; i<lfd->n; i++) | |
| 4428 { for (j=0; j<lfd->d; j++) u[j] = datum(lfd,j,i); | |
| 4429 des->wd[i] = sp->nn/p1*ipower(dist(des,i),d1); | |
| 4430 des->ind[i] = i; | |
| 4431 fitfun(lfd, sp, u,des->xev,d_xi(des,i),NULL); | |
| 4432 } | |
| 4433 | |
| 4434 /* find gamma (i.e. solve eqn 13.17 from book), using the secant method. | |
| 4435 * As a side effect, this finds the other minimax coefficients. | |
| 4436 * Note that 13.17 is rewritten as | |
| 4437 * g2 = sum |l_i(x)| (||xi-x||^(p+1) M/(s*(p+1)!)) | |
| 4438 * where g2 = gamma * s * (p+1)! / M. The gam variable below is g2. | |
| 4439 * The smoothing parameter is sp->nn == M/s. | |
| 4440 */ | |
| 4441 gam = solve_secant(findab, 0.0, 0.0,1.0, 0.0000001, BDF_EXPRIGHT, &err_flag); | |
| 4442 | |
| 4443 /* | |
| 4444 * Set the smoothing weights, in preparation for the actual fit. | |
| 4445 */ | |
| 4446 h = 0.0; m = 0; | |
| 4447 for (i=0; i<lfd->n; i++) | |
| 4448 { wght(des,i) = weightmm(des->cf, des->wd[i],d_xi(des,i),gam); | |
| 4449 if (wght(des,i)>0) | |
| 4450 { if (dist(des,i)>h) h = dist(des,i); | |
| 4451 des->ind[m] = i; | |
| 4452 m++; | |
| 4453 } | |
| 4454 } | |
| 4455 des->n = m; | |
| 4456 return(h); | |
| 4457 } | |
| 4458 /* | |
| 4459 * Copyright 1996-2006 Catherine Loader. | |
| 4460 */ | |
| 4461 /* | |
| 4462 * | |
| 4463 * Defines the weight functions and related quantities used | |
| 4464 * in LOCFIT. | |
| 4465 */ | |
| 4466 | |
| 4467 #include "locf.h" | |
| 4468 | |
| 4469 /* | |
| 4470 * convert kernel and kernel type strings to numeric codes. | |
| 4471 */ | |
| 4472 #define NWFUNS 13 | |
| 4473 static char *wfuns[NWFUNS] = { | |
| 4474 "rectangular", "epanechnikov", "bisquare", "tricube", | |
| 4475 "triweight", "gaussian", "triangular", "ququ", | |
| 4476 "6cub", "minimax", "exponential", "maclean", "parametric" }; | |
| 4477 static int wvals[NWFUNS] = { WRECT, WEPAN, WBISQ, WTCUB, | |
| 4478 WTRWT, WGAUS, WTRIA, WQUQU, W6CUB, WMINM, WEXPL, WMACL, WPARM }; | |
| 4479 int lfkernel(char *z) | |
| 4480 { return(pmatch(z, wfuns, wvals, NWFUNS, WTCUB)); | |
| 4481 } | |
| 4482 | |
| 4483 #define NKTYPE 5 | |
| 4484 static char *ktype[NKTYPE] = { "spherical", "product", "center", "lm", "zeon" }; | |
| 4485 static int kvals[NKTYPE] = { KSPH, KPROD, KCE, KLM, KZEON }; | |
| 4486 int lfketype(char *z) | |
| 4487 { return(pmatch(z, ktype, kvals, NKTYPE, KSPH)); | |
| 4488 } | |
| 4489 | |
| 4490 /* The weight functions themselves. Used everywhere. */ | |
| 4491 double W(u,ker) | |
| 4492 double u; | |
| 4493 int ker; | |
| 4494 { u = fabs(u); | |
