Mercurial > repos > vipints > rdiff
view rDiff/src/locfit/Source/liblocf.c @ 1:08d3a6143873
Deleted selected files
author | vipints |
---|---|
date | Tue, 08 Oct 2013 06:54:25 -0400 |
parents | 0f80a5141704 |
children |
line wrap: on
line source
/* * Copyright 1996-2006 Catherine Loader. */ #include "mex.h" /* * Copyright 1996-2006 Catherine Loader. */ /* * Integration for hazard rate estimation. The functions in this * file are used to evaluate * sum int_0^{Ti} W_i(t,x) A()A()' exp( P() ) dt * for hazard rate models. * * These routines assume the weight function is supported on [-1,1]. * hasint_sph multiplies by exp(base(lf,i)), which allows estimating * the baseline in a proportional hazards model, when the covariate * effect base(lf,i) is known. * * TODO: * hazint_sph, should be able to reduce mint in some cases with * small integration range. onedint could be used for beta-family * (RECT,EPAN,BISQ,TRWT) kernels. * hazint_prod, restrict terms from the sum based on x values. * I should count obs >= max, and only do that integration once. */ #include "locf.h" static double ilim[2*MXDIM], *ff, tmax; static lfdata *haz_lfd; static smpar *haz_sp; /* * hrao returns 0 if integration region is empty. * 1 otherwise. */ int haz_sph_int(dfx,cf,h,r1) double *dfx, *cf, h, *r1; { double s, t0, t1, wt, th; int j, dim, p; s = 0; p = npar(haz_sp); dim = haz_lfd->d; for (j=1; j<dim; j++) s += SQR(dfx[j]/(h*haz_lfd->sca[j])); if (s>1) return(0); setzero(r1,p*p); t1 = sqrt(1-s)*h*haz_lfd->sca[0]; t0 = -t1; if (t0<ilim[0]) t0 = ilim[0]; if (t1>ilim[dim]) t1 = ilim[dim]; if (t1>dfx[0]) t1 = dfx[0]; if (t1<t0) return(0); /* Numerical integration by Simpson's rule. */ for (j=0; j<=de_mint; j++) { dfx[0] = t0+(t1-t0)*j/de_mint; wt = weight(haz_lfd, haz_sp, dfx, NULL, h, 0, 0.0); fitfun(haz_lfd, haz_sp, dfx,NULL,ff,NULL); th = innerprod(cf,ff,p); if (link(haz_sp)==LLOG) th = exp(th); wt *= 2+2*(j&1)-(j==0)-(j==de_mint); addouter(r1,ff,ff,p,wt*th); } multmatscal(r1,(t1-t0)/(3*de_mint),p*p); return(1); } int hazint_sph(t,resp,r1,cf,h) double *t, *resp, *r1, *cf, h; { int i, j, n, p, st; double dfx[MXDIM], eb, sb; p = npar(haz_sp); setzero(resp,p*p); sb = 0.0; n = haz_lfd->n; for (i=0; i<=n; i++) { if (i==n) { dfx[0] = tmax-t[0]; for (j=1; j<haz_lfd->d; j++) dfx[j] = 0.0; eb = exp(sb/n); } else { eb = exp(base(haz_lfd,i)); sb += base(haz_lfd,i); for (j=0; j<haz_lfd->d; j++) dfx[j] = datum(haz_lfd,j,i)-t[j]; } st = haz_sph_int(dfx,cf,h,r1); if (st) for (j=0; j<p*p; j++) resp[j] += eb*r1[j]; } return(LF_OK); } int hazint_prod(t,resp,x,cf,h) double *t, *resp, *x, *cf, h; { int d, p, i, j, k, st; double dfx[MXDIM], t_prev, hj, hs, ncf[MXDEG], ef, il1; double prod_wk[MXDIM][2*MXDEG+1], eb, sb; p = npar(haz_sp); d = haz_lfd->d; setzero(resp,p*p); hj = hs = h*haz_lfd->sca[0]; ncf[0] = cf[0]; for (i=1; i<=deg(haz_sp); i++) { ncf[i] = hj*cf[(i-1)*d+1]; hj *= hs; } /* for i=0..n.... * First we compute prod_wk[j], j=0..d. * For j=0, this is int_0^T_i (u-t)^k W((u-t)/h) exp(b0*(u-t)) du * For remaining j, (x(i,j)-x(j))^k Wj exp(bj*(x..-x.)) * * Second, we add to the integration (exp(a) incl. in integral) * with the right factorial denominators. */ t_prev = ilim[0]; sb = 0.0; for (i=0; i<=haz_lfd->n; i++) { if (i==haz_lfd->n) { dfx[0] = tmax-t[0]; for (j=1; j<d; j++) dfx[j] = 0.0; eb = exp(sb/haz_lfd->n); } else { eb = exp(base(haz_lfd,i)); sb += base(haz_lfd,i); for (j=0; j<d; j++) dfx[j] = datum(haz_lfd,j,i)-t[j]; } if (dfx[0]>ilim[0]) /* else it doesn't contribute */ { /* time integral */ il1 = (dfx[0]>ilim[d]) ? ilim[d] : dfx[0]; if (il1 != t_prev) /* don't repeat! */ { st = onedint(haz_sp,ncf,ilim[0]/hs,il1/hs,prod_wk[0]); if (st>0) return(st); hj = eb; for (j=0; j<=2*deg(haz_sp); j++) { hj *= hs; prod_wk[0][j] *= hj; } t_prev = il1; } /* covariate terms */ for (j=1; j<d; j++) { ef = 0.0; for (k=deg(haz_sp); k>0; k--) ef = (ef+dfx[j])*cf[1+(k-1)*d+j]; ef = exp(ef); prod_wk[j][0] = ef * W(dfx[j]/(h*haz_lfd->sca[j]),ker(haz_sp)); for (k=1; k<=2*deg(haz_sp); k++) prod_wk[j][k] = prod_wk[j][k-1] * dfx[j]; } /* add to the integration. */ prodintresp(resp,prod_wk,d,deg(haz_sp),p); } /* if dfx0 > ilim0 */ } /* n loop */ /* symmetrize */ for (k=0; k<p; k++) for (j=k; j<p; j++) resp[j*p+k] = resp[k*p+j]; return(LF_OK); } int hazint(t,resp,resp1,cf,h) double *t, *resp, *resp1, *cf, h; { if (haz_lfd->d==1) return(hazint_prod(t,resp,resp1,cf,h)); if (kt(haz_sp)==KPROD) return(hazint_prod(t,resp,resp1,cf,h)); return(hazint_sph(t,resp,resp1,cf,h)); } void haz_init(lfd,des,sp,il) lfdata *lfd; design *des; smpar *sp; double *il; { int i; haz_lfd = lfd; haz_sp = sp; tmax = datum(lfd,0,0); for (i=1; i<lfd->n; i++) tmax = MAX(tmax,datum(lfd,0,i)); ff = des->xtwx.wk; for (i=0; i<2*lfd->d; i++) ilim[i] = il[i]; } /* * Copyright 1996-2006 Catherine Loader. */ /* * * Routines for one-dimensional numerical integration * in density estimation. The entry point is * * onedint(cf,mi,l0,l1,resp) * * which evaluates int W(u)u^j exp( P(u) ), j=0..2*deg. * P(u) = cf[0] + cf[1]u + cf[2]u^2/2 + ... + cf[deg]u^deg/deg! * l0 and l1 are the integration limits. * The results are returned through the vector resp. * */ #include "locf.h" static int debug; int exbctay(b,c,n,z) /* n-term taylor series of e^(bx+cx^2) */ double b, c, *z; int n; { double ec[20]; int i, j; z[0] = 1; for (i=1; i<=n; i++) z[i] = z[i-1]*b/i; if (c==0.0) return(n); if (n>=40) { WARN(("exbctay limit to n<40")); n = 39; } ec[0] = 1; for (i=1; 2*i<=n; i++) ec[i] = ec[i-1]*c/i; for (i=n; i>1; i--) for (j=1; 2*j<=i; j++) z[i] += ec[j]*z[i-2*j]; return(n); } double explinjtay(l0,l1,j,cf) /* int_l0^l1 x^j e^(a+bx+cx^2); exbctay aroud l1 */ double l0, l1, *cf; int j; { double tc[40], f, s; int k, n; if ((l0!=0.0) | (l1!=1.0)) WARN(("explinjtay: invalid l0, l1")); n = exbctay(cf[1]+2*cf[2]*l1,cf[2],20,tc); s = tc[0]/(j+1); f = 1/(j+1); for (k=1; k<=n; k++) { f *= -k/(j+k+1.0); s += tc[k]*f; } return(f); } void explint1(l0,l1,cf,I,p) /* int x^j exp(a+bx); j=0..p-1 */ double l0, l1, *cf, *I; int p; { double y0, y1, f; int j, k, k1; y0 = mut_exp(cf[0]+l0*cf[1]); y1 = mut_exp(cf[0]+l1*cf[1]); if (p<2*fabs(cf[1])) k = p; else k = (int)fabs(cf[1]); if (k>0) { I[0] = (y1-y0)/cf[1]; for (j=1; j<k; j++) /* forward steps for small j */ { y1 *= l1; y0 *= l0; I[j] = (y1-y0-j*I[j-1])/cf[1]; } if (k==p) return; y1 *= l1; y0 *= l0; } f = 1; k1 = k; while ((k<50) && (f>1.0e-8)) /* initially Ik = diff(x^{k+1}e^{a+bx}) */ { y1 *= l1; y0 *= l0; I[k] = y1-y0; if (k>=p) f *= fabs(cf[1])/(k+1); k++; } if (k==50) WARN(("explint1: want k>50")); I[k] = 0.0; for (j=k-1; j>=k1; j--) /* now do back step recursion */ I[j] = (I[j]-cf[1]*I[j+1])/(j+1); } void explintyl(l0,l1,cf,I,p) /* small c, use taylor series and explint1 */ double l0, l1, *cf, *I; int p; { int i; double c; explint1(l0,l1,cf,I,p+8); c = cf[2]; for (i=0; i<p; i++) I[i] = (((I[i+8]*c/4+I[i+6])*c/3+I[i+4])*c/2+I[i+2])*c+I[i]; } void solvetrid(X,y,m) double *X, *y; int m; { int i; double s; for (i=1; i<m; i++) { s = X[3*i]/X[3*i-2]; X[3*i] = 0; X[3*i+1] -= s*X[3*i-1]; y[i] -= s*y[i-1]; } for (i=m-2; i>=0; i--) { s = X[3*i+2]/X[3*i+4]; X[3*i+2] = 0; y[i] -= s*y[i+1]; } for (i=0; i<m; i++) y[i] /= X[3*i+1]; } void initi0i1(I,cf,y0,y1,l0,l1) double *I, *cf, y0, y1, l0, l1; { double a0, a1, c, d, bi; d = -cf[1]/(2*cf[2]); c = sqrt(2*fabs(cf[2])); a0 = c*(l0-d); a1 = c*(l1-d); if (cf[2]<0) { bi = mut_exp(cf[0]+cf[1]*d+cf[2]*d*d)/c; if (a0>0) { if (a0>6) I[0] = (y0*ptail(-a0)-y1*ptail(-a1))/c; else I[0] = S2PI*(mut_pnorm(-a0)-mut_pnorm(-a1))*bi; } else { if (a1< -6) I[0] = (y1*ptail(a1)-y0*ptail(a0))/c; else I[0] = S2PI*(mut_pnorm(a1)-mut_pnorm(a0))*bi; } } else I[0] = (y1*mut_daws(a1)-y0*mut_daws(a0))/c; I[1] = (y1-y0)/(2*cf[2])+d*I[0]; } void explinsid(l0,l1,cf,I,p) /* large b; don't use fwd recursion */ double l0, l1, *cf, *I; int p; { int k, k0, k1, k2; double y0, y1, Z[150]; if (debug) mut_printf("side: %8.5f %8.5f %8.5f limt %8.5f %8.5f p %2d\n",cf[0],cf[1],cf[2],l0,l1,p); k0 = 2; k1 = (int)(fabs(cf[1])+fabs(2*cf[2])); if (k1<2) k1 = 2; if (k1>p+20) k1 = p+20; k2 = p+20; if (k2>50) { mut_printf("onedint: k2 warning\n"); k2 = 50; } if (debug) mut_printf("k0 %2d k1 %2d k2 %2d p %2d\n",k0,k1,k2,p); y0 = mut_exp(cf[0]+l0*(cf[1]+l0*cf[2])); y1 = mut_exp(cf[0]+l1*(cf[1]+l1*cf[2])); initi0i1(I,cf,y0,y1,l0,l1); if (debug) mut_printf("i0 %8.5f i1 %8.5f\n",I[0],I[1]); y1 *= l1; y0 *= l0; /* should be x^(k1)*exp(..) */ if (k0<k1) /* center steps; initially x^k*exp(...) */ for (k=k0; k<k1; k++) { y1 *= l1; y0 *= l0; I[k] = y1-y0; Z[3*k] = k; Z[3*k+1] = cf[1]; Z[3*k+2] = 2*cf[2]; } y1 *= l1; y0 *= l0; /* should be x^(k1)*exp(..) */ if (debug) mut_printf("k1 %2d y0 %8.5f y1 %8.5f\n",k1,y0,y1); for (k=k1; k<k2; k++) { y1 *= l1; y0 *= l0; I[k] = y1-y0; } I[k2] = I[k2+1] = 0.0; for (k=k2-1; k>=k1; k--) I[k] = (I[k]-cf[1]*I[k+1]-2*cf[2]*I[k+2])/(k+1); if (k0<k1) { I[k0] -= k0*I[k0-1]; I[k1-1] -= 2*cf[2]*I[k1]; Z[3*k0] = Z[3*k1-1] = 0; solvetrid(&Z[3*k0],&I[k0],k1-k0); } if (debug) { mut_printf("explinsid:\n"); for (k=0; k<p; k++) mut_printf(" %8.5f\n",I[k]); } } void explinbkr(l0,l1,cf,I,p) /* small b,c; use back recursion */ double l0, l1, *cf, *I; int p; { int k, km; double y0, y1; y0 = mut_exp(cf[0]+l0*(cf[1]+cf[2]*l0)); y1 = mut_exp(cf[0]+l1*(cf[1]+cf[2]*l1)); km = p+10; for (k=0; k<=km; k++) { y1 *= l1; y0 *= l0; I[k] = y1-y0; } I[km+1] = I[km+2] = 0; for (k=km; k>=0; k--) I[k] = (I[k]-cf[1]*I[k+1]-2*cf[2]*I[k+2])/(k+1); } void explinfbk0(l0,l1,cf,I,p) /* fwd and bac recur; b=0; c<0 */ double l0, l1, *cf, *I; int p; { double y0, y1, f1, f2, f, ml2; int k, ks; y0 = mut_exp(cf[0]+l0*l0*cf[2]); y1 = mut_exp(cf[0]+l1*l1*cf[2]); initi0i1(I,cf,y0,y1,l0,l1); ml2 = MAX(l0*l0,l1*l1); ks = 1+(int)(2*fabs(cf[2])*ml2); if (ks<2) ks = 2; if (ks>p-3) ks = p; /* forward recursion for k < ks */ for (k=2; k<ks; k++) { y1 *= l1; y0 *= l0; I[k] = (y1-y0-(k-1)*I[k-2])/(2*cf[2]); } if (ks==p) return; y1 *= l1*l1; y0 *= l0*l0; for (k=ks; k<p; k++) /* set I[k] = x^{k+1}e^(a+cx^2) | {l0,l1} */ { y1 *= l1; y0 *= l0; I[k] = y1-y0; } /* initialize I[p-2] and I[p-1] */ f1 = 1.0/p; f2 = 1.0/(p-1); I[p-1] *= f1; I[p-2] *= f2; k = p; f = 1.0; while (f>1.0e-8) { y1 *= l1; y0 *= l0; if ((k-p)%2==0) /* add to I[p-2] */ { f2 *= -2*cf[2]/(k+1); I[p-2] += (y1-y0)*f2; } else /* add to I[p-1] */ { f1 *= -2*cf[2]/(k+1); I[p-1] += (y1-y0)*f1; f *= 2*fabs(cf[2])*ml2/(k+1); } k++; } /* use back recursion for I[ks..(p-3)] */ for (k=p-3; k>=ks; k--) I[k] = (I[k]-2*cf[2]*I[k+2])/(k+1); } void explinfbk(l0,l1,cf,I,p) /* fwd and bac recur; b not too large */ double l0, l1, *cf, *I; int p; { double y0, y1; int k, ks, km; y0 = mut_exp(cf[0]+l0*(cf[1]+l0*cf[2])); y1 = mut_exp(cf[0]+l1*(cf[1]+l1*cf[2])); initi0i1(I,cf,y0,y1,l0,l1); ks = (int)(3*fabs(cf[2])); if (ks<3) ks = 3; if (ks>0.75*p) ks = p; /* stretch the forward recurs as far as poss. */ /* forward recursion for k < ks */ for (k=2; k<ks; k++) { y1 *= l1; y0 *= l0; I[k] = (y1-y0-cf[1]*I[k-1]-(k-1)*I[k-2])/(2*cf[2]); } if (ks==p) return; km = p+15; y1 *= l1*l1; y0 *= l0*l0; for (k=ks; k<=km; k++) { y1 *= l1; y0 *= l0; I[k] = y1-y0; } I[km+1] = I[km+2] = 0.0; for (k=km; k>=ks; k--) I[k] = (I[k]-cf[1]*I[k+1]-2*cf[2]*I[k+2])/(k+1); } void recent(I,resp,wt,p,s,x) double *I, *resp, *wt, x; int p, s; { int i, j; /* first, use W taylor series I -> resp */ for (i=0; i<=p; i++) { resp[i] = 0.0; for (j=0; j<s; j++) resp[i] += wt[j]*I[i+j]; } /* now, recenter x -> 0 */ if (x==0) return; for (j=0; j<=p; j++) for (i=p; i>j; i--) resp[i] += x*resp[i-1]; } void recurint(l0,l2,cf,resp,p,ker) double l0, l2, *cf, *resp; int p, ker; { int i, s; double l1, d0, d1, d2, dl, z0, z1, z2, wt[20], ncf[3], I[50], r1[5], r2[5]; if (debug) mut_printf("\nrecurint: %8.5f %8.5f %8.5f %8.5f %8.5f\n",cf[0],cf[1],cf[2],l0,l2); if (cf[2]==0) /* go straight to explint1 */ { s = wtaylor(wt,0.0,ker); if (debug) mut_printf("case 1\n"); explint1(l0,l2,cf,I,p+s); recent(I,resp,wt,p,s,0.0); return; } dl = l2-l0; d0 = cf[1]+2*l0*cf[2]; d2 = cf[1]+2*l2*cf[2]; z0 = cf[0]+l0*(cf[1]+l0*cf[2]); z2 = cf[0]+l2*(cf[1]+l2*cf[2]); if ((fabs(cf[1]*dl)<1) && (fabs(cf[2]*dl*dl)<1)) { ncf[0] = z0; ncf[1] = d0; ncf[2] = cf[2]; if (debug) mut_printf("case 2\n"); s = wtaylor(wt,l0,ker); explinbkr(0.0,dl,ncf,I,p+s); recent(I,resp,wt,p,s,l0); return; } if (fabs(cf[2]*dl*dl)<0.001) /* small c, use explint1+tay.ser */ { ncf[0] = z0; ncf[1] = d0; ncf[2] = cf[2]; if (debug) mut_printf("case small c\n"); s = wtaylor(wt,l0,ker); explintyl(0.0,l2-l0,ncf,I,p+s); recent(I,resp,wt,p,s,l0); return; } if (d0*d2<=0) /* max/min in [l0,l2] */ { l1 = -cf[1]/(2*cf[2]); z1 = cf[0]+l1*(cf[1]+l1*cf[2]); d1 = 0.0; if (cf[2]<0) /* peak, integrate around l1 */ { s = wtaylor(wt,l1,ker); ncf[0] = z1; ncf[1] = 0.0; ncf[2] = cf[2]; if (debug) mut_printf("case peak p %2d s %2d\n",p,s); explinfbk0(l0-l1,l2-l1,ncf,I,p+s); recent(I,resp,wt,p,s,l1); return; } } if ((d0-2*cf[2]*dl)*(d2+2*cf[2]*dl)<0) /* max/min is close to [l0,l2] */ { l1 = -cf[1]/(2*cf[2]); z1 = cf[0]+l1*(cf[1]+l1*cf[2]); if (l1<l0) { l1 = l0; z1 = z0; } if (l1>l2) { l1 = l2; z1 = z2; } if ((z1>=z0) & (z1>=z2)) /* peak; integrate around l1 */ { s = wtaylor(wt,l1,ker); if (debug) mut_printf("case 4\n"); d1 = cf[1]+2*l1*cf[2]; ncf[0] = z1; ncf[1] = d1; ncf[2] = cf[2]; explinfbk(l0-l1,l2-l1,ncf,I,p+s); recent(I,resp,wt,p,s,l1); return; } /* trough; integrate [l0,l1] and [l1,l2] */ for (i=0; i<=p; i++) r1[i] = r2[i] = 0.0; if (l0<l1) { s = wtaylor(wt,l0,ker); if (debug) mut_printf("case 5\n"); ncf[0] = z0; ncf[1] = d0; ncf[2] = cf[2]; explinfbk(0.0,l1-l0,ncf,I,p+s); recent(I,r1,wt,p,s,l0); } if (l1<l2) { s = wtaylor(wt,l2,ker); if (debug) mut_printf("case 6\n"); ncf[0] = z2; ncf[1] = d2; ncf[2] = cf[2]; explinfbk(l1-l2,0.0,ncf,I,p+s); recent(I,r2,wt,p,s,l2); } for (i=0; i<=p; i++) resp[i] = r1[i]+r2[i]; return; } /* Now, quadratic is monotone on [l0,l2]; big b; moderate c */ if (z2>z0+3) /* steep increase, expand around l2 */ { s = wtaylor(wt,l2,ker); if (debug) mut_printf("case 7\n"); ncf[0] = z2; ncf[1] = d2; ncf[2] = cf[2]; explinsid(l0-l2,0.0,ncf,I,p+s); recent(I,resp,wt,p,s,l2); if (debug) mut_printf("7 resp: %8.5f %8.5f %8.5f %8.5f\n",resp[0],resp[1],resp[2],resp[3]); return; } /* bias towards expansion around l0, because it's often 0 */ if (debug) mut_printf("case 8\n"); s = wtaylor(wt,l0,ker); ncf[0] = z0; ncf[1] = d0; ncf[2] = cf[2]; explinsid(0.0,l2-l0,ncf,I,p+s); recent(I,resp,wt,p,s,l0); return; } int onedexpl(cf,deg,resp) double *cf, *resp; int deg; { int i; double f0, fr, fl; if (deg>=2) LERR(("onedexpl only valid for deg=0,1")); if (fabs(cf[1])>=EFACT) return(LF_BADP); f0 = exp(cf[0]); fl = fr = 1.0; for (i=0; i<=2*deg; i++) { f0 *= i+1; fl /=-(EFACT+cf[1]); fr /= EFACT-cf[1]; resp[i] = f0*(fr-fl); } return(LF_OK); } int onedgaus(cf,deg,resp) double *cf, *resp; int deg; { int i; double f0, mu, s2; if (deg==3) { LERR(("onedgaus only valid for deg=0,1,2")); return(LF_ERR); } if (2*cf[2]>=GFACT*GFACT) return(LF_BADP); s2 = 1/(GFACT*GFACT-2*cf[2]); mu = cf[1]*s2; resp[0] = 1.0; if (deg>=1) { resp[1] = mu; resp[2] = s2+mu*mu; if (deg==2) { resp[3] = mu*(3*s2+mu*mu); resp[4] = 3*s2*s2 + mu*mu*(6*s2+mu*mu); } } f0 = S2PI * exp(cf[0]+mu*mu/(2*s2))*sqrt(s2); for (i=0; i<=2*deg; i++) resp[i] *= f0; return(LF_OK); } int onedint(sp,cf,l0,l1,resp) /* int W(u)u^j exp(..), j=0..2*deg */ smpar *sp; double *cf, l0, l1, *resp; { double u, uj, y, ncf[4], rr[5]; int i, j; if (debug) mut_printf("onedint: %f %f %f %f %f\n",cf[0],cf[1],cf[2],l0,l1); if (deg(sp)<=2) { for (i=0; i<3; i++) ncf[i] = (i>deg(sp)) ? 0.0 : cf[i]; ncf[2] /= 2; if (ker(sp)==WEXPL) return(onedexpl(ncf,deg(sp),resp)); if (ker(sp)==WGAUS) return(onedgaus(ncf,deg(sp),resp)); if (l1>0) recurint(MAX(l0,0.0),l1,ncf,resp,2*deg(sp),ker(sp)); else for (i=0; i<=2*deg(sp); i++) resp[i] = 0; if (l0<0) { ncf[1] = -ncf[1]; l0 = -l0; l1 = -l1; recurint(MAX(l1,0.0),l0,ncf,rr,2*deg(sp),ker(sp)); } else for (i=0; i<=2*deg(sp); i++) rr[i] = 0.0; for (i=0; i<=2*deg(sp); i++) resp[i] += (i%2==0) ? rr[i] : -rr[i]; return(LF_OK); } /* For degree >= 3, we use Simpson's rule. */ for (j=0; j<=2*deg(sp); j++) resp[j] = 0.0; for (i=0; i<=de_mint; i++) { u = l0+(l1-l0)*i/de_mint; y = cf[0]; uj = 1; for (j=1; j<=deg(sp); j++) { uj *= u; y += cf[j]*uj/fact[j]; } y = (4-2*(i%2==0)-(i==0)-(i==de_mint)) * W(fabs(u),ker(sp))*exp(MIN(y,300.0)); for (j=0; j<=2*deg(sp); j++) { resp[j] += y; y *= u; } } for (j=0; j<=2*deg(sp); j++) resp[j] = resp[j]*(l1-l0)/(3*de_mint); return(LF_OK); } /* * Copyright 1996-2006 Catherine Loader. */ #include "locf.h" extern int lf_status; static double u[MXDIM], ilim[2*MXDIM], *ff, hh, *cff; static lfdata *den_lfd; static design *den_des; static smpar *den_sp; int fact[] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800}; int de_mint = 20; int de_itype = IDEFA; int de_renorm= 0; int multint(), prodint(), gausint(), mlinint(); #define NITYPE 7 static char *itype[NITYPE] = { "default", "multi", "product", "mlinear", "hazard", "sphere", "monte" }; static int ivals[NITYPE] = { IDEFA, IMULT, IPROD, IMLIN, IHAZD, ISPHR, IMONT }; int deitype(char *z) { return(pmatch(z, itype, ivals, NITYPE, IDEFA)); } void prresp(coef,resp,p) double *coef, *resp; int p; { int i, j; mut_printf("Coefficients:\n"); for (i=0; i<p; i++) mut_printf("%8.5f ",coef[i]); mut_printf("\n"); mut_printf("Response matrix:\n"); for (i=0; i<p; i++) { for (j=0; j<p; j++) mut_printf("%9.6f, ",resp[i+j*p]); mut_printf("\n"); } } int mif(u,d,resp,M) double *u, *resp, *M; int d; { double wt; int i, j, p; p = den_des->p; wt = weight(den_lfd, den_sp, u, NULL, hh, 0, 0.0); if (wt==0) { setzero(resp,p*p); return(p*p); } fitfun(den_lfd, den_sp, u,NULL,ff,NULL); if (link(den_sp)==LLOG) wt *= mut_exp(innerprod(ff,cff,p)); for (i=0; i<p; i++) for (j=0; j<p; j++) resp[i*p+j] = wt*ff[i]*ff[j]; return(p*p); } int multint(t,resp1,resp2,cf,h) double *t, *resp1, *resp2, *cf, h; { int d, i, mg[MXDIM]; if (ker(den_sp)==WGAUS) return(gausint(t,resp1,resp2,cf,h,den_lfd->sca)); d = den_lfd->d; for (i=0; i<d; i++) mg[i] = de_mint; hh = h; cff= cf; simpsonm(mif,ilim,&ilim[d],d,resp1,mg,resp2); return(LF_OK); } int mlinint(t,resp1,resp2,cf,h) double *t, *resp1, *resp2, *cf, h; { double hd, nb, wt, wu, g[4], w0, w1, v, *sca; int d, p, i, j, jmax, k, l, z, jj[2]; d = den_lfd->d; p = den_des->p; sca = den_lfd->sca; hd = 1; for (i=0; i<d; i++) hd *= h*sca[i]; if (link(den_sp)==LIDENT) { setzero(resp1,p*p); resp1[0] = wint(d,NULL,0,ker(den_sp))*hd; if (deg(den_sp)==0) return(LF_OK); jj[0] = 2; w0 = wint(d,jj,1,ker(den_sp))*hd*h*h; for (i=0; i<d; i++) resp1[(i+1)*p+i+1] = w0*sca[i]*sca[i]; if (deg(den_sp)==1) return(LF_OK); for (i=0; i<d; i++) { j = p-(d-i)*(d-i+1)/2; resp1[j] = resp1[p*j] = w0*sca[i]*sca[i]/2; } if (d>1) { jj[1] = 2; w0 = wint(d,jj,2,ker(den_sp)) * hd*h*h*h*h; } jj[0] = 4; w1 = wint(d,jj,1,ker(den_sp)) * hd*h*h*h*h/4; z = d+1; for (i=0; i<d; i++) { k = p-(d-i)*(d-i+1)/2; for (j=i; j<d; j++) { l = p-(d-j)*(d-j+1)/2; if (i==j) resp1[z*p+z] = w1*SQR(sca[i])*SQR(sca[i]); else { resp1[z*p+z] = w0*SQR(sca[i])*SQR(sca[j]); resp1[k*p+l] = resp1[k+p*l] = w0/4*SQR(sca[i])*SQR(sca[j]); } z++; } } return(LF_OK); } switch(deg(den_sp)) { case 0: resp1[0] = mut_exp(cf[0])*wint(d,NULL,0,ker(den_sp))*hd; return(LF_OK); case 1: nb = 0.0; for (i=1; i<=d; i++) { v = h*cf[i]*sca[i-1]; nb += v*v; } if (ker(den_sp)==WGAUS) { w0 = 1/(GFACT*GFACT); g[0] = mut_exp(cf[0]+w0*nb/2+d*log(S2PI/2.5)); g[1] = g[3] = g[0]*w0; g[2] = g[0]*w0*w0; } else { wt = wu = mut_exp(cf[0]); w0 = wint(d,NULL,0,ker(den_sp)); g[0] = wt*w0; g[1] = g[2] = g[3] = 0.0; j = 0; jmax = (d+2)*de_mint; while ((j<jmax) && (wt*w0/g[0]>1.0e-8)) { j++; jj[0] = 2*j; w0 = wint(d,jj,1,ker(den_sp)); if (d==1) g[3] += wt * w0; else { jj[0] = 2; jj[1] = 2*j-2; w1 = wint(d,jj,2,ker(den_sp)); g[3] += wt*w1; g[2] += wu*(w0-w1); } wt /= (2*j-1.0); g[1] += wt*w0; wt *= nb/(2*j); g[0] += wt*w0; wu /= (2*j-1.0)*(2*j); if (j>1) wu *= nb; } if (j==jmax) WARN(("mlinint: series not converged")); } g[0] *= hd; g[1] *= hd; g[2] *= hd; g[3] *= hd; resp1[0] = g[0]; for (i=1; i<=d; i++) { resp1[i] = resp1[(d+1)*i] = cf[i]*SQR(h*sca[i-1])*g[1]; for (j=1; j<=d; j++) { resp1[(d+1)*i+j] = (i==j) ? g[3]*SQR(h*sca[i-1]) : 0; resp1[(d+1)*i+j] += g[2]*SQR(h*h*sca[i-1]*sca[j-1])*cf[i]*cf[j]; } } return(LF_OK); } LERR(("mlinint: deg=0,1 only")); return(LF_ERR); } void prodintresp(resp,prod_wk,dim,deg,p) double *resp, prod_wk[MXDIM][2*MXDEG+1]; int dim, deg, p; { double prod; int i, j, k, j1, k1; prod = 1.0; for (i=0; i<dim; i++) prod *= prod_wk[i][0]; resp[0] += prod; if (deg==0) return; for (j1=1; j1<=deg; j1++) { for (j=0; j<dim; j++) { prod = 1.0; for (i=0; i<dim; i++) prod *= prod_wk[i][j1*(j==i)]; prod /= fact[j1]; resp[1 + (j1-1)*dim +j] += prod; } } for (k1=1; k1<=deg; k1++) for (j1=k1; j1<=deg; j1++) { for (k=0; k<dim; k++) for (j=0; j<dim; j++) { prod = 1.0; for (i=0; i<dim; i++) prod *= prod_wk[i][k1*(k==i) + j1*(j==i)]; prod /= fact[k1]*fact[j1]; resp[ (1+(k1-1)*dim+k)*p + 1+(j1-1)*dim+j] += prod; } } } int prodint(t,resp,resp2,coef,h) double *t, *resp, *resp2, *coef, h; { int dim, p, i, j, k, st; double cf[MXDEG+1], hj, hs, prod_wk[MXDIM][2*MXDEG+1]; dim = den_lfd->d; p = den_des->p; for (i=0; i<p*p; i++) resp[i] = 0.0; cf[0] = coef[0]; /* compute the one dimensional terms */ for (i=0; i<dim; i++) { hj = 1; hs = h*den_lfd->sca[i]; for (j=0; j<deg(den_sp); j++) { hj *= hs; cf[j+1] = hj*coef[ j*dim+i+1 ]; } st = onedint(den_sp,cf,ilim[i]/hs,ilim[i+dim]/hs,prod_wk[i]); if (st==LF_BADP) return(st); hj = 1; for (j=0; j<=2*deg(den_sp); j++) { hj *= hs; prod_wk[i][j] *= hj; } cf[0] = 0.0; /* so we only include it once, when d>=2 */ } /* transfer to the resp array */ prodintresp(resp,prod_wk,dim,deg(den_sp),p); /* Symmetrize. */ for (k=0; k<p; k++) for (j=k; j<p; j++) resp[j*p+k] = resp[k*p+j]; return(st); } int gausint(t,resp,C,cf,h,sca) double *t, *resp, *C, *cf, h, *sca; { double nb, det, z, *P; int d, p, i, j, k, l, m1, m2, f; d = den_lfd->d; p = den_des->p; m1 = d+1; nb = 0; P = &C[d*d]; resp[0] = 1; for (i=0; i<d; i++) { C[i*d+i] = SQR(GFACT/(h*sca[i]))-cf[m1++]; for (j=i+1; j<d; j++) C[i*d+j] = C[j*d+i] = -cf[m1++]; } eig_dec(C,P,d); det = 1; for (i=1; i<=d; i++) { det *= C[(i-1)*(d+1)]; if (det <= 0) return(LF_BADP); resp[i] = cf[i]; for (j=1; j<=d; j++) resp[j+i*p] = 0; resp[i+i*p] = 1; svdsolve(&resp[i*p+1],u,P,C,P,d,0.0); } svdsolve(&resp[1],u,P,C,P,d,0.0); det = sqrt(det); for (i=1; i<=d; i++) { nb += cf[i]*resp[i]; resp[i*p] = resp[i]; for (j=1; j<=d; j++) resp[i+p*j] += resp[i]*resp[j]; } m1 = d; for (i=1; i<=d; i++) for (j=i; j<=d; j++) { m1++; f = 1+(i==j); resp[m1] = resp[m1*p] = resp[i*p+j]/f; m2 = d; for (k=1; k<=d; k++) { resp[m1+k*p] = resp[k+m1*p] = ( resp[i]*resp[j*p+k] + resp[j]*resp[i*p+k] + resp[k]*resp[i*p+j] - 2*resp[i]*resp[j]*resp[k] )/f; for (l=k; l<=d; l++) { m2++; f = (1+(i==j))*(1+(k==l)); resp[m1+m2*p] = resp[m2+m1*p] = ( resp[i+j*p]*resp[k+l*p] + resp[i+k*p]*resp[j+l*p] + resp[i+l*p]*resp[j+k*p] - 2*resp[i]*resp[j]*resp[k]*resp[l] )/f; } } } z = mut_exp(d*0.918938533+cf[0]+nb/2)/det; multmatscal(resp,z,p*p); return(LF_OK); } int likeden(coef, lk0, f1, A) double *coef, *lk0, *f1, *A; { double lk, r; int i, j, p, rstat; lf_status = LF_OK; p = den_des->p; if ((link(den_sp)==LIDENT) && (coef[0] != 0.0)) return(NR_BREAK); lf_status = (den_des->itype)(den_des->xev,A,den_des->xtwx.Q,coef,den_des->h); if (lf_error) lf_status = LF_ERR; if (lf_status==LF_BADP) { *lk0 = -1.0e300; return(NR_REDUCE); } if (lf_status!=LF_OK) return(NR_BREAK); if (lf_debug>2) prresp(coef,A,p); den_des->xtwx.p = p; rstat = NR_OK; switch(link(den_sp)) { case LLOG: r = den_des->ss[0]/A[0]; coef[0] += log(r); multmatscal(A,r,p*p); A[0] = den_des->ss[0]; lk = -A[0]; if (fabs(coef[0]) > 700) { lf_status = LF_OOB; rstat = NR_REDUCE; } for (i=0; i<p; i++) { lk += coef[i]*den_des->ss[i]; f1[i] = den_des->ss[i]-A[i]; } break; case LIDENT: lk = 0.0; for (i=0; i<p; i++) { f1[i] = den_des->ss[i]; for (j=0; j<p; j++) den_des->res[i] -= A[i*p+j]*coef[j]; } break; } *lk0 = den_des->llk = lk; return(rstat); } int inre(x,bound,d) double *x, *bound; int d; { int i, z; z = 1; for (i=0; i<d; i++) if (bound[i]<bound[i+d]) z &= (x[i]>=bound[i]) & (x[i]<=bound[i+d]); return(z); } int setintlimits(lfd, x, h, ang, lset) lfdata *lfd; int *ang, *lset; double *x, h; { int d, i; d = lfd->d; *ang = *lset = 0; for (i=0; i<d; i++) { if (lfd->sty[i]==STANGL) { ilim[i+d] = ((h<2) ? 2*asin(h/2) : PI)*lfd->sca[i]; ilim[i] = -ilim[i+d]; *ang = 1; } else { ilim[i+d] = h*lfd->sca[i]; ilim[i] = -ilim[i+d]; if (lfd->sty[i]==STLEFT) { ilim[i+d] = 0; *lset = 1; } if (lfd->sty[i]==STRIGH) { ilim[i] = 0; *lset = 1; } if (lfd->xl[i]<lfd->xl[i+d]) /* user limits for this variable */ { if (lfd->xl[i]-x[i]> ilim[i]) { ilim[i] = lfd->xl[i]-x[i]; *lset=1; } if (lfd->xl[i+d]-x[i]< ilim[i+d]) { ilim[i+d] = lfd->xl[i+d]-x[i]; *lset=1; } } } if (ilim[i]==ilim[i+d]) return(LF_DEMP); /* empty integration */ } return(LF_OK); } int selectintmeth(itype,lset,ang) int itype, lset, ang; { if (itype==IDEFA) /* select the default method */ { if (fam(den_sp)==THAZ) { if (ang) return(IDEFA); return( IHAZD ); } if (ubas(den_sp)) return(IMULT); if (ang) return(IMULT); if (iscompact(ker(den_sp))) { if (kt(den_sp)==KPROD) return(IPROD); if (lset) return( (den_lfd->d==1) ? IPROD : IMULT ); if (deg(den_sp)<=1) return(IMLIN); if (den_lfd->d==1) return(IPROD); return(IMULT); } if (ker(den_sp)==WGAUS) { if (lset) WARN(("Integration for Gaussian weights ignores limits")); if ((den_lfd->d==1)|(kt(den_sp)==KPROD)) return(IPROD); if (deg(den_sp)<=1) return(IMLIN); if (deg(den_sp)==2) return(IMULT); } return(IDEFA); } /* user provided an integration method, check it is valid */ if (fam(den_sp)==THAZ) { if (ang) return(INVLD); if (!iscompact(ker(den_sp))) return(INVLD); return( ((kt(den_sp)==KPROD) | (kt(den_sp)==KSPH)) ? IHAZD : INVLD ); } if ((ang) && (itype != IMULT)) return(INVLD); switch(itype) { case IMULT: if (ker(den_sp)==WGAUS) return(deg(den_sp)==2); return( iscompact(ker(den_sp)) ? IMULT : INVLD ); case IPROD: return( ((den_lfd->d==1) | (kt(den_sp)==KPROD)) ? IPROD : INVLD ); case IMLIN: return( ((kt(den_sp)==KSPH) && (!lset) && (deg(den_sp)<=1)) ? IMLIN : INVLD ); } return(INVLD); } extern double lf_tol; int densinit(lfd,des,sp) lfdata *lfd; design *des; smpar *sp; { int p, i, ii, j, nnz, rnz, ang, lset, status; double w, *cf; den_lfd = lfd; den_des = des; den_sp = sp; cf = des->cf; lf_tol = (link(sp)==LLOG) ? 