| 4495 switch(ker) | |
| 4496 { case WRECT: return((u>1) ? 0.0 : 1.0); | |
| 4497 case WEPAN: return((u>1) ? 0.0 : 1-u*u); | |
| 4498 case WBISQ: if (u>1) return(0.0); | |
| 4499 u = 1-u*u; return(u*u); | |
| 4500 case WTCUB: if (u>1) return(0.0); | |
| 4501 u = 1-u*u*u; return(u*u*u); | |
| 4502 case WTRWT: if (u>1) return(0.0); | |
| 4503 u = 1-u*u; return(u*u*u); | |
| 4504 case WQUQU: if (u>1) return(0.0); | |
| 4505 u = 1-u*u; return(u*u*u*u); | |
| 4506 case WTRIA: if (u>1) return(0.0); | |
| 4507 return(1-u); | |
| 4508 case W6CUB: if (u>1) return(0.0); | |
| 4509 u = 1-u*u*u; u = u*u*u; return(u*u); | |
| 4510 case WGAUS: return(exp(-SQR(GFACT*u)/2.0)); | |
| 4511 case WEXPL: return(exp(-EFACT*u)); | |
| 4512 case WMACL: return(1/((u+1.0e-100)*(u+1.0e-100))); | |
| 4513 case WMINM: LERR(("WMINM in W")); | |
| 4514 return(0.0); | |
| 4515 case WPARM: return(1.0); | |
| 4516 } | |
| 4517 LERR(("W(): Unknown kernel %d\n",ker)); | |
| 4518 return(1.0); | |
| 4519 } | |
| 4520 | |
| 4521 int iscompact(ker) | |
| 4522 int ker; | |
| 4523 { if ((ker==WEXPL) | (ker==WGAUS) | (ker==WMACL) | (ker==WPARM)) return(0); | |
| 4524 return(1); | |
| 4525 } | |
| 4526 | |
| 4527 double weightprod(lfd,u,h,ker) | |
| 4528 lfdata *lfd; | |
| 4529 double *u, h; | |
| 4530 int ker; | |
| 4531 { int i; | |
| 4532 double sc, w; | |
| 4533 w = 1.0; | |
| 4534 for (i=0; i<lfd->d; i++) | |
| 4535 { sc = lfd->sca[i]; | |
| 4536 switch(lfd->sty[i]) | |
| 4537 { case STLEFT: | |
| 4538 if (u[i]>0) return(0.0); | |
| 4539 w *= W(-u[i]/(h*sc),ker); | |
| 4540 break; | |
| 4541 case STRIGH: | |
| 4542 if (u[i]<0) return(0.0); | |
| 4543 w *= W(u[i]/(h*sc),ker); | |
| 4544 break; | |
| 4545 case STANGL: | |
| 4546 w *= W(2*fabs(sin(u[i]/(2*sc)))/h,ker); | |
| 4547 break; | |
| 4548 case STCPAR: | |
| 4549 break; | |
| 4550 default: | |
| 4551 w *= W(fabs(u[i])/(h*sc),ker); | |
| 4552 } | |
| 4553 if (w==0.0) return(w); | |
| 4554 } | |
| 4555 return(w); | |
| 4556 } | |
| 4557 | |
| 4558 double weightsph(lfd,u,h,ker, hasdi,di) | |
| 4559 lfdata *lfd; | |
| 4560 double *u, h, di; | |
| 4561 int ker, hasdi; | |
| 4562 { int i; | |
| 4563 | |
| 4564 if (!hasdi) di = rho(u,lfd->sca,lfd->d,KSPH,lfd->sty); | |
| 4565 | |
| 4566 for (i=0; i<lfd->d; i++) | |
| 4567 { if ((lfd->sty[i]==STLEFT) && (u[i]>0.0)) return(0.0); | |
| 4568 if ((lfd->sty[i]==STRIGH) && (u[i]<0.0)) return(0.0); | |
| 4569 } | |
| 4570 if (h==0) return((di==0.0) ? 1.0 : 0.0); | |
| 4571 | |
| 4572 return(W(di/h,ker)); | |
| 4573 } | |
| 4574 | |
| 4575 double weight(lfd,sp,x,t,h, hasdi,di) | |
| 4576 lfdata *lfd; | |
| 4577 smpar *sp; | |
| 4578 double *x, *t, h, di; | |
| 4579 int hasdi; | |
| 4580 { double u[MXDIM]; | |
| 4581 int i; | |
| 4582 for (i=0; i<lfd->d; i++) u[i] = (t==NULL) ? x[i] : x[i]-t[i]; | |
| 4583 switch(kt(sp)) | |
| 4584 { case KPROD: return(weightprod(lfd,u,h,ker(sp))); | |
| 4585 case KSPH: return(weightsph(lfd,u,h,ker(sp), hasdi,di)); | |
| 4586 } | |
| 4587 LERR(("weight: unknown kernel type %d",kt(sp))); | |
| 4588 return(1.0); | |
| 4589 } | |
| 4590 | |
| 4591 double sgn(x) | |
| 4592 double x; | |
| 4593 { if (x>0) return(1.0); | |
| 4594 if (x<0) return(-1.0); | |
| 4595 return(0.0); | |
| 4596 } | |
| 4597 | |
| 4598 double WdW(u,ker) /* W'(u)/W(u) */ | |
| 4599 double u; | |
| 4600 int ker; | |
| 4601 { double eps=1.0e-10; | |
| 4602 if (ker==WGAUS) return(-GFACT*GFACT*u); | |
| 4603 if (ker==WPARM) return(0.0); | |
| 4604 if (fabs(u)>=1) return(0.0); | |
| 4605 switch(ker) | |
| 4606 { case WRECT: return(0.0); | |
| 4607 case WTRIA: return(-sgn(u)/(1-fabs(u)+eps)); | |
| 4608 case WEPAN: return(-2*u/(1-u*u+eps)); | |
| 4609 case WBISQ: return(-4*u/(1-u*u+eps)); | |
| 4610 case WTRWT: return(-6*u/(1-u*u+eps)); | |
| 4611 case WTCUB: return(-9*sgn(u)*u*u/(1-u*u*fabs(u)+eps)); | |
| 4612 case WEXPL: return((u>0) ? -EFACT : EFACT); | |
| 4613 } | |
| 4614 LERR(("WdW: invalid kernel")); | |
| 4615 return(0.0); | |
| 4616 } | |
| 4617 | |
| 4618 /* deriv. weights .. spherical, product etc | |
| 4619 u, sc, sty needed only in relevant direction | |
| 4620 Acutally, returns (d/dx W(||x||/h) ) / W(.) | |
| 4621 */ | |
| 4622 double weightd(u,sc,d,ker,kt,h,sty,di) | |
| 4623 double u, sc, h, di; | |
| 4624 int d, ker, kt, sty; | |
| 4625 { if (sty==STANGL) | |
| 4626 { if (kt==KPROD) | |
| 4627 return(-WdW(2*sin(u/(2*sc)),ker)*cos(u/(2*sc))/(h*sc)); | |
| 4628 if (di==0.0) return(0.0); | |
| 4629 return(-WdW(di/h,ker)*sin(u/sc)/(h*sc*di)); | |
| 4630 } | |
| 4631 if (sty==STCPAR) return(0.0); | |
| 4632 if (kt==KPROD) | |
| 4633 return(-WdW(u/(h*sc),ker)/(h*sc)); | |
| 4634 if (di==0.0) return(0.0); | |
| 4635 return(-WdW(di/h,ker)*u/(h*di*sc*sc)); | |
| 4636 } | |
| 4637 | |
| 4638 double weightdd(u,sc,d,ker,kt,h,sty,di,i0,i1) | |
| 4639 double *u, *sc, h, di; | |
| 4640 int d, ker, kt, i0, i1, *sty; | |
| 4641 { double w; | |
| 4642 w = 1; | |
| 4643 if (kt==KPROD) | |
| 4644 { | |
| 4645 w = WdW(u[i0]/(h*sc[i0]),ker)*WdW(u[i1]/(h*sc[i1]),ker)/(h*h*sc[i0]*sc[i1]); | |
| 4646 } | |
| 4647 return(0.0); | |
| 4648 } | |
| 4649 | |