1.0e-6 : 0.0; p = des->p; ff = des->xtwx.wk; cf[0] = NOSLN; for (i=1; i<p; i++) cf[i] = 0.0; if (!inre(des->xev,lfd->xl,lfd->d)) return(LF_XOOR); status = setintlimits(lfd,des->xev,des->h,&ang,&lset); if (status != LF_OK) return(status); switch(selectintmeth(de_itype,lset,ang)) { case IMULT: des->itype = multint; break; case IPROD: des->itype = prodint; break; case IMLIN: des->itype = mlinint; break; case IHAZD: des->itype = hazint; break; case INVLD: LERR(("Invalid integration method %d",de_itype)); break; case IDEFA: LERR(("No integration type available for this model")); break; default: LERR(("densinit: unknown integral type")); } switch(deg(den_sp)) { case 0: rnz = 1; break; case 1: rnz = 1; break; case 2: rnz = lfd->d+1; break; case 3: rnz = lfd->d+2; break; default: LERR(("densinit: invalid degree %d",deg(den_sp))); } if (lf_error) return(LF_ERR); setzero(des->ss,p); nnz = 0; for (i=0; i<des->n; i++) { ii = des->ind[i]; if (!cens(lfd,ii)) { w = wght(des,ii)*prwt(lfd,ii); for (j=0; j<p; j++) des->ss[j] += d_xij(des,ii,j)*w; if (wght(des,ii)>0.00001) nnz++; } } if (fam(den_sp)==THAZ) haz_init(lfd,des,sp,ilim); /* this should really only be done once. Not sure how to enforce that, * esp. when locfit() has been called directly. */ if (fam(den_sp)==TDEN) des->smwt = (lfd->w==NULL) ? lfd->n : vecsum(lfd->w,lfd->n); if (lf_debug>2) { mut_printf(" LHS: "); for (i=0; i<p; i++) mut_printf(" %8.5f",des->ss[i]); mut_printf("\n"); } switch(link(den_sp)) { case LIDENT: cf[0] = 0.0; return(LF_OK); case LLOG: if (nnz<rnz) { cf[0] = -1000; return(LF_DNOP); } cf[0] = 0.0; return(LF_OK); default: LERR(("unknown link in densinit")); return(LF_ERR); } } /* * Copyright 1996-2006 Catherine Loader. */ #include "locf.h" int bino_vallink(link) int link; { return((link==LLOGIT) | (link==LIDENT) | (link==LASIN)); } int bino_fam(y,p,th,link,res,cens,w) double y, p, th, *res, w; int link, cens; { double wp; if (link==LINIT) { if (y<0) y = 0; if (y>w) y = w; res[ZDLL] = y; return(LF_OK); } wp = w*p; if (link==LIDENT) { if ((p<=0) && (y>0)) return(LF_BADP); if ((p>=1) && (y<w)) return(LF_BADP); res[ZLIK] = res[ZDLL] = res[ZDDLL] = 0.0; if (y>0) { res[ZLIK] += y*log(wp/y); res[ZDLL] += y/p; res[ZDDLL]+= y/(p*p); } if (y<w) { res[ZLIK] += (w-y)*log((w-wp)/(w-y)); res[ZDLL] -= (w-y)/(1-p); res[ZDDLL]+= (w-y)/SQR(1-p); } return(LF_OK); } if (link==LLOGIT) { if ((y<0) | (y>w)) /* goon observation; delete it */ { res[ZLIK] = res[ZDLL] = res[ZDDLL] = 0.0; return(LF_OK); } res[ZLIK] = (th<0) ? th*y-w*log(1+exp(th)) : th*(y-w)-w*log(1+exp(-th)); if (y>0) res[ZLIK] -= y*log(y/w); if (y<w) res[ZLIK] -= (w-y)*log(1-y/w); res[ZDLL] = (y-wp); res[ZDDLL]= wp*(1-p); return(LF_OK); } if (link==LASIN) { if ((p<=0) && (y>0)) return(LF_BADP); if ((p>=1) && (y<w)) return(LF_BADP); if ((th<0) | (th>PI/2)) return(LF_BADP); res[ZDLL] = res[ZDDLL] = res[ZLIK] = 0; if (y>0) { res[ZDLL] += 2*y*sqrt((1-p)/p); res[ZLIK] += y*log(wp/y); } if (y<w) { res[ZDLL] -= 2*(w-y)*sqrt(p/(1-p)); res[ZLIK] += (w-y)*log((w-wp)/(w-y)); } res[ZDDLL] = 4*w; return(LF_OK); } LERR(("link %d invalid for binomial family",link)); return(LF_LNK); } int bino_check(sp,des,lfd) smpar *sp; design *des; lfdata *lfd; { int i, ii; double t0, t1; if (fabs(des->cf[0])>700) return(LF_OOB); /* check for separation. * this won't detect separation if there's boundary points with * both 0 and 1 responses. */ t0 = -1e100; t1 = 1e100; for (i=0; i<des->n; i++) { ii = des->ind[i]; if ((resp(lfd,ii)<prwt(lfd,ii)) && (fitv(des,ii) > t0)) t0 = fitv(des,ii); if ((resp(lfd,ii)>0) && (fitv(des,ii) < t1)) t1 = fitv(des,ii); if (t1 <= t0) return(LF_OK); } mut_printf("separated %8.5f %8.5f\n",t0,t1); return(LF_NSLN); } void setfbino(fam) family *fam; { fam->deflink = LLOGIT; fam->canlink = LLOGIT; fam->vallink = bino_vallink; fam->family = bino_fam; fam->pcheck = bino_check; } int rbin_vallink(link) int link; { return(link==LLOGIT); } int rbin_fam(y,p,th,link,res,cens,w) double y, p, th, *res, w; int link, cens; { double s2y; if (link==LINIT) { res[ZDLL] = y; return(LF_OK); } if ((y<0) | (y>w)) /* goon observation; delete it */ { res[ZLIK] = res[ZDLL] = res[ZDDLL] = 0.0; return(LF_OK); } res[ZLIK] = (th<0) ? th*y-w*log(1+exp(th)) : th*(y-w)-w*log(1+exp(-th)); if (y>0) res[ZLIK] -= y*log(y/w); if (y<w) res[ZLIK] -= (w-y)*log(1-y/w); res[ZDLL] = (y-w*p); res[ZDDLL]= w*p*(1-p); if (-res[ZLIK]>HUBERC*HUBERC/2.0) { s2y = sqrt(-2*res[ZLIK]); res[ZLIK] = HUBERC*(HUBERC/2.0-s2y); res[ZDLL] *= HUBERC/s2y; res[ZDDLL] = HUBERC/s2y*(res[ZDDLL]-1/(s2y*s2y)*w*p*(1-p)); } return(LF_OK); } void setfrbino(fam) family *fam; { fam->deflink = LLOGIT; fam->canlink = LLOGIT; fam->vallink = rbin_vallink; fam->family = rbin_fam; fam->pcheck = bino_check; } /* * Copyright 1996-2006 Catherine Loader. */ #include "locf.h" int circ_vallink(link) int link; { return(link==LIDENT); } int circ_fam(y,mean,th,link,res,cens,w) double y, mean, th, *res, w; int link, cens; { if (link==LINIT) { res[ZDLL] = w*sin(y); res[ZLIK] = w*cos(y); return(LF_OK); } res[ZDLL] = w*sin(y-mean); res[ZDDLL]= w*cos(y-mean); res[ZLIK] = res[ZDDLL]-w; return(LF_OK); } extern double lf_tol; int circ_init(lfd,des,sp) lfdata *lfd; design *des; smpar *sp; { int i, ii; double s0, s1; s0 = s1 = 0.0; for (i=0; i<des->n; i++) { ii = des->ind[i]; s0 += wght(des,ii)*prwt(lfd,ii)*sin(resp(lfd,ii)-base(lfd,ii)); s1 += wght(des,ii)*prwt(lfd,ii)*cos(resp(lfd,ii)-base(lfd,ii)); } des->cf[0] = atan2(s0,s1); for (i=1; i<des->p; i++) des->cf[i] = 0.0; lf_tol = 1.0e-6; return(LF_OK); } void setfcirc(fam) family *fam; { fam->deflink = LIDENT; fam->canlink = LIDENT; fam->vallink = circ_vallink; fam->family = circ_fam; fam->initial = circ_init; } /* * Copyright 1996-2006 Catherine Loader. */ #include "locf.h" int dens_vallink(link) int link; { return((link==LIDENT) | (link==LLOG)); } int dens_fam(y,mean,th,link,res,cens,w) double y, mean, th, *res, w; int link, cens; { if (cens) res[ZLIK] = res[ZDLL] = res[ZDDLL] = 0.0; else { res[ZLIK] = w*th; res[ZDLL] = res[ZDDLL] = w; } return(LF_OK); } void setfdensity(fam) family *fam; { fam->deflink = LLOG; fam->canlink = LLOG; fam->vallink = dens_vallink; fam->family = dens_fam; fam->initial = densinit; fam->like = likeden; } /* * Copyright 1996-2006 Catherine Loader. */ #include "locf.h" int gamma_vallink(link) int link; { return((link==LIDENT) | (link==LLOG) | (link==LINVER)); } int gamma_fam(y,mean,th,link,res,cens,w) double y, mean, th, *res, w; int link, cens; { double lb, pt, dg; if (link==LINIT) { res[ZDLL] = MAX(y,0.0); return(LF_OK); } res[ZLIK] = res[ZDLL] = res[ZDDLL] = 0.0; if (w==0.0) return(LF_OK); if ((mean<=0) & (y>0)) return(LF_BADP); if (link==LIDENT) lb = 1/th; if (link==LINVER) lb = th; if (link==LLOG) lb = mut_exp(-th); if (cens) { if (y<=0) return(LF_OK); pt = 1-igamma(lb*y,w); dg = dgamma(lb*y,w,1.0,0); res[ZLIK] = log(pt); res[ZDLL] = -y*dg/pt; /* * res[ZDLL] = -y*dg/pt * dlb/dth. * res[ZDDLL] = y*dg/pt * (d2lb/dth2 + ((w-1)/lb-y)*(dlb/dth)^2) * + res[ZDLL]^2. */ if (link==LLOG) /* lambda = exp(-theta) */ { res[ZDLL] *= -lb; res[ZDDLL] = dg*y*lb*(w-lb*y)/pt + SQR(res[ZDLL]); return(LF_OK); } if (link==LINVER) /* lambda = theta */ { res[ZDLL] *= 1.0; res[ZDDLL] = dg*y*((w-1)*mean-y)/pt + SQR(res[ZDLL]); return(LF_OK); } if (link==LIDENT) /* lambda = 1/theta */ { res[ZDLL] *= -lb*lb; res[ZDDLL] = dg*y*lb*lb*lb*(1+w-lb*y)/pt + SQR(res[ZDLL]); return(LF_OK); } } else { if (y<0) WARN(("Negative Gamma observation")); if (link==LLOG) { res[ZLIK] = -lb*y+w*(1-th); if (y>0) res[ZLIK] += w*log(y/w); res[ZDLL] = lb*y-w; res[ZDDLL]= lb*y; return(LF_OK); } if (link==LINVER) { res[ZLIK] = -lb*y+w-w*log(mean); if (y>0) res[ZLIK] += w*log(y/w); res[ZDLL] = -y+w*mean; res[ZDDLL]= w*mean*mean; return(LF_OK); } if (link==LIDENT) { res[ZLIK] = -lb*y+w-w*log(mean); if (y>0) res[ZLIK] += w*log(y/w); res[ZDLL] = lb*lb*(y-w*mean); res[ZDDLL]= lb*lb*lb*(2*y-w*mean); return(LF_OK); } } LERR(("link %d invalid for Gamma family",link)); return(LF_LNK); } void setfgamma(fam) family *fam; { fam->deflink = LLOG; fam->canlink = LINVER; fam->vallink = gamma_vallink; fam->family = gamma_fam; } /* * Copyright 1996-2006 Catherine Loader. */ #include "locf.h" int gaus_vallink(link) int link; { return((link==LIDENT) | (link==LLOG) | (link==LLOGIT)); } int gaus_fam(y,mean,th,link,res,cens,w) double y, mean, th, *res, w; int link, cens; { double z, pz, dp; if (link==LINIT) { res[ZDLL] = w*y; return(LF_OK); } z = y-mean; if (cens) { if (link!=LIDENT) { LERR(("Link invalid for censored Gaussian family")); return(LF_LNK); } pz = mut_pnorm(-z); dp = ((z>6) ? ptail(-z) : exp(-z*z/2)/pz)/2.5066283; res[ZLIK] = w*log(pz); res[ZDLL] = w*dp; res[ZDDLL]= w*dp*(dp-z); return(LF_OK); } res[ZLIK] = -w*z*z/2; switch(link) { case LIDENT: res[ZDLL] = w*z; res[ZDDLL]= w; break; case LLOG: res[ZDLL] = w*z*mean; res[ZDDLL]= w*mean*mean; break; case LLOGIT: res[ZDLL] = w*z*mean*(1-mean); res[ZDDLL]= w*mean*mean*(1-mean)*(1-mean); break; default: LERR(("Invalid link for Gaussian family")); return(LF_LNK); } return(LF_OK); } int gaus_check(sp,des,lfd) smpar *sp; design *des; lfdata *lfd; { int i, ii; if (fami(sp)->robust) return(LF_OK); if (link(sp)==LIDENT) { for (i=0; i<des->n; i++) { ii = des->ind[i]; if (cens(lfd,ii)) return(LF_OK); } return(LF_DONE); } return(LF_OK); } void setfgauss(fam) family *fam; { fam->deflink = LIDENT; fam->canlink = LIDENT; fam->vallink = gaus_vallink; fam->family = gaus_fam; fam->pcheck = gaus_check; } /* * Copyright 1996-2006 Catherine Loader. */ #include "locf.h" int geom_vallink(link) int link; { return((link==LIDENT) | (link==LLOG)); } int geom_fam(y,mean,th,link,res,cens,w) double y, mean, th, *res, w; int link, cens; { double p, pt, dp, p1; if (link==LINIT) { res[ZDLL] = MAX(y,0.0); return(LF_OK); } p = 1/(1+mean); if (cens) /* censored observation */ { if (y<=0) { res[ZLIK] = res[ZDLL] = res[ZDDLL] = 0; return(LF_OK); } p1 = (link==LIDENT) ? -p*p : -p*(1-p); pt = 1-ibeta(p,w,y); dp = dbeta(p,w,y,0)/pt; res[ZLIK] = log(pt); res[ZDLL] = -dp*p1; res[ZDDLL] = dp*dp*p1*p1; if (link==LIDENT) res[ZDDLL] += dp*p*p*p*(1+w*(1-p)-p*y)/(1-p); else res[ZDDLL] += dp*p*(1-p)*(w*(1-p)-p*y); return(LF_OK); } else { res[ZLIK] = (y+w)*log((y/w+1)/(mean+1)); if (y>0) res[ZLIK] += y*log(w*mean/y); if (link==LLOG) { res[ZDLL] = (y-w*mean)*p; res[ZDDLL]= (y+w)*p*(1-p); return(LF_OK); } if (link==LIDENT) { res[ZDLL] = (y-w*mean)/(mean*(1+mean)); res[ZDDLL]= w/(mean*(1+mean)); return(LF_OK); } } LERR(("link %d invalid for geometric family",link)); return(LF_LNK); } void setfgeom(fam) family *fam; { fam->deflink = LLOG; fam->canlink = LIDENT; /* this isn't correct. I haven't prog. canon */ fam->vallink = geom_vallink; fam->family = geom_fam; } /* * Copyright 1996-2006 Catherine Loader. */ #include "locf.h" #define HUBERC 2.0 double links_rs; int inllmix=0; /* * lffamily("name") converts family names into a numeric value. * typical usage is fam(&lf->sp) = lffamily("gaussian"); * Note that family can be preceded by q and/or r for quasi, robust. * * link(&lf->sp) = lflink("log") does the same for the link function. */ #define NFAMILY 18 static char *famil[NFAMILY] = { "density", "ate", "hazard", "gaussian", "binomial", "poisson", "gamma", "geometric", "circular", "obust", "huber", "weibull", "cauchy","probab", "logistic", "nbinomial", "vonmises", "quant" }; static int fvals[NFAMILY] = { TDEN, TRAT, THAZ, TGAUS, TLOGT, TPOIS, TGAMM, TGEOM, TCIRC, TROBT, TROBT, TWEIB, TCAUC, TPROB, TLOGT, TGEOM, TCIRC, TQUANT }; int lffamily(z) char *z; { int quasi, robu, f; quasi = robu = 0; while ((z[0]=='q') | (z[0]=='r')) { quasi |= (z[0]=='q'); robu |= (z[0]=='r'); z++; } z[0] = tolower(z[0]); f = pmatch(z,famil,fvals,NFAMILY,-1); if ((z[0]=='o') | (z[0]=='a')) robu = 0; if (f==-1) { WARN(("unknown family %s",z)); f = TGAUS; } if (quasi) f += 64; if (robu) f += 128; return(f); } #define NLINKS 8 static char *ltype[NLINKS] = { "default", "canonical", "identity", "log", "logi", "inverse", "sqrt", "arcsin" }; static int lvals[NLINKS] = { LDEFAU, LCANON, LIDENT, LLOG, LLOGIT, LINVER, LSQRT, LASIN }; int lflink(char *z) { int f; if (z==NULL) return(LDEFAU); z[0] = tolower(z[0]); f = pmatch(z, ltype, lvals, NLINKS, -1); if (f==-1) { WARN(("unknown link %s",z)); f = LDEFAU; } return(f); } int defaultlink(link,fam) int link; family *fam; { if (link==LDEFAU) return(fam->deflink); if (link==LCANON) return(fam->canlink); return(link); } /* void robustify(res,rs) double *res, rs; { double sc, z; sc = rs*HUBERC; if (res[ZLIK] > -sc*sc/2) return; z = sqrt(-2*res[ZLIK]); res[ZDDLL]= -sc*res[ZDLL]*res[ZDLL]/(z*z*z)+sc*res[ZDDLL]/z; res[ZDLL]*= sc/z; res[ZLIK] = sc*sc/2-sc*z; } */ void robustify(res,rs) double *res, rs; { double sc, z; sc = rs*HUBERC; if (res[ZLIK] > -sc*sc/2) { res[ZLIK] /= sc*sc; res[ZDLL] /= sc*sc; res[ZDDLL] /= sc*sc; return; } z = sqrt(-2*res[ZLIK]); res[ZDDLL]= (-sc*res[ZDLL]*res[ZDLL]/(z*z*z)+sc*res[ZDDLL]/z)/(sc*sc); res[ZDLL]*= 1.0/(z*sc); res[ZLIK] = 0.5-z/sc; } double lf_link(y,lin) double y; int lin; { switch(lin) { case LIDENT: return(y); case LLOG: return(log(y)); case LLOGIT: return(logit(y)); case LINVER: return(1/y); case LSQRT: return(sqrt(fabs(y))); case LASIN: return(asin(sqrt(y))); } LERR(("link: unknown link %d",lin)); return(0.0); } double invlink(th,lin) double th; int lin; { switch(lin) { case LIDENT: return(th); case LLOG: return(mut_exp(th)); case LLOGIT: return(expit(th)); case LINVER: return(1/th); case LSQRT: return(th*fabs(th)); case LASIN: return(sin(th)*sin(th)); case LINIT: return(0.0); } LERR(("invlink: unknown link %d",lin)); return(0.0); } /* the link and various related functions */ int links(th,y,fam,link,res,c,w,rs) double th, y, *res, w, rs; int link, c; family *fam; { double mean; int st; mean = res[ZMEAN] = invlink(th,link); if (lf_error) return(LF_LNK); links_rs = rs; /* mut_printf("links: rs %8.5f\n",rs); */ st = fam->family(y,mean,th,link,res,c,w); if (st!=LF_OK) return(st); if (link==LINIT) return(st); if (isrobust(fam)) robustify(res,rs); return(st); } /* stdlinks is a version of links when family, link, response e.t.c all come from the standard places. */ int stdlinks(res,lfd,sp,i,th,rs) lfdata *lfd; smpar *sp; double th, rs, *res; int i; { return(links(th,resp(lfd,i),fami(sp),link(sp),res,cens(lfd,i),prwt(lfd,i),rs)); } /* * functions used in variance, skewness, kurtosis calculations * in scb corrections. */ double b2(th,tg,w) double th, w; int tg; { double y; switch(tg&63) { case TGAUS: return(w); case TPOIS: return(w*mut_exp(th)); case TLOGT: y = expit(th); return(w*y*(1-y)); } LERR(("b2: invalid family %d",tg)); return(0.0); } double b3(th,tg,w) double th, w; int tg; { double y; switch(tg&63) { case TGAUS: return(0.0); case TPOIS: return(w*mut_exp(th)); case TLOGT: y = expit(th); return(w*y*(1-y)*(1-2*y)); } LERR(("b3: invalid family %d",tg)); return(0.0); } double b4(th,tg,w) double th, w; int tg; { double y; switch(tg&63) { case TGAUS: return(0.0); case TPOIS: return(w*mut_exp(th)); case TLOGT: y = expit(th); y = y*(1-y); return(w*y*(1-6*y)); } LERR(("b4: invalid family %d",tg)); return(0.0); } int def_check(sp,des,lfd) smpar *sp; design *des; lfdata *lfd; { switch(link(sp)) { case LLOG: if (des->cf[0]>700) return(LF_OOB); break; } return(LF_OK); } extern void setfdensity(), setfgauss(), setfbino(), setfpoisson(); extern void setfgamma(), setfgeom(), setfcirc(), setfweibull(); extern void setfrbino(), setfrobust(), setfcauchy(), setfquant(); void setfamily(sp) smpar *sp; { int tg, lnk; family *f; tg = fam(sp); f = fami(sp); f->quasi = tg&64; f->robust = tg&128; f->initial = reginit; f->like = likereg; f->pcheck = def_check; switch(tg&63) { case TDEN: case THAZ: case TRAT: setfdensity(f); break; case TGAUS: setfgauss(f); break; case TLOGT: setfbino(f); break; case TRBIN: setfrbino(f); break; case TPROB: case TPOIS: setfpoisson(f); break; case TGAMM: setfgamma(f); break; case TGEOM: setfgeom(f); break; case TWEIB: setfweibull(f); case TCIRC: setfcirc(f); break; case TROBT: setfrobust(f); break; case TCAUC: setfcauchy(f); break; case TQUANT: setfquant(f); break; default: LERR(("setfamily: unknown family %d",tg&63)); return; } lnk = defaultlink(link(sp),f); if (!f->vallink(lnk)) { WARN(("setfamily: invalid link %d - revert to default",link(sp))); link(sp) = f->deflink; } else link(sp) = lnk; } /* * Copyright 1996-2006 Catherine Loader. */ #include "locf.h" int pois_vallink(link) int link; { return((link==LLOG) | (link==LIDENT) | (link==LSQRT)); } int pois_fam(y,mean,th,link,res,cens,w) double y, mean, th, *res, w; int link, cens; { double wmu, pt, dp; if (link==LINIT) { res[ZDLL] = MAX(y,0.0); return(LF_OK); } wmu = w*mean; if (inllmix) y = w*y; if (cens) { if (y<=0) { res[ZLIK] = res[ZDLL] = res[ZDDLL] = 0.0; return(LF_OK); } pt = igamma(wmu,y); dp = dgamma(wmu,y,1.0,0)/pt; res[ZLIK] = log(pt); /* * res[ZDLL] = dp * w*dmu/dth * res[ZDDLL]= -dp*(w*d2mu/dth2 + (y-1)/mu*(dmu/dth)^2) + res[ZDLL]^2 */ if (link==LLOG) { res[ZDLL] = dp*wmu; res[ZDDLL]= -dp*wmu*(y-wmu) + SQR(res[ZDLL]); return(LF_OK); } if (link==LIDENT) { res[ZDLL] = dp*w; res[ZDDLL]= -dp*(y-1-wmu)*w/mean + SQR(res[ZDLL]); return(LF_OK); } if (link==LSQRT) { res[ZDLL] = dp*2*w*th; res[ZDDLL]= -dp*w*(4*y-2-4*wmu) + SQR(res[ZDLL]); return(LF_OK); } } if (link==LLOG) { if (y<0) /* goon observation - delete it */ { res[ZLIK] = res[ZDLL] = res[ZDDLL] = 0; return(LF_OK); } res[ZLIK] = res[ZDLL] = y-wmu; if (y>0) res[ZLIK] += y*(th-log(y/w)); res[ZDDLL] = wmu; return(LF_OK); } if (link==LIDENT) { if ((mean<=0) && (y>0)) return(LF_BADP); res[ZLIK] = y-wmu; res[ZDLL] = -w; res[ZDDLL] = 0; if (y>0) { res[ZLIK] += y*log(wmu/y); res[ZDLL] += y/mean; res[ZDDLL]= y/(mean*mean); } return(LF_OK); } if (link==LSQRT) { if ((mean<=0) && (y>0)) return(LF_BADP); res[ZLIK] = y-wmu; res[ZDLL] = -2*w*th; res[ZDDLL]= 2*w; if (y>0) { res[ZLIK] += y*log(wmu/y); res[ZDLL] += 2*y/th; res[ZDDLL]+= 2*y/mean; } return(LF_OK); } LERR(("link %d invalid for Poisson family",link)); return(LF_LNK); } void setfpoisson(fam) family *fam; { fam->deflink = LLOG; fam->canlink = LLOG; fam->vallink = pois_vallink; fam->family = pois_fam; } /* * Copyright 1996-2006 Catherine Loader. */ #include "locf.h" #define QTOL 1.0e-10 extern int lf_status; static double q0; int quant_vallink(int link) { return(1); } int quant_fam(y,mean,th,link,res,cens,w) double y, mean, th, *res, w; int link, cens; { double z, p; if (link==LINIT) { res[ZDLL] = w*y; return(LF_OK); } p = 0.5; /* should be pen(sp) */ z = y-mean; res[ZLIK] = (z<0) ? (w*z/p) : (-w*z/(1-p)); res[ZDLL] = (z<0) ? -w/p : w/(1-p); res[ZDDLL]= w/(p*(1-p)); return(LF_OK); } int quant_check(sp,des,lfd) smpar *sp; design *des; lfdata *lfd; { return(LF_DONE); } void setfquant(fam) family *fam; { fam->deflink = LIDENT; fam->canlink = LIDENT; fam->vallink = quant_vallink; fam->family = quant_fam; fam->pcheck = quant_check; } /* * cycling rule for choosing among ties. */ int tiecycle(ind,i0,i1,oi) int *ind, i0, i1, oi; { int i, ii, im; im = ind[i0]; for (i=i0+1; i<=i1; i++) { ii = ind[i]; if (im<=oi) { if ((ii<im) | (ii>oi)) im = ii; } else { if ((ii<im) & (ii>oi)) im = ii; } } return(im); } /* * move coefficient vector cf, as far as possible, in direction dc. */ int movecoef(lfd,des,p,cf,dc,oi) lfdata *lfd; design *des; double p, *cf, *dc; int oi; { int i, ii, im, i0, i1, j; double *lb, *el, e, sp, sn, sw, sum1, sum2, tol1; lb = des->th; el = des->res; sum1 = sum2 = 0.0; sp = sn = sw = 0.0; for (i=0; i<des->n; i++) { ii = des->ind[i]; lb[ii] = innerprod(dc,d_xi(des,ii),des->p); e = resp(lfd,ii) - innerprod(cf,d_xi(des,ii),des->p); el[ii] = (fabs(lb[ii])<QTOL) ? 1e100 : e/lb[ii]; if (lb[ii]>0) sp += prwt(lfd,ii)*wght(des,ii)*lb[ii]; else sn -= prwt(lfd,ii)*wght(des,ii)*lb[ii]; sw += prwt(lfd,ii)*wght(des,ii); } printf("sp %8.5f sn %8.5f\n",sn,sp); /* if sn, sp are both zero, should return an LF_PF. * but within numerical tolerance? what does it mean? */ if (sn+sp <= QTOL*q0) { lf_status = LF_PF; return(0); } sum1 = sp/(1-p) + sn/p; tol1 = QTOL*(sp+sn); mut_order(el,des->ind,0,des->n-1); for (i=0; i<des->n; i++) { ii = des->ind[i]; sum2 += prwt(lfd,ii)*wght(des,ii)*((lb[ii]>0) ? lb[ii]/p : -lb[ii]/(1-p) ); sum1 -= prwt(lfd,ii)*wght(des,ii)*((lb[ii]>0) ? lb[ii]/(1-p) : -lb[ii]/p ); if (sum1<=sum2+tol1) { /* determine the range of ties [i0,i1] * el[ind[i0..i1]] = el[ind[i]]. * if sum1==sum2, el[ind[i+1]]..el[ind[i1]]] = el[ind[i1]], else i1 = i. */ i0 = i1 = i; while ((i0>0) && (el[des->ind[i0-1]]==el[ii])) i0--; while ((i1<des->n-1) && (el[des->ind[i1+1]]==el[ii])) i1++; if (sum1>=sum2-tol1) while ((i1<des->n-1) && (el[des->ind[i1+1]]==el[des->ind[i+1]])) i1++; if (i0<i1) ii = tiecycle(des->ind,i0,i1,oi); for (j=0; j<des->p; j++) cf[j] += el[ii]*dc[j]; return(ii); } } mut_printf("Big finddlt problem.\n"); ii = des->ind[des->n-1]; for (j=0; j<des->p; j++) cf[j] += el[ii]*dc[j]; return(ii); } /* * special version of movecoef for min/max. */ int movemin(lfd,des,f,cf,dc,oi) design *des; lfdata *lfd; double *cf, *dc, f; int oi; { int i, ii, im, p, s, ssum; double *lb, sum, lb0, lb1, z0, z1; lb = des->th; s = (f<=0.0) ? 1 : -1; /* first, determine whether move should be in positive or negative direction */ p = des->p; sum = 0; for (i=0; i<des->n; i++) { ii = des->ind[i]; lb[ii] = innerprod(dc,d_xi(des,ii),des->p); sum += prwt(lfd,ii)*wght(des,ii)*lb[ii]; } if (fabs(sum) <= QTOL*q0) { lf_status = LF_PF; return(0); } ssum = (sum<=0.0) ? -1 : 1; if (ssum != s) for (i=0; i<p; i++) dc[i] = -dc[i]; /* now, move positively. How far can we move? */ lb0 = 1.0e100; im = oi; for (i=0; i<des->n; i++) { ii = des->ind[i]; lb[ii] = innerprod(dc,d_xi(des,ii),des->p); /* must recompute - signs! */ if (s*lb[ii]>QTOL) /* should have scale-free tolerance here */ { z0 = innerprod(cf,d_xi(des,ii),p); lb1 = (resp(lfd,ii) - z0)/lb[ii]; if (lb1<lb0) { if (fabs(lb1-lb0)<QTOL) /* cycle */ { if (im<=oi) { if ((ii>oi) | (ii<im)) im = ii; } else { if ((ii>oi) & (ii<im)) im = ii; } } else { im = ii; lb0 = lb1; } } } } for (i=0; i<p; i++) cf[i] = cf[i]+lb0*dc[i]; if (im==-1) lf_status = LF_PF; return(im); } double qll(lfd,spr,des,cf) lfdata *lfd; smpar *spr; design *des; double *cf; { int i, ii; double th, sp, sn, p, e; p = pen(spr); sp = sn = 0.0; for (i=0; i<des->n; i++) { ii = des->ind[i]; th = innerprod(d_xi(des,ii),cf,des->p); e = resp(lfd,ii)-th; if (e<0) sn -= prwt(lfd,ii)*wght(des,ii)*e; if (e>0) sp += prwt(lfd,ii)*wght(des,ii)*e; } if (p<=0.0) return((sn<QTOL) ? -sp : -1e300); if (p>=1.0) return((sp<QTOL) ? -sn : -1e300); return(-sp/(1-p)-sn/p); } /* * running quantile smoother. */ void lfquantile(lfd,sp,des,maxit) lfdata *lfd; smpar *sp; design *des; int maxit; { int i, ii, im, j, k, p, *ci, (*mover)(); double *cf, *db, *dc, *cm, f, q1, q2, l0; printf("in lfquantile\n"); f = pen(sp); p = des->p; cf = des->cf; dc = des->oc; db = des->ss; setzero(cf,p); setzero(dc,p); cm = des->V; setzero(cm,p*p); ci = (int *)des->fix; q1 = -qll(lfd,sp,des,cf); if (q1==0.0) { lf_status = LF_PF; return; } for (i=0; i<p; i++) cm[i*(p+1)] = 1; mover = movecoef; if ((f<=0.0) | (f>=1.0)) mover = movemin; dc[0] = 1.0; im = mover(lfd,des,f,cf,dc,-1); if (lf_status != LF_OK) return; ci[0] = im; printf("init const %2d\n",ci[0]); q0 = -qll(lfd,sp,des,cf); if (q0<QTOL*q1) { lf_status = LF_PF; return; } printf("loop 0\n"); fflush(stdout); for (i=1; i<p; i++) { printf("i %2d\n",i); memcpy(&cm[(i-1)*p],d_xi(des,im),p*sizeof(double)); setzero(db,p); db[i] = 1.0; resproj(db,cm,dc,p,i); printf("call mover\n"); fflush(stdout); im = mover(lfd,des,f,cf,dc,-1); if (lf_status != LF_OK) return; printf("mover %2d\n",im); fflush(stdout); ci[i] = im; } printf("call qll\n"); fflush(stdout); q1 = qll(lfd,sp,des,cf); printf("loop 1 %d %d %d %d\n",ci[0],ci[1],ci[2],ci[3]); fflush(stdout); for (k=0; k<maxit; k++) { for (i=0; i<p; i++) { for (j=0; j<p; j++) if (j!=i) memcpy(&cm[(j-(j>i))*p],d_xi(des,ci[j]),p*sizeof(double)); memcpy(db,d_xi(des,ci[i]),p*sizeof(double)); resproj(db,cm,dc,p,p-1); printf("call mover\n"); fflush(stdout); im = mover(lfd,des,f,cf,dc,ci[i]); if (lf_status != LF_OK) return; printf("mover %2d\n",im); fflush(stdout); ci[i] = im; } q2 = qll(lfd,sp,des,cf); /* * convergence: require no change -- reasonable, since discrete? * remember we're maximizing, and q's are negative. */ if (q2 <= q1) return; q1 = q2; } printf("loop 2\n"); mut_printf("Warning: lfquantile not converged.\n"); } /* * Copyright 1996-2006 Catherine Loader. */ #include "locf.h" extern double links_rs; int robust_vallink(link) int link; { return(link==LIDENT); } int robust_fam(y,mean,th,link,res,cens,w) double y, mean, th, *res, w; int link, cens; { double z, sw; if (link==LINIT) { res[ZDLL] = w*y; return(LF_OK); } sw = (w==1.0) ? 1.0 : sqrt(w); /* don't want unnecess. sqrt! */ z = sw*(y-mean)/links_rs; res[ZLIK] = (fabs(z)<HUBERC) ? -z*z/2 : HUBERC*(HUBERC/2.0-fabs(z)); if (z< -HUBERC) { res[ZDLL] = -sw*HUBERC/links_rs; res[ZDDLL]= 0.0; return(LF_OK); } if (z> HUBERC) { res[ZDLL] = sw*HUBERC/links_rs; res[ZDDLL]= 0.0; return(LF_OK); } res[ZDLL] = sw*z/links_rs; res[ZDDLL] = w/(links_rs*links_rs); return(LF_OK); } int cauchy_fam(y,p,th,link,res,cens,w) double y, p, th, *res, w; int link, cens; { double z; if (link!