| 4650 /* Derivatives W'(u)/u. | |
| 4651 Used in simult. conf. band computations, | |
| 4652 and kernel density bandwidth selectors. */ | |
| 4653 double Wd(u,ker) | |
| 4654 double u; | |
| 4655 int ker; | |
| 4656 { double v; | |
| 4657 if (ker==WGAUS) return(-SQR(GFACT)*exp(-SQR(GFACT*u)/2)); | |
| 4658 if (ker==WPARM) return(0.0); | |
| 4659 if (fabs(u)>1) return(0.0); | |
| 4660 switch(ker) | |
| 4661 { case WEPAN: return(-2.0); | |
| 4662 case WBISQ: return(-4*(1-u*u)); | |
| 4663 case WTCUB: v = 1-u*u*u; | |
| 4664 return(-9*v*v*u); | |
| 4665 case WTRWT: v = 1-u*u; | |
| 4666 return(-6*v*v); | |
| 4667 default: LERR(("Invalid kernel %d in Wd",ker)); | |
| 4668 } | |
| 4669 return(0.0); | |
| 4670 } | |
| 4671 | |
| 4672 /* Second derivatives W''(u)-W'(u)/u. | |
| 4673 used in simult. conf. band computations in >1 dimension. */ | |
| 4674 double Wdd(u,ker) | |
| 4675 double u; | |
| 4676 int ker; | |
| 4677 { double v; | |
| 4678 if (ker==WGAUS) return(SQR(u*GFACT*GFACT)*exp(-SQR(u*GFACT)/2)); | |
| 4679 if (ker==WPARM) return(0.0); | |
| 4680 if (u>1) return(0.0); | |
| 4681 switch(ker) | |
| 4682 { case WBISQ: return(12*u*u); | |
| 4683 case WTCUB: v = 1-u*u*u; | |
| 4684 return(-9*u*v*v+54*u*u*u*u*v); | |
| 4685 case WTRWT: return(24*u*u*(1-u*u)); | |
| 4686 default: LERR(("Invalid kernel %d in Wdd",ker)); | |
| 4687 } | |
| 4688 return(0.0); | |
| 4689 } | |
| 4690 | |
| 4691 /* int u1^j1..ud^jd W(u) du. | |
| 4692 Used for local log-linear density estimation. | |
| 4693 Assume all j_i are even. | |
| 4694 Also in some bandwidth selection. | |
| 4695 */ | |
| 4696 double wint(d,j,nj,ker) | |
| 4697 int d, *j, nj, ker; | |
| 4698 { double I, z; | |
| 4699 int k, dj; | |
| 4700 dj = d; | |
| 4701 for (k=0; k<nj; k++) dj += j[k]; | |
| 4702 switch(ker) /* int_0^1 u^(dj-1) W(u)du */ | |
| 4703 { case WRECT: I = 1.0/dj; break; | |
| 4704 case WEPAN: I = 2.0/(dj*(dj+2)); break; | |
| 4705 case WBISQ: I = 8.0/(dj*(dj+2)*(dj+4)); break; | |
| 4706 case WTCUB: I = 162.0/(dj*(dj+3)*(dj+6)*(dj+9)); break; | |
| 4707 case WTRWT: I = 48.0/(dj*(dj+2)*(dj+4)*(dj+6)); break; | |
| 4708 case WTRIA: I = 1.0/(dj*(dj+1)); break; | |
| 4709 case WQUQU: I = 384.0/(dj*(dj+2)*(dj+4)*(dj+6)*(dj+8)); break; | |
| 4710 case W6CUB: I = 524880.0/(dj*(dj+3)*(dj+6)*(dj+9)*(dj+12)*(dj+15)*(dj+18)); break; | |
| 4711 case WGAUS: switch(d) | |
| 4712 { case 1: I = S2PI/GFACT; break; | |
| 4713 case 2: I = 2*PI/(GFACT*GFACT); break; | |
| 4714 default: I = exp(d*log(S2PI/GFACT)); /* for nj=0 */ | |
| 4715 } | |
| 4716 for (k=0; k<nj; k++) /* deliberate drop */ | |