=LIDENT) { LERR(("Invalid link in famcauc")); return(LF_LNK); } z = w*(y-th)/links_rs; res[ZLIK] = -log(1+z*z); res[ZDLL] = 2*w*z/(links_rs*(1+z*z)); res[ZDDLL] = 2*w*w*(1-z*z)/(links_rs*links_rs*(1+z*z)*(1+z*z)); return(LF_OK); } extern double lf_tol; int robust_init(lfd,des,sp) lfdata *lfd; design *des; smpar *sp; { int i; for (i=0; i<des->n; i++) des->res[i] = resp(lfd,(int)des->ind[i]) - base(lfd,(int)des->ind[i]); des->cf[0] = median(des->res,des->n); for (i=1; i<des->p; i++) des->cf[i] = 0.0; lf_tol = 1.0e-6; return(LF_OK); } void setfrobust(fam) family *fam; { fam->deflink = LIDENT; fam->canlink = LIDENT; fam->vallink = robust_vallink; fam->family = robust_fam; fam->initial = robust_init; fam->robust = 0; } void setfcauchy(fam) family *fam; { fam->deflink = LIDENT; fam->canlink = LIDENT; fam->vallink = robust_vallink; fam->family = cauchy_fam; fam->initial = robust_init; fam->robust = 0; } /* * Copyright 1996-2006 Catherine Loader. */ #include "locf.h" int weibull_vallink(link) int link; { return((link==LIDENT) | (link==LLOG) | (link==LLOGIT)); } int weibull_fam(y,mean,th,link,res,cens,w) double y, mean, th, *res, w; int link, cens; { double yy; yy = pow(y,w); if (link==LINIT) { res[ZDLL] = MAX(yy,0.0); return(LF_OK); } if (cens) { res[ZLIK] = -yy/mean; res[ZDLL] = res[ZDDLL] = yy/mean; return(LF_OK); } res[ZLIK] = 1-yy/mean-th; if (yy>0) res[ZLIK] += log(w*yy); res[ZDLL] = -1+yy/mean; res[ZDDLL]= yy/mean; return(LF_OK); } void setfweibull(fam) family *fam; { fam->deflink = LLOG; fam->canlink = LLOG; fam->vallink = weibull_vallink; fam->family = weibull_fam; fam->robust = 0; } /* * Copyright 1996-2006 Catherine Loader. */ /* Functions implementing the adaptive bandwidth selection. Will make the final call to nbhd() to set smoothing weights for selected bandwidth, But will **not** make the final call to locfit(). */ #include "locf.h" static double hmin; #define NACRI 5 static char *atype[NACRI] = { "none", "cp", "ici", "mindex", "ok" }; static int avals[NACRI] = { ANONE, ACP, AKAT, AMDI, AOK }; int lfacri(char *z) { return(pmatch(z, atype, avals, NACRI, ANONE)); } double adcri(lk,t0,t2,pen) double lk, t0, t2, pen; { double y; /* return(-2*lk/(t0*exp(pen*log(1-t2/t0)))); */ /* return((-2*lk+pen*t2)/t0); */ y = (MAX(-2*lk,t0-t2)+pen*t2)/t0; return(y); } double mmse(lfd,sp,dv,des) lfdata *lfd; smpar *sp; deriv *dv; design *des; { int i, ii, j, p, p1; double sv, sb, *l, dp; l = des->wd; wdiag(lfd, sp, des,l,dv,0,1,0); sv = sb = 0; p = npar(sp); for (i=0; i<des->n; i++) { sv += l[i]*l[i]; ii = des->ind[i]; dp = dist(des,ii); for (j=0; j<deg(sp); j++) dp *= dist(des,ii); sb += fabs(l[i])*dp; } p1 = factorial(deg(sp)+1); printf("%8.5f sv %8.5f sb %8.5f %8.5f\n",des->h,sv,sb,sv+sb*sb*pen(sp)*pen(sp)/(p1*p1)); return(sv+sb*sb*pen(sp)*pen(sp)/(p1*p1)); } static double mcp, clo, cup; /* Initial bandwidth will be (by default) k-nearest neighbors for k small, just large enough to get defined estimate (unless user provided nonzero nn or fix-h components) */ int ainitband(lfd,sp,dv,des) lfdata *lfd; smpar *sp; deriv *dv; design *des; { int lf_status, p, z, cri, noit, redo; double ho, t[6]; if (lf_debug >= 2) mut_printf("ainitband:\n"); p = des->p; cri = acri(sp); noit = (cri!=AOK); z = (int)(lfd->n*nn(sp)); if ((noit) && (z<p+2)) z = p+2; redo = 0; ho = -1; do { nbhd(lfd,des,z,redo,sp); if (z<des->n) z = des->n; if (des->h>ho) lf_status = locfit(lfd,des,sp,noit,0,0); z++; redo = 1; } while ((z<=lfd->n) && ((des->h==0)||(lf_status!=LF_OK))); hmin = des->h; switch(cri) { case ACP: local_df(lfd,sp,des,t); mcp = adcri(des->llk,t[0],t[2],pen(sp)); return(lf_status); case AKAT: local_df(lfd,sp,des,t); clo = des->cf[0]-pen(sp)*t[5]; cup = des->cf[0]+pen(sp)*t[5]; return(lf_status); case AMDI: mcp = mmse(lfd,sp,dv,des); return(lf_status); case AOK: return(lf_status); } LERR(("aband1: unknown criterion")); return(LF_ERR); } /* aband2 increases the initial bandwidth until lack of fit results, or the fit is close to a global fit. Increase h by 1+0.3/d at each iteration. */ double aband2(lfd,sp,dv,des,h0) lfdata *lfd; smpar *sp; deriv *dv; design *des; double h0; { double t[6], h1, nu1, cp, ncp, tlo, tup; int d, inc, n, p, done; if (lf_debug >= 2) mut_printf("aband2:\n"); d = lfd->d; n = lfd->n; p = npar(sp); h1 = des->h = h0; done = 0; nu1 = 0.0; inc = 0; ncp = 0.0; while ((!done) & (nu1<(n-p)*0.95)) { fixh(sp) = (1+0.3/d)*des->h; nbhd(lfd,des,0,1,sp); if (locfit(lfd,des,sp,1,0,0) > 0) WARN(("aband2: failed fit")); local_df(lfd,sp,des,t); nu1 = t[0]-t[2]; /* tr(A) */ switch(acri(sp)) { case AKAT: tlo = des->cf[0]-pen(sp)*t[5]; tup = des->cf[0]+pen(sp)*t[5]; /* mut_printf("h %8.5f tlo %8.5f tup %8.5f\n",des->h,tlo,tup); */ done = ((tlo>cup) | (tup<clo)); if (!done) { clo = MAX(clo,tlo); cup = MIN(cup,tup); h1 = des->h; } break; case ACP: cp = adcri(des->llk,t[0],t[2],pen(sp)); /* mut_printf("h %8.5f lk %8.5f t0 %8.5f t2 %8.5f cp %8.5f\n",des->h,des->llk,t[0],t[2],cp); */ if (cp<mcp) { mcp = cp; h1 = des->h; } if (cp>=ncp) inc++; else inc = 0; ncp = cp; done = (inc>=10) | ((inc>=3) & ((t[0]-t[2])>=10) & (cp>1.5*mcp)); break; case AMDI: cp = mmse(lfd,sp,dv,des); if (cp<mcp) { mcp = cp; h1 = des->h; } if (cp>ncp) inc++; else inc = 0; ncp = cp; done = (inc>=3); break; } } return(h1); } /* aband3 does a finer search around best h so far. Try h*(1-0.2/d), h/(1-0.1/d), h*(1+0.1/d), h*(1+0.2/d) */ double aband3(lfd,sp,dv,des,h0) lfdata *lfd; smpar *sp; deriv *dv; design *des; double h0; { double t[6], h1, cp, tlo, tup; int i, i0, d, n; if (lf_debug >= 2) mut_printf("aband3:\n"); d = lfd->d; n = lfd->n; h1 = h0; i0 = (acri(sp)==AKAT) ? 1 : -2; if (h0==hmin) i0 = 1; for (i=i0; i<=2; i++) { if (i==0) i++; fixh(sp) = h0*(1+0.1*i/d); nbhd(lfd,des,0,1,sp); if (locfit(lfd,des,sp,1,0,0) > 0) WARN(("aband3: failed fit")); local_df(lfd,sp,des,t); switch (acri(sp)) { case AKAT: tlo = des->cf[0]-pen(sp)*t[5]; tup = des->cf[0]+pen(sp)*t[5]; if ((tlo>cup) | (tup<clo)) /* done */ i = 2; else { h1 = des->h; clo = MAX(clo,tlo); cup = MIN(cup,tup); } break; case ACP: cp = adcri(des->llk,t[0],t[2],pen(sp)); if (cp<mcp) { mcp = cp; h1 = des->h; } else { if (i>0) i = 2; } break; case AMDI: cp = mmse(lfd,sp,dv,des); if (cp<mcp) { mcp = cp; h1 = des->h; } else { if (i>0) i = 2; } } } return(h1); } int alocfit(lfd,sp,dv,des,cv) lfdata *lfd; smpar *sp; deriv *dv; design *des; int cv; { int lf_status; double h0; lf_status = ainitband(lfd,sp,dv,des); if (lf_error) return(lf_status); if (acri(sp) == AOK) return(lf_status); h0 = fixh(sp); fixh(sp) = aband2(lfd,sp,dv,des,des->h); fixh(sp) = aband3(lfd,sp,dv,des,fixh(sp)); nbhd(lfd,des,0,1,sp); lf_status = locfit(lfd,des,sp,0,0,cv); fixh(sp) = h0; return(lf_status); } /* * Copyright 1996-2006 Catherine Loader. */ /* * * Evaluate the locfit fitting functions. * calcp(sp,d) * calculates the number of fitting functions. * makecfn(sp,des,dv,d) * makes the coef.number vector. * fitfun(lfd, sp, x,t,f,dv) * lfd is the local fit structure. * sp smoothing parameter structure. * x is the data point. * t is the fitting point. * f is a vector to return the results. * dv derivative structure. * designmatrix(lfd, sp, des) * is a wrapper for fitfun to build the design matrix. * */ #include "locf.h" int calcp(sp,d) smpar *sp; int d; { int i, k; if (ubas(sp)) return(npar(sp)); switch (kt(sp)) { case KSPH: case KCE: k = 1; for (i=1; i<=deg(sp); i++) k = k*(d+i)/i; return(k); case KPROD: return(d*deg(sp)+1); case KLM: return(d); case KZEON: return(1); } LERR(("calcp: invalid kt %d",kt(sp))); return(0); } int coefnumber(dv,kt,d,deg) int kt, d, deg; deriv *dv; { int d0, d1, t; if (d==1) { if (dv->nd<=deg) return(dv->nd); return(-1); } if (dv->nd==0) return(0); if (deg==0) return(-1); if (dv->nd==1) return(1+dv->deriv[0]); if (deg==1) return(-1); if (kt==KPROD) return(-1); if (dv->nd==2) { d0 = dv->deriv[0]; d1 = dv->deriv[1]; if (d0<d1) { t = d0; d0 = d1; d1 = t; } return((d+1)*(d0+1)-d0*(d0+3)/2+d1); } if (deg==2) return(-1); LERR(("coefnumber not programmed for nd>=3")); return(-1); } void makecfn(sp,des,dv,d) smpar *sp; design *des; deriv *dv; int d; { int i, nd; nd = dv->nd; des->cfn[0] = coefnumber(dv,kt(sp),d,deg(sp)); des->ncoef = 1; if (nd >= deg(sp)) return; if (kt(sp)==KZEON) return; if (d>1) { if (nd>=2) return; if ((nd>=1) && (kt(sp)==KPROD)) return; } dv->nd = nd+1; for (i=0; i<d; i++) { dv->deriv[nd] = i; des->cfn[i+1] = coefnumber(dv,kt(sp),d,deg(sp)); } dv->nd = nd; des->ncoef = 1+d; } void fitfunangl(dx,ff,sca,cd,deg) double dx, *ff, sca; int deg, cd; { if (deg>=3) WARN(("Can't handle angular model with deg>=3")); switch(cd) { case 0: ff[0] = 1; ff[1] = sin(dx/sca)*sca; ff[2] = (1-cos(dx/sca))*sca*sca; return; case 1: ff[0] = 0; ff[1] = cos(dx/sca); ff[2] = sin(dx/sca)*sca; return; case 2: ff[0] = 0; ff[1] = -sin(dx/sca)/sca; ff[2] = cos(dx/sca); return; default: WARN(("Can't handle angular model with >2 derivs")); } } void fitfun(lfd,sp,x,t,f,dv) lfdata *lfd; smpar *sp; double *x, *t, *f; deriv *dv; { int d, deg, nd, m, i, j, k, ct_deriv[MXDIM]; double ff[MXDIM][1+MXDEG], dx[MXDIM], *xx[MXDIM]; if (ubas(sp)) { for (i=0; i<lfd->d; i++) xx[i] = &x[i]; i = 0; sp->vbasis(xx,t,1,lfd->d,1,npar(sp),f); return; } d = lfd->d; deg = deg(sp); m = 0; nd = (dv==NULL) ? 0 : dv->nd; if (kt(sp)==KZEON) { f[0] = 1.0; return; } if (kt(sp)==KLM) { for (i=0; i<d; i++) f[m++] = x[i]; return; } f[m++] = (nd==0); if (deg==0) return; for (i=0; i<d; i++) { ct_deriv[i] = 0; dx[i] = (t==NULL) ? x[i] : x[i]-t[i]; } for (i=0; i<nd; i++) ct_deriv[dv->deriv[i]]++; for (i=0; i<d; i++) { switch(lfd->sty[i]) { case STANGL: fitfunangl(dx[i],ff[i],lfd->sca[i],ct_deriv[i],deg(sp)); break; default: for (j=0; j<ct_deriv[i]; j++) ff[i][j] = 0.0; ff[i][ct_deriv[i]] = 1.0; for (j=ct_deriv[i]+1; j<=deg; j++) ff[i][j] = ff[i][j-1]*dx[i]/(j-ct_deriv[i]); } } /* * Product kernels. Note that if ct_deriv[i] != nd, that implies * there is differentiation wrt another variable, and all components * involving x[i] are 0. */ if ((d==1) || (kt(sp)==KPROD)) { for (j=1; j<=deg; j++) for (i=0; i<d; i++) f[m++] = (ct_deriv[i]==nd) ? ff[i][j] : 0.0; return; } /* * Spherical kernels with the full polynomial basis. * Presently implemented up to deg=3. */ for (i=0; i<d; i++) f[m++] = (ct_deriv[i]==nd) ? ff[i][1] : 0.0; if (deg==1) return; for (i=0; i<d; i++) { /* xi^2/2 terms. */ f[m++] = (ct_deriv[i]==nd) ? ff[i][2] : 0.0; /* xi xj terms */ for (j=i+1; j<d; j++) f[m++] = (ct_deriv[i]+ct_deriv[j]==nd) ? ff[i][1]*ff[j][1] : 0.0; } if (deg==2) return; for (i=0; i<d; i++) { /* xi^3/6 terms */ f[m++] = (ct_deriv[i]==nd) ? ff[i][3] : 0.0; /* xi^2/2 xk terms */ for (k=i+1; k<d; k++) f[m++] = (ct_deriv[i]+ct_deriv[k]==nd) ? ff[i][2]*ff[k][1] : 0.0; /* xi xj xk terms */ for (j=i+1; j<d; j++) { f[m++] = (ct_deriv[i]+ct_deriv[j]==nd) ? ff[i][1]*ff[j][2] : 0.0; for (k=j+1; k<d; k++) f[m++] = (ct_deriv[i]+ct_deriv[j]+ct_deriv[k]==nd) ? ff[i][1]*ff[j][1]*ff[k][1] : 0.0; } } if (deg==3) return; LERR(("fitfun: can't handle deg=%d for spherical kernels",deg)); } /* * Build the design matrix. Assumes des->ind contains the indices of * the required data points; des->n the number of points; des->xev * the fitting point. */ void designmatrix(lfd,sp,des) lfdata *lfd; smpar *sp; design *des; { int i, ii, j, p; double *X, u[MXDIM]; X = d_x(des); p = des->p; if (ubas(sp)) { sp->vbasis(lfd->x,des->xev,lfd->n,lfd->d,des->n,p,X); return; } for (i=0; i<des->n; i++) { ii = des->ind[i]; for (j=0; j<lfd->d; j++) u[j] = datum(lfd,j,ii); fitfun(lfd,sp,u,des->xev,&X[ii*p],NULL); } } /* * Copyright 1996-2006 Catherine Loader. */ /* * * * Functions for determining bandwidth; smoothing neighborhood * and smoothing weights. */ #include "locf.h" double rho(x,sc,d,kt,sty) /* ||x|| for appropriate distance metric */ double *x, *sc; int d, kt, *sty; { double rhoi[MXDIM], s; int i; for (i=0; i<d; i++) { if (sty!=NULL) { switch(sty[i]) { case STANGL: rhoi[i] = 2*sin(x[i]/(2*sc[i])); break; case STCPAR: rhoi[i] = 0; break; default: rhoi[i] = x[i]/sc[i]; } } else rhoi[i] = x[i]/sc[i]; } if (d==1) return(fabs(rhoi[0])); s = 0; if (kt==KPROD) { for (i=0; i<d; i++) { rhoi[i] = fabs(rhoi[i]); if (rhoi[i]>s) s = rhoi[i]; } return(s); } if (kt==KSPH) { for (i=0; i<d; i++) s += rhoi[i]*rhoi[i]; return(sqrt(s)); } LERR(("rho: invalid kt")); return(0.0); } double kordstat(x,k,n,ind) double *x; int k, n, *ind; { int i, i0, i1, l, r; double piv; if (k<1) return(0.0); i0 = 0; i1 = n-1; while (1) { piv = x[ind[(i0+i1)/2]]; l = i0; r = i1; while (l<=r) { while ((l<=i1) && (x[ind[l]]<=piv)) l++; while ((r>=i0) && (x[ind[r]]>piv)) r--; if (l<=r) ISWAP(ind[l],ind[r]); } /* now, x[ind[i0..r]] <= piv < x[ind[l..i1]] */ if (r<k-1) i0 = l; /* go right */ else /* put pivots in middle */ { for (i=i0; i<=r; ) if (x[ind[i]]==piv) { ISWAP(ind[i],ind[r]); r--; } else i++; if (r<k-1) return(piv); i1 = r; } } } /* check if i'th data point is in limits */ int inlim(lfd,i) lfdata *lfd; int i; { int d, j, k; double *xlim; xlim = lfd->xl; d = lfd->d; k = 1; for (j=0; j<d; j++) { if (xlim[j]<xlim[j+d]) k &= ((datum(lfd,j,i)>=xlim[j]) & (datum(lfd,j,i)<=xlim[j+d])); } return(k); } double compbandwid(di,ind,x,n,d,nn,fxh) double *di, *x, fxh; int n, d, nn, *ind; { int i; double nnh; if (nn==0) return(fxh); if (nn<n) nnh = kordstat(di,nn,n,ind); else { nnh = 0; for (i=0; i<n; i++) nnh = MAX(nnh,di[i]); nnh = nnh*exp(log(1.0*nn/n)/d); } return(MAX(fxh,nnh)); } /* fast version of nbhd for ordered 1-d data */ void nbhd1(lfd,sp,des,k) lfdata *lfd; smpar *sp; design *des; int k; { double x, h, *xd, sc; int i, l, r, m, n, z; n = lfd->n; x = des->xev[0]; xd = dvari(lfd,0); sc = lfd->sca[0]; /* find closest data point to x */ if (x<=xd[0]) z = 0; else if (x>=xd[n-1]) z = n-1; else { l = 0; r = n-1; while (r-l>1) { z = (r+l)/2; if (xd[z]>x) r = z; else l = z; } /* now, xd[0..l] <= x < x[r..n-1] */ if ((x-xd[l])>(xd[r]-x)) z = r; else z = l; } /* closest point to x is xd[z] */ if (nn(sp)<0) /* user bandwidth */ h = sp->vb(des->xev); else { if (k>0) /* set h to nearest neighbor bandwidth */ { l = r = z; if (l==0) r = k-1; if (r==n-1) l = n-k; while (r-l<k-1) { if ((x-xd[l-1])<(xd[r+1]-x)) l--; else r++; if (l==0) r = k-1; if (r==n-1) l = n-k; } h = x-xd[l]; if (h<xd[r]-x) h = xd[r]-x; } else h = 0; h /= sc; if (h<fixh(sp)) h = fixh(sp); } m = 0; if (xd[z]>x) z--; /* so xd[z]<=x */ /* look left */ for (i=z; i>=0; i--) if (inlim(lfd,i)) { dist(des,i) = (x-xd[i])/sc; wght(des,i) = weight(lfd, sp, &xd[i], &x, h, 1, dist(des,i)); if (wght(des,i)>0) { des->ind[m] = i; m++; } else i = 0; } /* look right */ for (i=z+1; i<n; i++) if (inlim(lfd,i)) { dist(des,i) = (xd[i]-x)/sc; wght(des,i) = weight(lfd, sp, &xd[i], &x, h, 1, dist(des,i)); if (wght(des,i)>0) { des->ind[m] = i; m++; } else i = n; } des->n = m; des->h = h; } void nbhd_zeon(lfd,des) lfdata *lfd; design *des; { int i, j, m, eq; m = 0; for (i=0; i<lfd->n; i++) { eq = 1; for (j=0; j<lfd->d; j++) eq = eq && (des->xev[j] == datum(lfd,j,i)); if (eq) { wght(des,i) = 1; des->ind[m] = i; m++; } } des->n = m; des->h = 1.0; } void nbhd(lfd,des,nn,redo,sp) lfdata *lfd; design *des; int redo, nn; smpar *sp; { int d, i, j, m, n; double h, u[MXDIM]; if (lf_debug>1) mut_printf("nbhd: nn %d fixh %8.5f\n",nn,fixh(sp)); d = lfd->d; n = lfd->n; if (ker(sp)==WPARM) { for (i=0; i<n; i++) { wght(des,i) = 1.0; des->ind[i] = i; } des->n = n; return; } if (kt(sp)==KZEON) { nbhd_zeon(lfd,des); return; } if (kt(sp)==KCE) { des->h = 0.0; return; } /* ordered 1-dim; use fast searches */ if ((nn<=n) & (lfd->ord) & (ker(sp)!