| 4717 switch(j[k]) | |
| 4718 { case 4: I *= 3.0/(GFACT*GFACT); | |
| 4719 case 2: I /= GFACT*GFACT; | |
| 4720 } | |
| 4721 return(I); | |
| 4722 case WEXPL: I = factorial(dj-1)/ipower(EFACT,dj); break; | |
| 4723 default: LERR(("Unknown kernel %d in exacint",ker)); | |
| 4724 } | |
| 4725 if ((d==1) && (nj==0)) return(2*I); /* common case quick */ | |
| 4726 z = (d-nj)*LOGPI/2-mut_lgammai(dj); | |
| 4727 for (k=0; k<nj; k++) z += mut_lgammai(j[k]+1); | |
| 4728 return(2*I*exp(z)); | |
| 4729 } | |
| 4730 | |
| 4731 /* taylor series expansion of weight function around x. | |
| 4732 0 and 1 are common arguments, so are worth programming | |
| 4733 as special cases. | |
| 4734 Used in density estimation. | |
| 4735 */ | |
| 4736 int wtaylor(f,x,ker) | |
| 4737 double *f, x; | |
| 4738 int ker; | |
| 4739 { double v; | |
| 4740 switch(ker) | |
| 4741 { case WRECT: | |
| 4742 f[0] = 1.0; | |
| 4743 return(1); | |
| 4744 case WEPAN: | |
| 4745 f[0] = 1-x*x; f[1] = -2*x; f[2] = -1; | |
| 4746 return(3); | |
| 4747 case WBISQ: | |
| 4748 v = 1-x*x; | |
| 4749 f[0] = v*v; f[1] = -4*x*v; f[2] = 4-6*v; | |
| 4750 f[3] = 4*x; f[4] = 1; | |
| 4751 return(5); | |
| 4752 case WTCUB: | |
| 4753 if (x==1.0) | |
| 4754 { f[0] = f[1] = f[2] = 0; f[3] = -27; f[4] = -81; f[5] = -108; | |
| 4755 f[6] = -81; f[7] = -36; f[8] = -9; f[9] = -1; return(10); } | |
| 4756 if (x==0.0) | |
| 4757 { f[1] = f[2] = f[4] = f[5] = f[7] = f[8] = 0; | |
| 4758 f[0] = 1; f[3] = -3; f[6] = 3; f[9] = -1; return(10); } | |
| 4759 v = 1-x*x*x; | |
| 4760 f[0] = v*v*v; f[1] = -9*v*v*x*x; f[2] = x*v*(27-36*v); | |
| 4761 f[3] = -27+v*(108-84*v); f[4] = -3*x*x*(27-42*v); | |
| 4762 f[5] = x*(-108+126*v); f[6] = -81+84*v; | |
| 4763 f[7] = -36*x*x; f[8] = -9*x; f[9] = -1; | |
| 4764 return(10); | |
| 4765 case WTRWT: | |
| 4766 v = 1-x*x; | |
| 4767 f[0] = v*v*v; f[1] = -6*x*v*v; f[2] = v*(12-15*v); | |
| 4768 f[3] = x*(20*v-8); f[4] = 15*v-12; f[5] = -6; f[6] = -1; | |
| 4769 return(7); | |
| 4770 case WTRIA: | |
| 4771 f[0] = 1-x; f[1] = -1; | |
| 4772 return(2); | |
| 4773 case WQUQU: | |
| 4774 v = 1-x*x; | |
| 4775 f[0] = v*v*v*v; f[1] = -8*x*v*v*v; f[2] = v*v*(24-28*v); | |
| 4776 f[3] = v*x*(56*v-32); f[4] = (70*v-80)*v+16; f[5] = x*(32-56*v); | |
| 4777 f[6] = 24-28*v; f[7] = 8*x; f[8] = 1; | |
| 4778 return(9); | |
| 4779 case W6CUB: | |
| 4780 v = 1-x*x*x; | |
| 4781 f[0] = v*v*v*v*v*v; | |
| 4782 f[1] = -18*x*x*v*v*v*v*v; | |
| 4783 f[2] = x*v*v*v*v*(135-153*v); | |
| 4784 f[3] = v*v*v*(-540+v*(1350-816*v)); | |