=WMINM) & (lfd->sty[0]!=STANGL)) { nbhd1(lfd,sp,des,nn); return; } if (!redo) { for (i=0; i<n; i++) { for (j=0; j<d; j++) u[j] = datum(lfd,j,i)-des->xev[j]; dist(des,i) = rho(u,lfd->sca,d,kt(sp),lfd->sty); des->ind[i] = i; } } else for (i=0; i<n; i++) des->ind[i] = i; if (ker(sp)==WMINM) { des->h = minmax(lfd,des,sp); return; } if (nn<0) h = sp->vb(des->xev); else h = compbandwid(des->di,des->ind,des->xev,n,lfd->d,nn,fixh(sp)); m = 0; for (i=0; i<n; i++) if (inlim(lfd,i)) { for (j=0; j<d; j++) u[j] = datum(lfd,j,i); wght(des,i) = weight(lfd, sp, u, des->xev, h, 1, dist(des,i)); if (wght(des,i)>0) { des->ind[m] = i; m++; } } des->n = m; des->h = h; } /* * Copyright 1996-2006 Catherine Loader. */ /* * * This file includes functions to solve for the scale estimate in * local robust regression and likelihood. The main entry point is * lf_robust(lfd,sp,des,mxit), * called from the locfit() function. * * The update_rs(x) accepts a residual scale x as the argument (actually, * it works on the log-scale). The function computes the local fit * assuming this residual scale, and re-estimates the scale from this * new fit. The final solution satisfies the fixed point equation * update_rs(x)=x. The function lf_robust() automatically calls * update_rs() through the fixed point iterations. * * The estimation of the scale from the fit is based on the sqrt of * the median deviance of observations with non-zero weights (in the * gaussian case, this is the median absolute residual). * * TODO: * Should use smoothing weights in the median. */ #include "locf.h" extern int lf_status; double robscale; static lfdata *rob_lfd; static smpar *rob_sp; static design *rob_des; static int rob_mxit; double median(x,n) double *x; int n; { int i, j, lt, eq, gt; double lo, hi, s; lo = hi = x[0]; for (i=0; i<n; i++) { lo = MIN(lo,x[i]); hi = MAX(hi,x[i]); } if (lo==hi) return(lo); lo -= (hi-lo); hi += (hi-lo); for (i=0; i<n; i++) { if ((x[i]>lo) & (x[i]<hi)) { s = x[i]; lt = eq = gt = 0; for (j=0; j<n; j++) { lt += (x[j]<s); eq += (x[j]==s); gt += (x[j]>s); } if ((2*(lt+eq)>n) && (2*(gt+eq)>n)) return(s); if (2*(lt+eq)<=n) lo = s; if (2*(gt+eq)<=n) hi = s; } } return((hi+lo)/2); } double nrobustscale(lfd,sp,des,rs) lfdata *lfd; smpar *sp; design *des; double rs; { int i, ii, p; double link[LLEN], sc, sd, sw, e; p = des->p; sc = sd = sw = 0.0; for (i=0; i<des->n; i++) { ii = des->ind[i]; fitv(des,ii) = base(lfd,ii)+innerprod(des->cf,d_xi(des,ii),p); e = resp(lfd,ii)-fitv(des,ii); stdlinks(link,lfd,sp,ii,fitv(des,ii),rs); sc += wght(des,ii)*e*link[ZDLL]; sd += wght(des,ii)*e*e*link[ZDDLL]; sw += wght(des,ii); } /* newton-raphson iteration for log(s) -psi(ei/s) - log(s); s = e^{-th} */ rs *= exp((sc-sw)/(sd+sc)); return(rs); } double robustscale(lfd,sp,des) lfdata *lfd; smpar *sp; design *des; { int i, ii, p, fam, lin, or; double rs, link[LLEN]; p = des->p; fam = fam(sp); lin = link(sp); or = fami(sp)->robust; fami(sp)->robust = 0; for (i=0; i<des->n; i++) { ii = des->ind[i]; fitv(des,ii) = base(lfd,ii) + innerprod(des->cf,d_xi(des,ii),p); links(fitv(des,ii),resp(lfd,ii),fami(sp),lin,link,cens(lfd,ii),prwt(lfd,ii),1.0); des->res[i] = -2*link[ZLIK]; } fami(sp)->robust = or; rs = sqrt(median(des->res,des->n)); if (rs==0.0) rs = 1.0; return(rs); } double update_rs(x) double x; { double nx; if (lf_status != LF_OK) return(x); robscale = exp(x); lfiter(rob_lfd,rob_sp,rob_des,rob_mxit); if (lf_status != LF_OK) return(x); nx = log(robustscale(rob_lfd,rob_sp,rob_des)); if (nx<x-0.2) nx = x-0.2; return(nx); } void lf_robust(lfd,sp,des,mxit) lfdata *lfd; design *des; smpar *sp; int mxit; { double x; rob_lfd = lfd; rob_des = des; rob_sp = sp; rob_mxit = mxit; lf_status = LF_OK; x = log(robustscale(lfd,sp,des)); solve_fp(update_rs, x, 1.0e-6, mxit); } /* * Copyright 1996-2006 Catherine Loader. */ /* * Post-fitting functions to compute the local variance and * influence functions. Also the local degrees of freedom * calculations for adaptive smoothing. */ #include "locf.h" extern double robscale; /* vmat() computes (after the local fit..) the matrix M2 = X^T W^2 V X. M12 = (X^T W V X)^{-1} M2 Also, for convenience, tr[0] = sum(wi) tr[1] = sum(wi^2). */ void vmat(lfd, sp, des, M12, M2) lfdata *lfd; smpar *sp; design *des; double *M12, *M2; { int i, ii, p, nk, ok; double link[LLEN], h, ww, tr0, tr1; p = des->p; setzero(M2,p*p); nk = -1; /* for density estimation, use integral rather than sum form, if W^2 is programmed... */ if ((fam(sp)<=THAZ) && (link(sp)==LLOG)) { switch(ker(sp)) { case WGAUS: nk = WGAUS; h = des->h/SQRT2; break; case WRECT: nk = WRECT; h = des->h; break; case WEPAN: nk = WBISQ; h = des->h; break; case WBISQ: nk = WQUQU; h = des->h; break; case WTCUB: nk = W6CUB; h = des->h; break; case WEXPL: nk = WEXPL; h = des->h/2; break; } } tr0 = tr1 = 0.0; if (nk != -1) { ok = ker(sp); ker(sp) = nk; /* compute M2 using integration. Use M12 as work matrix. */ (des->itype)(des->xev, M2, M12, des->cf, h); ker(sp) = ok; if (fam(sp)==TDEN) multmatscal(M2,des->smwt,p*p); tr0 = des->ss[0]; tr1 = M2[0]; /* n int W e^<a,A> */ } else { for (i=0; i<des->n; i++) { ii = des->ind[i]; stdlinks(link,lfd,sp,ii,fitv(des,ii),robscale); ww = SQR(wght(des,ii))*link[ZDDLL]; tr0 += wght(des,ii); tr1 += SQR(wght(des,ii)); addouter(M2,d_xi(des,ii),d_xi(des,ii),p,ww); } } des->tr0 = tr0; des->tr1 = tr1; memcpy(M12,M2,p*p*sizeof(double)); for (i=0; i<p; i++) jacob_solve(&des->xtwx,&M12[i*p]); } void lf_vcov(lfd,sp,des) lfdata *lfd; smpar *sp; design *des; { int i, j, k, p; double *M12, *M2; M12 = des->V; M2 = des->P; p = des->p; vmat(lfd,sp,des,M12,M2); /* M2 = X^T W^2 V X tr0=sum(W) tr1=sum(W*W) */ des->tr2 = m_trace(M12,p); /* tr (XTWVX)^{-1}(XTW^2VX) */ /* * Covariance matrix is M1^{-1} * M2 * M1^{-1} * We compute this using the cholesky decomposition of * M2; premultiplying by M1^{-1} and squaring. This * is more stable than direct computation in near-singular cases. */ chol_dec(M2,p,p); for (i=0; i<p; i++) for (j=0; j<i; j++) { M2[j*p+i] = M2[i*p+j]; M2[i*p+j] = 0.0; } for (i=0; i<p; i++) jacob_solve(&des->xtwx,&M2[i*p]); for (i=0; i<p; i++) { for (j=0; j<p; j++) { M12[i*p+j] = 0; for (k=0; k<p; k++) M12[i*p+j] += M2[k*p+i]*M2[k*p+j]; /* ith column of covariance */ } } if ((fam(sp)==TDEN) && (link(sp)==LIDENT)) multmatscal(M12,1/SQR(des->smwt),p*p); /* this computes the influence function as des->f1[0]. */ unitvec(des->f1,0,des->p); jacob_solve(&des->xtwx,des->f1); } /* local_df computes: * tr[0] = trace(W) * tr[1] = trace(W*W) * tr[2] = trace( M1^{-1} M2 ) * tr[3] = trace( M1^{-1} M3 ) * tr[4] = trace( (M1^{-1} M2)^2 ) * tr[5] = var(theta-hat). */ void local_df(lfd,sp,des,tr) lfdata *lfd; smpar *sp; design *des; double *tr; { int i, ii, j, p; double *m2, *V, ww, link[LLEN]; tr[0] = tr[1] = tr[2] = tr[3] = tr[4] = tr[5] = 0.0; m2 = des->V; V = des->P; p = des->p; vmat(lfd,sp,des,m2,V); /* M = X^T W^2 V X tr0=sum(W) tr1=sum(W*W) */ tr[0] = des->tr0; tr[1] = des->tr1; tr[2] = m_trace(m2,p); /* tr (XTWVX)^{-1}(XTW^2VX) */ unitvec(des->f1,0,p); jacob_solve(&des->xtwx,des->f1); for (i=0; i<p; i++) for (j=0; j<p; j++) { tr[4] += m2[i*p+j]*m2[j*p+i]; /* tr(M^2) */ tr[5] += des->f1[i]*V[i*p+j]*des->f1[j]; /* var(thetahat) */ } tr[5] = sqrt(tr[5]); setzero(m2,p*p); for (i=0; i<des->n; i++) { ii = des->ind[i]; stdlinks(link,lfd,sp,ii,fitv(des,ii),robscale); ww = wght(des,ii)*wght(des,ii)*wght(des,ii)*link[ZDDLL]; addouter(m2,d_xi(des,ii),d_xi(des,ii),p,ww); } for (i=0; i<p; i++) { jacob_solve(&des->xtwx,&m2[i*p]); tr[3] += m2[i*(p+1)]; } return; } /* * Copyright 1996-2006 Catherine Loader. */ /* * Routines for computing weight diagrams. * wdiag(lf,des,lx,deg,ty,exp) * Must locfit() first, unless ker==WPARM and has par. comp. * */ #include "locf.h" static double *wd; extern double robscale; void nnresproj(lfd,sp,des,u,m,p) lfdata *lfd; smpar *sp; design *des; double *u; int m, p; { int i, ii, j; double link[LLEN]; setzero(des->f1,p); for (j=0; j<m; j++) { ii = des->ind[j]; stdlinks(link,lfd,sp,ii,fitv(des,ii),robscale); for (i=0; i<p; i++) des->f1[i] += link[ZDDLL]*d_xij(des,j,ii)*u[j]; } jacob_solve(&des->xtwx,des->f1); for (i=0; i<m; i++) { ii = des->ind[i]; u[i] -= innerprod(des->f1,d_xi(des,ii),p)*wght(des,ii); } } void wdexpand(l,n,ind,m) double *l; int *ind, n, m; { int i, j, t; double z; for (j=m; j<n; j++) { l[j] = 0.0; ind[j] = -1; } j = m-1; while (j>=0) { if (ind[j]==j) j--; else { i = ind[j]; z = l[j]; l[j] = l[i]; l[i] = z; t = ind[j]; ind[j] = ind[i]; ind[i] = t; if (ind[j]==-1) j--; } } /* for (i=n-1; i>=0; i--) { l[i] = ((j>=0) && (ind[j]==i)) ? l[j--] : 0.0; } */ } int wdiagp(lfd,sp,des,lx,pc,dv,deg,ty,exp) lfdata *lfd; smpar *sp; design *des; paramcomp *pc; deriv *dv; double *lx; int deg, ty, exp; { int i, j, p, nd; double *l1; p = des->p; fitfun(lfd,sp,des->xev,pc->xbar,des->f1,dv); if (exp) { jacob_solve(&pc->xtwx,des->f1); for (i=0; i<lfd->n; i++) lx[i] = innerprod(des->f1,d_xi(des,des->ind[i]),p); return(lfd->n); } jacob_hsolve(&pc->xtwx,des->f1); for (i=0; i<p; i++) lx[i] = des->f1[i]; nd = dv->nd; dv->nd = nd+1; if (deg>=1) for (i=0; i<lfd->d; i++) { dv->deriv[nd] = i; l1 = &lx[(i+1)*p]; fitfun(lfd,sp,des->xev,pc->xbar,l1,dv); jacob_hsolve(&pc->xtwx,l1); } dv->nd = nd+2; if (deg>=2) for (i=0; i<lfd->d; i++) { dv->deriv[nd] = i; for (j=0; j<lfd->d; j++) { dv->deriv[nd+1] = j; l1 = &lx[(i*lfd->d+j+lfd->d+1)*p]; fitfun(lfd,sp,des->xev,pc->xbar,l1,dv); jacob_hsolve(&pc->xtwx,l1); } } dv->nd = nd; return(p); } int wdiag(lfd,sp,des,lx,dv,deg,ty,exp) lfdata *lfd; smpar *sp; design *des; deriv *dv; double *lx; int deg, ty, exp; /* deg=0: l(x) only. deg=1: l(x), l'(x) deg=2: l(x), l'(x), l''(x) ty = 1: e1 (X^T WVX)^{-1} X^T W -- hat matrix ty = 2: e1 (X^T WVX)^{-1} X^T WV^{1/2} -- scb's */ { double w, *X, *lxd, *lxdd, wdd, wdw, *ulx, link[LLEN], h; double dfx[MXDIM], hs[MXDIM]; int i, ii, j, k, l, m, d, p, nd; h = des->h; nd = dv->nd; wd = des->wd; d = lfd->d; p = des->p; X = d_x(des); ulx = des->res; m = des->n; for (i=0; i<d; i++) hs[i] = h*lfd->sca[i]; if (deg>0) { lxd = &lx[m]; setzero(lxd,m*d); if (deg>1) { lxdd = &lxd[d*m]; setzero(lxdd,m*d*d); } } if (nd>0) fitfun(lfd,sp,des->xev,des->xev,des->f1,dv); /* c(0) */ else unitvec(des->f1,0,p); jacob_solve(&des->xtwx,des->f1); /* c(0) (X^TWX)^{-1} */ for (i=0; i<m; i++) { ii = des->ind[i]; lx[i] = innerprod(des->f1,&X[ii*p],p); /* c(0)(XTWX)^{-1}X^T */ if (deg>0) { wd[i] = Wd(dist(des,ii)/h,ker(sp)); for (j=0; j<d; j++) { dfx[j] = datum(lfd,j,ii)-des->xev[j]; lxd[j*m+i] = lx[i]*wght(des,ii)*weightd(dfx[j],lfd->sca[j], d,ker(sp),kt(sp),h,lfd->sty[j],dist(des,ii)); /* c(0) (XTWX)^{-1}XTW' */ } if (deg>1) { wdd = Wdd(dist(des,ii)/h,ker(sp)); for (j=0; j<d; j++) for (k=0; k<d; k++) { w = (dist(des,ii)==0) ? 0 : h/dist(des,ii); w = wdd * (des->xev[k]-datum(lfd,k,ii)) * (des->xev[j]-datum(lfd,j,ii)) * w*w / (hs[k]*hs[k]*hs[j]*hs[j]); if (j==k) w += wd[i]/(hs[j]*hs[j]); lxdd[(j*d+k)*m+i] = lx[i]*w; /* c(0)(XTWX)^{-1}XTW'' */ } } } lx[i] *= wght(des,ii); } dv->nd = nd+1; if (deg==2) { for (i=0; i<d; i++) { dv->deriv[nd] = i; fitfun(lfd,sp,des->xev,des->xev,des->f1,dv); for (k=0; k<m; k++) { ii = des->ind[i]; stdlinks(link,lfd,sp,ii,fitv(des,ii),robscale); for (j=0; j<p; j++) des->f1[j] -= link[ZDDLL]*lxd[i*m+k]*X[ii*p+j]; /* c'(x)-c(x)(XTWX)^{-1}XTW'X */ } jacob_solve(&des->xtwx,des->f1); /* (...)