| 4785 f[4] = x*x*v*v*(1215-v*(4050-v*3060)); | |
| 4786 f[5] = x*v*(-1458+v*(9234+v*(-16254+v*8568))); | |
| 4787 f[6] = 729-v*(10206-v*(35154-v*(44226-v*18564))); | |
| 4788 f[7] = x*x*(4374-v*(30132-v*(56862-v*31824))); | |
| 4789 f[8] = x*(12393-v*(61479-v*(92664-v*43758))); | |
| 4790 f[9] = 21870-v*(89100-v*(115830-v*48620)); | |
| 4791 f[10]= x*x*(26730-v*(69498-v*43758)); | |
| 4792 f[11]= x*(23814-v*(55458-v*31824)); | |
| 4793 f[12]= 15849-v*(34398-v*18564); | |
| 4794 f[13]= x*x*(7938-8568*v); | |
| 4795 f[14]= x*(2970-3060*v); | |
| 4796 f[15]= 810-816*v; | |
| 4797 f[16]= 153*x*x; | |
| 4798 f[17]= 18*x; | |
| 4799 f[18]= 1; | |
| 4800 return(19); | |
| 4801 } | |
| 4802 LERR(("Invalid kernel %d in wtaylor",ker)); | |
| 4803 return(0); | |
| 4804 } | |
| 4805 | |
| 4806 /* convolution int W(x)W(x+v)dx. | |
| 4807 used in kde bandwidth selection. | |
| 4808 */ | |
| 4809 double Wconv(v,ker) | |
| 4810 double v; | |
| 4811 int ker; | |
| 4812 { double v2; | |
| 4813 switch(ker) | |
| 4814 { case WGAUS: return(SQRPI/GFACT*exp(-SQR(GFACT*v)/4)); | |
| 4815 case WRECT: | |
| 4816 v = fabs(v); | |
| 4817 if (v>2) return(0.0); | |
| 4818 return(2-v); | |
| 4819 case WEPAN: | |
| 4820 v = fabs(v); | |
| 4821 if (v>2) return(0.0); | |
| 4822 return((2-v)*(16+v*(8-v*(16-v*(2+v))))/30); | |
| 4823 case WBISQ: | |
| 4824 v = fabs(v); | |
| 4825 if (v>2) return(0.0); | |
| 4826 v2 = 2-v; | |
| 4827 return(v2*v2*v2*v2*v2*(16+v*(40+v*(36+v*(10+v))))/630); | |
| 4828 } | |
| 4829 LERR(("Wconv not implemented for kernel %d",ker)); | |
| 4830 return(0.0); | |
| 4831 } | |
| 4832 | |
| 4833 /* derivative of Wconv. | |
| 4834 1/v d/dv int W(x)W(x+v)dx | |
| 4835 used in kde bandwidth selection. | |
| 4836 */ | |
| 4837 double Wconv1(v,ker) | |
| 4838 double v; | |
| 4839 int ker; | |
| 4840 { double v2; | |
| 4841 v = fabs(v); | |
| 4842 switch(ker) | |
| 4843 { case WGAUS: return(-0.5*SQRPI*GFACT*exp(-SQR(GFACT*v)/4)); | |
| 4844 case WRECT: | |
| 4845 if (v>2) return(0.0); | |
| 4846 return(1.0); | |
| 4847 case WEPAN: | |
| 4848 if (v>2) return(0.0); | |
| 4849 return((-16+v*(12-v*v))/6); | |
| 4850 case WBISQ: | |
| 4851 if (v>2) return(0.0); | |
| 4852 v2 = 2-v; | |
| 4853 return(-v2*v2*v2*v2*(32+v*(64+v*(24+v*3)))/210); | |
| 4854 } | |
| 4855 LERR(("Wconv1 not implemented for kernel %d",ker)); | |
| 4856 return(0.0); | |
| 4857 } | |
| 4858 | |
| 4859 /* 4th derivative of Wconv. | |
| 4860 used in kde bandwidth selection (BCV, SJPI, GKK) | |
| 4861 */ | |
| 4862 double Wconv4(v,ker) | |
| 4863 double v; | |
| 4864 int ker; | |