(XTWX)^{-1} */ for (j=0; j<m; j++) { ii = des->ind[j]; ulx[j] = innerprod(des->f1,&X[ii*p],p); /* (...)XT */ } for (j=0; j<d; j++) for (k=0; k<m; k++) { ii = des->ind[k]; dfx[j] = datum(lfd,j,ii)-des->xev[j]; wdw = wght(des,ii)*weightd(dfx[j],lfd->sca[j],d,ker(sp), kt(sp),h,lfd->sty[j],dist(des,ii)); lxdd[(i*d+j)*m+k] += ulx[k]*wdw; lxdd[(j*d+i)*m+k] += ulx[k]*wdw; } /* + 2(c'-c(XTWX)^{-1}XTW'X)(XTWX)^{-1}XTW' */ } for (j=0; j<d*d; j++) nnresproj(lfd,sp,des,&lxdd[j*m],m,p); /* * (I-X(XTWX)^{-1} XTW */ } if (deg>0) { for (j=0; j<d; j++) nnresproj(lfd,sp,des,&lxd[j*m],m,p); /* c(0)(XTWX)^{-1}XTW'(I-X(XTWX)^{-1}XTW) */ for (i=0; i<d; i++) { dv->deriv[nd]=i; fitfun(lfd,sp,des->xev,des->xev,des->f1,dv); jacob_solve(&des->xtwx,des->f1); for (k=0; k<m; k++) { ii = des->ind[k]; for (l=0; l<p; l++) lxd[i*m+k] += des->f1[l]*X[ii*p+l]*wght(des,ii); } /* add c'(0)(XTWX)^{-1}XTW */ } } dv->nd = nd+2; if (deg==2) { for (i=0; i<d; i++) { dv->deriv[nd]=i; for (j=0; j<d; j++) { dv->deriv[nd+1]=j; fitfun(lfd,sp,des->xev,des->xev,des->f1,dv); jacob_solve(&des->xtwx,des->f1); for (k=0; k<m; k++) { ii = des->ind[k]; for (l=0; l<p; l++) lxdd[(i*d+j)*m+k] += des->f1[l]*X[ii*p+l]*wght(des,ii); } /* + c''(x)(XTWX)^{-1}XTW */ } } } dv->nd = nd; k = 1+d*(deg>0)+d*d*(deg==2); if (exp) wdexpand(lx,lfd->n,des->ind,m); if (ty==1) return(m); for (i=0; i<m; i++) { ii = des->ind[i]; stdlinks(link,lfd,sp,ii,fitv(des,ii),robscale); link[ZDDLL] = sqrt(fabs(link[ZDDLL])); for (j=0; j<k; j++) lx[j*m+i] *= link[ZDDLL]; } return(m); } /* * Copyright 1996-2006 Catherine Loader. */ /* * String matching functions. For a given argument string, find * the best match from an array of possibilities. Is there a library * function somewhere to do something like this? * * return values of -1 indicate failure/unknown string. */ #include "locf.h" int ct_match(z1, z2) char *z1, *z2; { int ct = 0; while (z1[ct]==z2[ct]) { if (z1[ct]=='\0') return(ct+1); ct++; } return(ct); } int pmatch(z, strings, vals, n, def) char *z, **strings; int *vals, n, def; { int i, ct, best, best_ct; best = -1; best_ct = 0; for (i=0; i<n; i++) { ct = ct_match(z,strings[i]); if (ct==strlen(z)+1) return(vals[i]); if (ct>best_ct) { best = i; best_ct = ct; } } if (best==-1) return(def); return(vals[best]); } /* * Copyright 1996-2006 Catherine Loader. */ #include "locf.h" int lf_maxit = 20; int lf_debug = 0; int lf_error = 0; double s0, s1; static lfdata *lf_lfd; static design *lf_des; static smpar *lf_sp; int lf_status; int ident=0; double lf_tol; extern double robscale; void lfdata_init(lfd) lfdata *lfd; { int i; for (i=0; i<MXDIM; i++) { lfd->sty[i] = 0; lfd->sca[i] = 1.0; lfd->xl[i] = lfd->xl[i+MXDIM] = 0.0; } lfd->y = lfd->w = lfd->c = lfd->b = NULL; lfd->d = lfd->n = 0; } void smpar_init(sp,lfd) smpar *sp; lfdata *lfd; { nn(sp) = 0.7; fixh(sp)= 0.0; pen(sp) = 0.0; acri(sp)= ANONE; deg(sp) = deg0(sp) = 2; ubas(sp) = 0; kt(sp) = KSPH; ker(sp) = WTCUB; fam(sp) = 64+TGAUS; link(sp)= LDEFAU; npar(sp) = calcp(sp,lfd->d); } void deriv_init(dv) deriv *dv; { dv->nd = 0; } int des_reqd(n,p) int n, p; { return(n*(p+5)+2*p*p+4*p + jac_reqd(p)); } int des_reqi(n,p) int n, p; { return(n+p); } void des_init(des,n,p) design *des; int n, p; { double *z; int k; if (n<=0) WARN(("des_init: n <= 0")); if (p<=0) WARN(("des_init: p <= 0")); if (des->des_init_id != DES_INIT_ID) { des->lwk = des->lind = 0; des->des_init_id = DES_INIT_ID; } k = des_reqd(n,p); if (k>des->lwk) { des->wk = (double *)calloc(k,sizeof(double)); if ( des->wk == NULL ) { printf("Problem allocating memory for des->wk\n");fflush(stdout); } des->lwk = k; } z = des->wk; des->X = z; z += n*p; des->w = z; z += n; des->res=z; z += n; des->di =z; z += n; des->th =z; z += n; des->wd =z; z += n; des->V =z; z += p*p; des->P =z; z += p*p; des->f1 =z; z += p; des->ss =z; z += p; des->oc =z; z += p; des->cf =z; z += p; z = jac_alloc(&des->xtwx,p,z); k = des_reqi(n,p); if (k>des->lind) { des->ind = (int *)calloc(k,sizeof(int)); if ( des->ind == NULL ) { printf("Problem allocating memory for des->ind\n");fflush(stdout); } des->lind = k; } des->fix = &des->ind[n]; for (k=0; k<p; k++) des->fix[k] = 0; des->n = n; des->p = p; des->smwt = n; des->xtwx.p = p; } void deschk(des,n,p) design *des; int n, p; { WARN(("deschk deprecated - use des_init()")); des_init(des,n,p); } int likereg(coef, lk0, f1, Z) double *coef, *lk0, *f1, *Z; { int i, ii, j, p; double lk, ww, link[LLEN], *X; if (lf_debug>2) mut_printf(" likereg: %8.5f\n",coef[0]); lf_status = LF_OK; lk = 0.0; p = lf_des->p; setzero(Z,p*p); setzero(f1,p); for (i=0; i<lf_des->n; i++) { ii = lf_des->ind[i]; X = d_xi(lf_des,ii); fitv(lf_des,ii) = base(lf_lfd,ii)+innerprod(coef,X,p); lf_status = stdlinks(link,lf_lfd,lf_sp,ii,fitv(lf_des,ii),robscale); if (lf_status == LF_BADP) { *lk0 = -1.0e300; return(NR_REDUCE); } if (lf_error) lf_status = LF_ERR; if (lf_status != LF_OK) return(NR_BREAK); ww = wght(lf_des,ii); lk += ww*link[ZLIK]; for (j=0; j<p; j++) f1[j] += X[j]*ww*link[ZDLL]; addouter(Z, X, X, p, ww*link[ZDDLL]); } for (i=0; i<p; i++) if (lf_des->fix[i]) { for (j=0; j<p; j++) Z[i*p+j] = Z[j*p+i] = 0.0; Z[i*p+i] = 1.0; f1[i] = 0.0; } if (lf_debug>4) prresp(coef,Z,p); if (lf_debug>3) mut_printf(" likelihood: %8.5f\n",lk); *lk0 = lf_des->llk = lk; lf_status = fami(lf_sp)->pcheck(lf_sp,lf_des,lf_lfd); switch(lf_status) { case LF_DONE: return(NR_BREAK); case LF_OOB: return(NR_REDUCE); case LF_PF: return(NR_REDUCE); case LF_NSLN: return(NR_BREAK); } return(NR_OK); } int reginit(lfd,des,sp) lfdata *lfd; design *des; smpar *sp; { int i, ii; double sb, link[LLEN]; s0 = s1 = sb = 0; for (i=0; i<des->n; i++) { ii = des->ind[i]; links(base(lfd,ii),resp(lfd,ii),fami(sp),LINIT,link,cens(lfd,ii),prwt(lfd,ii),1.0); s1 += wght(des,ii)*link[ZDLL]; s0 += wght(des,ii)*prwt(lfd,ii); sb += wght(des,ii)*prwt(lfd,ii)*base(lfd,ii); } if (s0==0) return(LF_NOPT); /* no observations with W>0 */ setzero(des->cf,des->p); lf_tol = 1.0e-6*s0; switch(link(sp)) { case LIDENT: des->cf[0] = (s1-sb)/s0; return(LF_OK); case LLOG: if (s1<=0.0) { des->cf[0] = -1000; return(LF_INFA); } des->cf[0] = log(s1/s0) - sb/s0; return(LF_OK); case LLOGIT: if (s1<=0.0) { des->cf[0] = -1000; return(LF_INFA); } if (s1>=s0) { des->cf[0] = 1000; return(LF_INFA); } des->cf[0] = logit(s1/s0)-sb/s0; return(LF_OK); case LINVER: if (s1<=0.0) { des->cf[0] = 1e100; return(LF_INFA); } des->cf[0] = s0/s1-sb/s0; return(LF_OK); case LSQRT: des->cf[0] = sqrt(s1/s0)-sb/s0; return(LF_OK); case LASIN: des->cf[0] = asin(sqrt(s1/s0))-sb/s0; return(LF_OK); default: LERR(("reginit: invalid link %d",link(sp))); return(LF_ERR); } } int lfinit(lfd,sp,des) lfdata *lfd; smpar *sp; design *des; { int initstat; des->xtwx.sm = (deg0(sp)<deg(sp)) ? JAC_CHOL : JAC_EIGD; designmatrix(lfd,sp,des); setfamily(sp); initstat = fami(sp)->initial(lfd,des,sp); return(initstat); } void lfiter(lfd,sp,des,maxit) lfdata *lfd; smpar *sp; design *des; int maxit; { int err; if (lf_debug>1) mut_printf(" lfiter: %8.5f\n",des->cf[0]); lf_des = des; lf_lfd = lfd; lf_sp = sp; max_nr(fami(sp)->like, des->cf, des->oc, des->res, des->f1, &des->xtwx, des->p, maxit, lf_tol, &err); switch(err) { case NR_OK: return; case NR_NCON: WARN(("max_nr not converged")); return; case NR_NDIV: WARN(("max_nr reduction problem")); return; } WARN(("max_nr return status %d",err)); } int use_robust_scale(int tg) { if ((tg&64)==0) return(0); /* not quasi - no scale */ if (((tg&128)==0) & (((tg&63)!=TROBT) & ((tg&63)!=TCAUC))) return(0); return(1); } /* * noit not really needed any more, since * gauss->pcheck returns LF_DONE, and likereg NR_BREAK * in gaussian case. * nb: 0/1: does local neighborhood and weights need computing? * cv: 0/1: is variance/covariance matrix needed? */ int locfit(lfd,des,sp,noit,nb,cv) lfdata *lfd; design *des; smpar *sp; int noit, nb, cv; { int i; if (des->xev==NULL) { LERR(("locfit: NULL evaluation point?")); return(246); } if (lf_debug>0) { mut_printf("locfit: "); for (i=0; i<lfd->d; i++) mut_printf(" %10.6f",des->xev[i]); mut_printf("\n"); } /* the 1e-12 avoids problems that can occur with roundoff */ if (nb) nbhd(lfd,des,(int)(lfd->n*nn(sp)+1e-12),0,sp); lf_status = lfinit(lfd,sp,des); if (lf_status == LF_OK) { if (use_robust_scale(fam(sp))) lf_robust(lfd,sp,des,lf_maxit); else { if ((fam(sp)&63)==TQUANT) lfquantile(lfd,sp,des,lf_maxit); else { robscale = 1.0; lfiter(lfd,sp,des,lf_maxit); } } } if (lf_status == LF_DONE) lf_status = LF_OK; if (lf_status == LF_OOB) lf_status = LF_OK; if ((fam(sp)&63)==TDEN) /* convert from rate to density */ { switch(link(sp)) { case LLOG: des->cf[0] -= log(des->smwt); break; case LIDENT: multmatscal(des->cf,1.0/des->smwt,des->p); break; default: LERR(("Density adjustment; invalid link")); } } /* variance calculations, if requested */ if (cv) { switch(lf_status) { case LF_PF: /* for these cases, variance calc. would likely fail. */ case LF_NOPT: case LF_NSLN: case LF_INFA: case LF_DEMP: case LF_XOOR: case LF_DNOP: case LF_BADP: des->llk = des->tr0 = des->tr1 = des->tr2 = 0.0; setzero(des->V,des->p*des->p); setzero(des->f1,des->p); break; default: lf_vcov(lfd,sp,des); } } return(lf_status); } void lf_status_msg(status) int status; { switch(status) { case LF_OK: return; case LF_NCON: WARN(("locfit did not converge")); return; case LF_OOB: WARN(("parameters out of bounds")); return; case LF_PF: WARN(("perfect fit")); return; case LF_NOPT: WARN(("no points with non-zero weight")); return; case LF_NSLN: WARN(("no solution")); return; case LF_INFA: WARN(("initial value problem")); return; case LF_DEMP: WARN(("density estimate, empty integration region")); return; case LF_XOOR: WARN(("procv: fit point outside xlim region")); return; case LF_DNOP: WARN(("density estimation -- insufficient points in smoothing window")); return; case LF_BADP: WARN(("bad parameters")); return; default: WARN(("procv: unknown return code %d",status)); return; } } /* * Copyright 1996-2006 Catherine Loader. */ /* * Compute minimax weights for local regression. */ #include "locf.h" #define NR_EMPTY 834 int mmsm_ct; static int debug=0; #define CONVTOL 1.0e-8 #define SINGTOL 1.0e-10 #define NR_SINGULAR 100 static lfdata *mm_lfd; static design *mm_des; static double mm_gam, mmf, lb; static int st; double ipower(x,n) /* use for n not too large!! */ double x; int n; { if (n==0) return(1.0); if (n<0) return(1/ipower(x,-n)); return(x*ipower(x,n-1)); } double setmmwt(des,a,gam) design *des; double *a, gam; { double ip, w0, w1, sw, wt; int i; sw = 0.0; for (i=0; i<mm_lfd->n; i++) { ip = innerprod(a,d_xi(des,i),des->p); wt = prwt(mm_lfd,i); w0 = ip - gam*des->wd[i]; w1 = ip + gam*des->wd[i]; wght(des,i) = 0.0; if (w0>0) { wght(des,i) = w0; sw += wt*w0*w0; } if (w1<0) { wght(des,i) = w1; sw += wt*w1*w1; } } return(sw/2-a[0]); } /* compute sum_{w!=0} AA^T; e1-sum wA */ int mmsums(des,coef,f,z,J) design *des; double *coef, *f, *z; jacobian *J; { int ct, i, j, p, sing; double *A; mmsm_ct++; A = J->Z; *f = setmmwt(des,coef,mm_gam); p = des->p; setzero(A,p*p); setzero(z,p); z[0] = 1.0; ct = 0; for (i=0; i<mm_lfd->n; i++) if (wght(des,i)!=0.0) { addouter(A,d_xi(des,i),d_xi(des,i),p,prwt(mm_lfd,i)); for (j=0; j<p; j++) z[j] -= prwt(mm_lfd,i)*wght(des,i)*d_xij(des,i,j); ct++; } if (ct==0) return(NR_EMPTY); J->st = JAC_RAW; J->p = p; jacob_dec(J,JAC_EIGD); sing = 0; for (i=0; i<p; i++) sing |= (J->Z[i*p+i]<SINGTOL); if ((debug) & (sing)) mut_printf("SINGULAR!!!!\n"); return((sing) ? NR_SINGULAR : NR_OK); } int descenddir(des,coef,dlt,f,af) design *des; double *coef, *dlt, *f; int af; { int i, p; double f0, *oc; if (debug) mut_printf("descenddir: %8.5f %8.5f\n",dlt[0],dlt[1]); f0 = *f; oc = des->oc; p = des->p; memcpy(oc,coef,p*sizeof(double)); for (i=0; i<p; i++) coef[i] = oc[i]+lb*dlt[i]; st = mmsums(des,coef,f,des->f1,&des->xtwx); if (*f>f0) /* halve till we drop */ { while (*f>f0) { lb = lb/2.0; for (i=0; i<p; i++) coef[i] = oc[i]+lb*dlt[i]; st = mmsums(des,coef,f,des->f1,&des->xtwx); } return(st); } if (!af) return(st); /* double */ while (*f<f0) { f0 = *f; lb *= 2.0; for (i=0; i<p; i++) coef[i] = oc[i]+lb*dlt[i]; st = mmsums(des,coef,f,des->f1,&des->xtwx); } lb /= 2.0; for (i=0; i<p; i++) coef[i] = oc[i]+lb*dlt[i]; st = mmsums(des,coef,f,des->f1,&des->xtwx); return(st); } int mm_initial(des) design *des; { double *dlt; dlt = des->ss; setzero(des->cf,des->p); st = mmsums(des,des->cf,&mmf,des->f1,&des->xtwx); setzero(dlt,des->p); dlt[0] = 1; lb = 1.0; st = descenddir(des,des->cf,dlt,&mmf,1); return(st); } void getsingdir(des,dlt) design *des; double *dlt; { double f, sw, c0; int i, j, p, sd; sd = -1; p = des->p; setzero(dlt,p); for (i=0; i<p; i++) if (des->xtwx.Z[i*p+i]<SINGTOL) sd = i; if (sd==-1) { mut_printf("getsingdir: nonsing?\n"); return; } if (des->xtwx.dg[sd]>0) for (i=0; i<p; i++) dlt[i] = des->xtwx.Q[p*i+sd]*des->xtwx.dg[i]; else { dlt[sd] = 1.0; } c0 = innerprod(dlt,des->f1,p); if (c0<0) for (i=0; i<p; i++) dlt[i] = -dlt[i]; } void mmax(coef, old_coef, delta, J, p, maxit, tol, err) double *coef, *old_coef, *delta, tol; int p, maxit, *err; jacobian *J; { double old_f, lambda; int i, j; *err = NR_OK; for (j=0; j<maxit; j++) { memcpy(old_coef,coef,p*sizeof(double)); old_f = mmf; if (st == NR_SINGULAR) { getsingdir(mm_des,delta); st = descenddir(mm_des,coef,delta,&mmf,1); } if (st == NR_EMPTY) { setzero(delta,p); delta[0] = 1.0; st = descenddir(mm_des,coef,delta,&mmf,1); } if (st == NR_OK) { lb = 1.0; jacob_solve(J,mm_des->f1); memcpy(delta,mm_des->f1,p*sizeof(double)); st = descenddir(mm_des,coef,delta,&mmf,0); } if ((j>0) & (fabs(mmf-old_f)<tol)) return; } WARN(("findab not converged")); *err = NR_NCON; return; } double findab(gam) double gam; { double sl; int i, p, nr_stat; if (debug) mut_printf(" findab: gam %8.5f\n",gam); mm_gam = gam; p = mm_des->p; lb = 1.0; st = mm_initial(mm_des); mmax(mm_des->cf, mm_des->oc, mm_des->ss, &mm_des->xtwx, p, lf_maxit, CONVTOL, &nr_stat); sl = 0.0; for (i=0; i<mm_lfd->n; i++) sl += fabs(wght(mm_des,i))*mm_des->wd[i]; if (debug) mut_printf(" sl %8.5f gam %8.5f %8.5f %d\n", sl,gam,sl-gam,nr_stat); return(sl-gam); } double weightmm(coef,di,ff,gam) double *coef, di, *ff, gam; { double y1, y2, ip; ip = innerprod(ff,coef,mm_des->p); y1 = ip-gam*di; if (y1>0) return(y1/ip); y2 = ip+gam*di; if (y2<0) return(y2/ip); return(0.0); } double minmax(lfd,des,sp) lfdata *lfd; design *des; smpar *sp; { double h, u[MXDIM], gam; int i, j, m, d1, p1, err_flag; if (debug) mut_printf("minmax: x %8.5f\n",des->xev[0]); mm_lfd = lfd; mm_des = des; mmsm_ct = 0; d1 = deg(sp)+1; p1 = factorial(d1); for (i=0; i<lfd->n; i++) { for (j=0; j<lfd->d; j++) u[j] = datum(lfd,j,i); des->wd[i] = sp->nn/p1*ipower(dist(des,i),d1); des->ind[i] = i; fitfun(lfd, sp, u,des->xev,d_xi(des,i),NULL); } /* find gamma (i.e. solve eqn 13.17 from book), using the secant method. * As a side effect, this finds the other minimax coefficients. * Note that 13.17 is rewritten as * g2 = sum |l_i(x)| (||xi-x||^(p+1) M/(s*(p+1)!)) * where g2 = gamma * s * (p+1)! / M. The gam variable below is g2. * The smoothing parameter is sp->nn == M/s. */ gam = solve_secant(findab, 0.0, 0.0,1.0, 0.0000001, BDF_EXPRIGHT, &err_flag); /* * Set the smoothing weights, in preparation for the actual fit. */ h = 0.0; m = 0; for (i=0; i<lfd->n; i++) { wght(des,i) = weightmm(des->cf, des->wd[i],d_xi(des,i),gam); if (wght(des,i)>0) { if (dist(des,i)>h) h = dist(des,i); des->ind[m] = i; m++; } } des->n = m; return(h); } /* * Copyright 1996-2006 Catherine Loader. */ /* * * Defines the weight functions and related quantities used * in LOCFIT. */ #include "locf.h" /* * convert kernel and kernel type strings to numeric codes. */ #define NWFUNS 13 static char *wfuns[NWFUNS] = { "rectangular", "epanechnikov", "bisquare", "tricube", "triweight", "gaussian", "triangular", "ququ", "6cub", "minimax", "exponential", "maclean", "parametric" }; static int wvals[NWFUNS] = { WRECT, WEPAN, WBISQ, WTCUB, WTRWT, WGAUS, WTRIA, WQUQU, W6CUB, WMINM, WEXPL, WMACL, WPARM }; int lfkernel(char *z) { return(pmatch(z, wfuns, wvals, NWFUNS, WTCUB)); } #define NKTYPE 5 static char *ktype[NKTYPE] = { "spherical", "product", "center", "lm", "zeon" }; static int kvals[NKTYPE] = { KSPH, KPROD, KCE, KLM, KZEON }; int lfketype(char *z) { return(pmatch(z, ktype, kvals, NKTYPE, KSPH)); } /* The weight functions themselves. Used everywhere. */ double W(u,ker) double u; int ker; { u = fabs(u); switch(ker) { case WRECT: return((u>1) ? 0.0 : 1.0); case WEPAN: return((u>1) ? 0.0 : 1-u*u); case WBISQ: if (u>1) return(0.0); u = 1-u*u; return(u*u); case WTCUB: if (u>1) return(0.0); u = 1-u*u*u; return(u*u*u); case WTRWT: if (u>1) return(0.0); u = 1-u*u; return(u*u*u); case WQUQU: if (u>1) return(0.0); u = 1-u*u; return(u*u*u*u); case WTRIA: if (u>1) return(0.0); return(1-u); case W6CUB: if (u>1) return(0.0); u = 1-u*u*u; u = u*u*u; return(u*u); case WGAUS: return(exp(-SQR(GFACT*u)/2.0)); case WEXPL: return(exp(-EFACT*u)); case WMACL: return(1/((u+1.0e-100)*(u+1.0e-100))); case WMINM: LERR(("WMINM in W")); return(0.0); case WPARM: return(1.0); } LERR(("W(): Unknown kernel %d\n",ker)); return(1.0); } int iscompact(ker) int ker; { if ((ker==WEXPL) | (ker==WGAUS) | (ker==WMACL) | (ker==WPARM)) return(0); return(1); } double weightprod(lfd,u,h,ker) lfdata *lfd; double *u, h; int ker; { int i; double sc, w; w = 1.0; for (i=0; i<lfd->d; i++) { sc = lfd->sca[i]; switch(lfd->sty[i]) { case STLEFT: if (u[i]>0) return(0.0); w *= W(-u[i]/(h*sc),ker); break; case STRIGH: if (u[i]<0) return(0.0); w *= W(u[i]/(h*sc),ker); break; case STANGL: w *= W(2*fabs(sin(u[i]/(2*sc)))/h,ker); break; case STCPAR: break; default: w *= W(fabs(u[i])/(h*sc),ker); } if (w==0.0) return(w); } return(w); } double weightsph(lfd,u,h,ker, hasdi,di) lfdata *lfd; double *u, h, di; int ker, hasdi; { int i; if (!hasdi) di = rho(u,lfd->sca,lfd->d,KSPH,lfd->sty); for (i=0; i<lfd->d; i++) { if ((lfd->sty[i]==STLEFT) && (u[i]>0.0)) return(0.0); if ((lfd->sty[i]==STRIGH) && (u[i]<0.0)) return(0.0); } if (h==0) return((di==0.0) ? 1.0 : 0.0); return(W(di/h,ker)); } double weight(lfd,sp,x,t,h, hasdi,di) lfdata *lfd; smpar *sp; double *x, *t, h, di; int hasdi; { double u[MXDIM]; int i; for (i=0; i<lfd->d; i++) u[i] = (t==NULL) ? x[i] : x[i]-t[i]; switch(kt(sp)) { case KPROD: return(weightprod(lfd,u,h,ker(sp))); case KSPH: return(weightsph(lfd,u,h,ker(sp), hasdi,di)); } LERR(("weight: unknown kernel type %d",kt(sp))); return(1.0); } double sgn(x) double x; { if (x>0) return(1.0); if (x<0) return(-1.0); return(0.0); } double WdW(u,ker) /* W'(u)/W(u) */ double u; int ker; { double eps=1.0e-10; if (ker==WGAUS) return(-GFACT*GFACT*u); if (ker==WPARM) return(0.0); if (fabs(u)>=1) return(0.0); switch(ker) { case WRECT: return(0.0); case WTRIA: return(-sgn(u)/(1-fabs(u)+eps)); case WEPAN: return(-2*u/(1-u*u+eps)); case WBISQ: return(-4*u/(1-u*u+eps)); case WTRWT: return(-6*u/(1-u*u+eps)); case WTCUB: return(-9*sgn(u)*u*u/(1-u*u*fabs(u)+eps)); case WEXPL: return((u>0) ? -EFACT : EFACT); } LERR(("WdW: invalid kernel")); return(0.0); } /* deriv. weights .. spherical, product etc u, sc, sty needed only in relevant direction Acutally, returns (d/dx W(||x||/h) ) / W(.) */ double weightd(u,sc,d,ker,kt,h,sty,di) double u, sc, h, di; int d, ker, kt, sty; { if (sty==STANGL) { if (kt==KPROD) return(-WdW(2*sin(u/(2*sc)),ker)*cos(u/(2*sc))/(h*sc)); if (di==0.0) return(0.0); return(-WdW(di/h,ker)*sin(u/sc)/(h*sc*di)); } if (sty==STCPAR) return(0.0); if (kt==KPROD) return(-WdW(u/(h*sc),ker)/(h*sc)); if (di==0.0) return(0.0); return(-WdW(di/h,ker)*u/(h*di*sc*sc)); } double weightdd(u,sc,d,ker,kt,h,sty,di,i0,i1) double *u, *sc, h, di; int d, ker, kt, i0, i1, *sty; { double w; w = 1; if (kt==KPROD) { w = WdW(u[i0]/(h*sc[i0]),ker)*WdW(u[i1]/(h*sc[i1]),ker)/(h*h*sc[i0]*sc[i1]); } return(0.0); } /* Derivatives W'(u)/u. Used in simult. conf. band computations, and kernel density bandwidth selectors. */ double Wd(u,ker) double u; int ker; { double v; if (ker==WGAUS) return(-SQR(GFACT)*exp(-SQR(GFACT*u)/2)); if (ker==WPARM) return(0.0); if (fabs(u)>1) return(0.0); switch(ker) { case WEPAN: return(-2.0); case WBISQ: return(-4*(1-u*u)); case WTCUB: v = 1-u*u*u; return(-9*v*v*u); case WTRWT: v = 1-u*u; return(-6*v*v); default: LERR(("Invalid kernel %d in Wd",ker)); } return(0.0); } /* Second derivatives W''(u)-W'(u)/u. used in simult. conf. band computations in >1 dimension. */ double Wdd(u,ker) double u; int ker; { double v; if (ker==WGAUS) return(SQR(u*GFACT*GFACT)*exp(-SQR(u*GFACT)/2)); if (ker==WPARM) return(0.0); if (u>1) return(0.0); switch(ker) { case WBISQ: return(12*u*u); case WTCUB: v = 1-u*u*u; return(-9*u*v*v+54*u*u*u*u*v); case WTRWT: return(24*u*u*(1-u*u)); default: LERR(("Invalid kernel %d in Wdd",ker)); } return(0.0); } /* int u1^j1..ud^jd W(u) du. Used for local log-linear density estimation. Assume all j_i are even. Also in some bandwidth selection. */ double wint(d,j,nj,ker) int d, *j, nj, ker; { double I, z; int k, dj; dj = d; for (k=0; k<nj; k++) dj += j[k]; switch(ker) /* int_0^1 u^(dj-1) W(u)du */ { case WRECT: I = 1.0/dj; break; case WEPAN: I = 2.0/(dj*(dj+2)); break; case WBISQ: I = 8.0/(dj*(dj+2)*(dj+4)); break; case WTCUB: I = 162.0/(dj*(dj+3)*(dj+6)*(dj+9)); break; case WTRWT: I = 48.0/(dj*(dj+2)*(dj+4)*(dj+6)); break; case WTRIA: I = 1.0/(dj*(dj+1)); break; case WQUQU: I = 384.0/(dj*(dj+2)*(dj+4)*(dj+6)*(dj+8)); break; case W6CUB: I = 524880.0/(dj*(dj+3)*(dj+6)*(dj+9)*(dj+12)*(dj+15)*(dj+18)); break; case WGAUS: switch(d) { case 1: I = S2PI/GFACT; break; case 2: I = 2*PI/(GFACT*GFACT); break; default: I = exp(d*log(S2PI/GFACT)); /* for nj=0 */ } for (k=0; k<nj; k++) /* deliberate drop */ switch(j[k]) { case 4: I *= 3.0/(GFACT*GFACT); case 2: I /= GFACT*GFACT; } return(I); case WEXPL: I = factorial(dj-1)/ipower(EFACT,dj); break; default: LERR(("Unknown kernel %d in exacint",ker)); } if ((d==1) && (nj==0)) return(2*I); /* common case quick */ z = (d-nj)*LOGPI/2-mut_lgammai(dj); for (k=0; k<nj; k++) z += mut_lgammai(j[k]+1); return(2*I*exp(z)); } /* taylor series expansion of weight function around x. 0 and 1 are common arguments, so are worth programming as special cases. Used in density estimation. */ int wtaylor(f,x,ker) double *f, x; int ker; { double v; switch(ker) { case WRECT: f[0] = 1.0; return(1); case WEPAN: f[0] = 1-x*x; f[1] = -2*x; f[2] = -1; return(3); case WBISQ: v = 1-x*x; f[0] = v*v; f[1] = -4*x*v; f[2] = 4-6*v; f[3] = 4*x; f[4] = 1; return(5); case WTCUB: if (x==1.0) { f[0] = f[1] = f[2] = 0; f[3] = -27; f[4] = -81; f[5] = -108; f[6] = -81; f[7] = -36; f[8] = -9; f[9] = -1; return(10); } if (x==0.0) { f[1] = f[2] = f[4] = f[5] = f[7] = f[8] = 0; f[0] = 1; f[3] = -3; f[6] = 3; f[9] = -1; return(10); } v = 1-x*x*x; f[0] = v*v*v; f[1] = -9*v*v*x*x; f[2] = x*v*(27-36*v); f[3] = -27+v*(108-84*v); f[4] = -3*x*x*(27-42*v); f[5] = x*(-108+126*v); f[6] = -81+84*v; f[7] = -36*x*x; f[8] = -9*x; f[9] = -1; return(10); case WTRWT: v = 1-x*x; f[0] = v*v*v; f[1] = -6*x*v*v; f[2] = v*(12-15*v); f[3] = x*(20*v-8); f[4] = 15*v-12; f[5] = -6; f[6] = -1; return(7); case WTRIA: f[0] = 1-x; f[1] = -1; return(2); case WQUQU: v = 1-x*x; f[0] = v*v*v*v; f[1] = -8*x*v*v*v; f[2] = v*v*(24-28*v); f[3] = v*x*(56*v-32); f[4] = (70*v-80)*v+16; f[5] = x*(32-56*v); f[6] = 24-28*v; f[7] = 8*x; f[8] = 1; return(9); case W6CUB: v = 1-x*x*x; f[0] = v*v*v*v*v*v; f[1] = -18*x*x*v*v*v*v*v; f[2] = x*v*v*v*v*(135-153*v); f[3] = v*v*v*(-540+v*(1350-816*v)); f[4] = x*x*v*v*(1215-v*(4050-v*3060)); f[5] = x*v*(-1458+v*(9234+v*(-16254+v*8568))); f[6] = 729-v*(10206-v*(35154-v*(44226-v*18564))); f[7] = x*x*(4374-v*(30132-v*(56862-v*31824))); f[8] = x*(12393-v*(61479-v*(92664-v*43758))); f[9] = 21870-v*(89100-v*(115830-v*48620)); f[10]= x*x*(26730-v*(69498-v*43758)); f[11]= x*(23814-v*(55458-v*31824)); f[12]= 15849-v*(34398-v*18564); f[13]= x*x*(7938-8568*v); f[14]= x*(2970-3060*v); f[15]= 810-816*v; f[16]= 153*x*x; f[17]= 18*x; f[18]= 1; return(19); } LERR(("Invalid kernel %d in wtaylor",ker)); return(0); } /* convolution int W(x)W(x+v)dx. used in kde bandwidth selection. */ double Wconv(v,ker) double v; int ker; { double v2; switch(ker) { case WGAUS: return(SQRPI/GFACT*exp(-SQR(GFACT*v)/4)); case WRECT: v = fabs(v); if (v>2) return(0.0); return(2-v); case WEPAN: v = fabs(v); if (v>2) return(0.0); return((2-v)*(16+v*(8-v*(16-v*(2+v))))/30); case WBISQ: v = fabs(v); if (v>2) return(0.0); v2 = 2-v; return(v2*v2*v2*v2*v2*(16+v*(40+v*(36+v*(10+v))))/630); } LERR(("Wconv not implemented for kernel %d",ker)); return(0.0); } /* derivative of Wconv. 1/v d/dv int W(x)W(x+v)dx used in kde bandwidth selection. */ double Wconv1(v,ker) double v; int ker; { double v2; v = fabs(v); switch(ker) { case WGAUS: return(-0.5*SQRPI*GFACT*exp(-SQR(GFACT*v)/4)); case WRECT: if (v>2) return(0.0); return(1.0); case WEPAN: if (v>2) return(0.0); return((-16+v*(12-v*v))/6); case WBISQ: if (v>2) return(0.0); v2 = 2-v; return(-v2*v2*v2*v2*(32+v*(64+v*(24+v*3)))/210); } LERR(("Wconv1 not implemented for kernel %d",ker)); return(0.0); } /* 4th derivative of Wconv. used in kde bandwidth selection (BCV, SJPI, GKK) */ double Wconv4(v,ker) double v; int ker; { double gv; switch(ker) { case WGAUS: gv = GFACT*v; return(exp(-SQR(gv)/4)*GFACT*GFACT*GFACT*(12-gv*gv*(12-gv*gv))*SQRPI/16); } LERR(("Wconv4 not implemented for kernel %d",ker)); return(0.0); } /* 5th derivative of Wconv. used in kde bandwidth selection (BCV method only) */ double Wconv5(v,ker) /* (d/dv)^5 int W(x)W(x+v)dx */ double v; int ker; { double gv; switch(ker) { case WGAUS: gv = GFACT*v; return(-exp(-SQR(gv)/4)*GFACT*GFACT*GFACT*GFACT*gv*(60-gv*gv*(20-gv*gv))*SQRPI/32); } LERR(("Wconv5 not implemented for kernel %d",ker)); return(0.0); } /* 6th derivative of Wconv. used in kde bandwidth selection (SJPI) */ double Wconv6(v,ker) double v; int ker; { double gv, z; switch(ker) { case WGAUS: gv = GFACT*v; gv = gv*gv; z = exp(-gv/4)*(-120+gv*(180-gv*(30-gv)))*0.02769459142; gv = GFACT*GFACT; return(z*gv*gv*GFACT); } LERR(("Wconv6 not implemented for kernel %d",ker)); return(0.0); } /* int W(v)^2 dv / (int v^2 W(v) dv)^2 used in some bandwidth selectors */ double Wikk(ker,deg) int ker, deg; { switch(deg) { case 0: case 1: /* int W(v)^2 dv / (int v^2 W(v) dv)^2 */ switch(ker) { case WRECT: return(4.5); case WEPAN: return(15.0); case WBISQ: return(35.0); case WGAUS: return(0.2820947918*GFACT*GFACT*GFACT*GFACT*GFACT); case WTCUB: return(34.152111046847892); /* 59049 / 1729 */ case WTRWT: return(66.083916083916080); /* 9450/143 */ } case 2: case 3: /* 4!^2/8*int(W1^2)/int(v^4W1)^2 W1=W*(n4-v^2n2)/(n0n4-n2n2) */ switch(ker) { case WRECT: return(11025.0); case WEPAN: return(39690.0); case WBISQ: return(110346.9231); case WGAUS: return(14527.43412); case WTCUB: return(126500.5904); case WTRWT: return(254371.7647); } } LERR(("Wikk not implemented for kernel %d, deg %d",ker,deg)); return(0.0); }