| 4865 { double gv; | |
| 4866 switch(ker) | |
| 4867 { case WGAUS: | |
| 4868 gv = GFACT*v; | |
| 4869 return(exp(-SQR(gv)/4)*GFACT*GFACT*GFACT*(12-gv*gv*(12-gv*gv))*SQRPI/16); | |
| 4870 } | |
| 4871 LERR(("Wconv4 not implemented for kernel %d",ker)); | |
| 4872 return(0.0); | |
| 4873 } | |
| 4874 | |
| 4875 /* 5th derivative of Wconv. | |
| 4876 used in kde bandwidth selection (BCV method only) | |
| 4877 */ | |
| 4878 double Wconv5(v,ker) /* (d/dv)^5 int W(x)W(x+v)dx */ | |
| 4879 double v; | |
| 4880 int ker; | |
| 4881 { double gv; | |
| 4882 switch(ker) | |
| 4883 { case WGAUS: | |
| 4884 gv = GFACT*v; | |
| 4885 return(-exp(-SQR(gv)/4)*GFACT*GFACT*GFACT*GFACT*gv*(60-gv*gv*(20-gv*gv))*SQRPI/32); | |
| 4886 } | |
| 4887 LERR(("Wconv5 not implemented for kernel %d",ker)); | |
| 4888 return(0.0); | |
| 4889 } | |
| 4890 | |
| 4891 /* 6th derivative of Wconv. | |
| 4892 used in kde bandwidth selection (SJPI) | |
| 4893 */ | |
| 4894 double Wconv6(v,ker) | |
| 4895 double v; | |
| 4896 int ker; | |
| 4897 { double gv, z; | |
| 4898 switch(ker) | |
| 4899 { case WGAUS: | |
| 4900 gv = GFACT*v; | |
| 4901 gv = gv*gv; | |
| 4902 z = exp(-gv/4)*(-120+gv*(180-gv*(30-gv)))*0.02769459142; | |
| 4903 gv = GFACT*GFACT; | |
| 4904 return(z*gv*gv*GFACT); | |
| 4905 } | |
| 4906 LERR(("Wconv6 not implemented for kernel %d",ker)); | |
| 4907 return(0.0); | |
| 4908 } | |
| 4909 | |
| 4910 /* int W(v)^2 dv / (int v^2 W(v) dv)^2 | |
| 4911 used in some bandwidth selectors | |
| 4912 */ | |
| 4913 double Wikk(ker,deg) | |
| 4914 int ker, deg; | |
| 4915 { switch(deg) | |
| 4916 { case 0: | |
| 4917 case 1: /* int W(v)^2 dv / (int v^2 W(v) dv)^2 */ | |
| 4918 switch(ker) | |
| 4919 { case WRECT: return(4.5); | |
| 4920 case WEPAN: return(15.0); | |
| 4921 case WBISQ: return(35.0); | |
| 4922 case WGAUS: return(0.2820947918*GFACT*GFACT*GFACT*GFACT*GFACT); | |
| 4923 case WTCUB: return(34.152111046847892); /* 59049 / 1729 */ | |
| 4924 case WTRWT: return(66.083916083916080); /* 9450/143 */ | |
| 4925 } | |
| 4926 case 2: | |
| 4927 case 3: /* 4!^2/8*int(W1^2)/int(v^4W1)^2 | |
| 4928 W1=W*(n4-v^2n2)/(n0n4-n2n2) */ | |
| 4929 switch(ker) | |
| 4930 { case WRECT: return(11025.0); | |
| 4931 case WEPAN: return(39690.0); | |
| 4932 case WBISQ: return(110346.9231); | |
| 4933 case WGAUS: return(14527.43412); | |
| 4934 case WTCUB: return(126500.5904); | |
| 4935 case WTRWT: return(254371.7647); | |
| 4936 } | |
| 4937 } | |
| 4938 LERR(("Wikk not implemented for kernel %d, deg %d",ker,deg)); | |
| 4939 return(0.0); | |
| 4940 } |
