Mercurial > repos > vipints > rdiff
view rDiff/src/locfit/Source/libtube.c @ 1:08d3a6143873
Deleted selected files
author | vipints |
---|---|
date | Tue, 08 Oct 2013 06:54:25 -0400 |
parents | 0f80a5141704 |
children |
line wrap: on
line source
/* * Copyright 1996-2006 Catherine Loader. */ #include "mex.h" /* * Copyright 1996-2006 Catherine Loader. */ /* * Copyright (c) 1998-2006 Catherine Loader. * This file contains functions to compute the constants * appearing in the tube formula. */ #include <stdio.h> #include <math.h> #include "tube.h" static double *fd, *ft; static int globm, (*wdf)(), use_covar, kap_terms; int k0_reqd(d,n,uc) int d, n, uc; { int m; m = d*(d+1)+1; if (uc) return(2*m*m); else return(2*n*m); } void assignk0(z,d,n) /* z should be n*(2*d*d+2*d+2); */ double *z; int d, n; { ft = z; z += n*(d*(d+1)+1); fd = z; z += n*(d*(d+1)+1); } /* Residual projection of y to the columns of A, * (I - A(R^TR)^{-1}A^T)y * R should be from the QR-decomp. of A. */ void rproject(y,A,R,n,p) double *y, *A, *R; int n, p; { double v[1+TUBE_MXDIM]; int i, j; for (i=0; i<p; i++) v[i] = innerprod(&A[i*n],y,n); qrsolv(R,v,n,p); for (i=0; i<n; i++) for (j=0; j<p; j++) y[i] -= A[j*n+i]*v[j]; } double k2c(lij,A,m,dd,d) double *lij, *A; int m, d, dd; { int i, j, k, l; double sum, *bk, v[TUBE_MXDIM]; for (i=0; i<dd*d; i++) chol_hsolve(fd,&lij[i*m],m,dd+1); for (i=0; i<dd*d; i++) for (j=0; j<dd*d; j++) lij[i*m+j+d+1] -= innerprod(&lij[i*m],&lij[j*m],dd+1); sum = 0; for (i=0; i<dd; i++) for (j=0; j<i; j++) { bk = &lij[i*d*m + j*d + d+1]; for (k=0; k<dd; k++) { v[0] = 0; for (l=0; l<dd; l++) v[l+1] = bk[k*m+l]; chol_solve(fd,v,m,dd+1); for (l=0; l<dd; l++) bk[k*m+l] = v[l+1]; } for (k=0; k<dd; k++) { v[0] = 0; for (l=0; l<dd; l++) v[l+1] = bk[l*m+k]; chol_solve(fd,v,m,dd+1); for (l=0; l<dd; l++) bk[l*m+k] = v[l+1]; } sum += bk[i*m+j] - bk[j*m+i]; } return(sum*fd[0]*fd[0]); } double k2x(lij,A,m,d,dd) double *lij, *A; int m, d, dd; { int i, j, k; double s, v[1+TUBE_MXDIM], *ll; /* residual projections of lij onto A = [l,l1,...,ld] */ for (i=0; i<d; i++) for (j=i; j<d; j++) { ll = &lij[(i*dd+j)*m]; rproject(ll,A,fd,m,d+1); if (i!=j) memcpy(&lij[(j*dd+i)*m],ll,m*sizeof(double)); } /* compute lij[j][i] = e_i^T (A^T A)^{-1} B_j^T */ for (k=0; k<m; k++) for (j=0; j<d; j++) { v[0] = 0; for (i=0; i<d; i++) v[i+1] = lij[(j*dd+i)*m+k]; qrsolv(fd,v,m,d+1); for (i=0; i<d; i++) lij[(j*dd+i)*m+k] = v[i+1]; } /* finally, add up to get the kappa2 term */ s = 0; for (j=0; j<d; j++) for (k=0; k<j; k++) s += innerprod(&lij[(j*dd+j)*m],&lij[(k*dd+k)*m],m) - innerprod(&lij[(j*dd+k)*m],&lij[(k*dd+j)*m],m); return(s*fd[0]*fd[0]); } void d2c(ll,nn,li,ni,lij,nij,M,m,dd,d) double *ll, *nn, *li, *ni, *lij, *nij, *M; int m, dd, d; { int i, j, k, l, t, u, v, w; double z; for (i=0; i<dd; i++) for (j=0; j<dd; j++) { for (k=0; k<d; k++) { for (l=0; l<d; l++) { z = M[i*d+k]*M[j*d+l]; if (z != 0.0) { nij[(i*d+j)*m] += z*lij[(k*d+l)*m]; for (t=0; t<d; t++) /* need d, not dd here */ for (u=0; u<d; u++) nij[(i*d+j)*m+t+1] += z*M[t*d+u]*lij[(k*d+l)*m+u+1]; for (t=0; t<dd; t++) for (u=0; u<dd; u++) { for (v=0; v<d; v++) for (w=0; w<d; w++) nij[(i*d+j)*m+(t*d+u)+d+1] += z*M[t*d+v]*M[u*d+w]*lij[(k*d+l)*m+(v*d+w)+d+1]; for (v=0; v<d; v++) nij[(i*d+j)*m+(t*d+u)+d+1] += z*M[(v+1)*d*d+t*d+u]*lij[(k*d+l)*m+v+1]; } } } z = M[(k+1)*d*d+i*d+j]; if (z!=0.0) { nij[(i*d+j)*m] += z*li[k*m]; for (t=0; t<d; t++) for (u=0; u<d; u++) nij[(i*d+j)*m+t+1] += z*M[t*d+u]*li[k*m+u+1]; for (t=0; t<dd; t++) for (u=0; u<dd; u++) { for (v=0; v<d; v++) for (w=0; w<d; w++) nij[(i*d+j)*m+(t*d+u)+d+1] += z*M[t*d+v]*M[u*d+w]*lij[(v*d+w)*m+k+1]; for (v=0; v<d; v++) nij[(i*d+j)*m+(t*d+u)+d+1] += z*M[(v+1)*d*d+t*d+u]*li[k*m+v+1]; } } } } } void d2x(li,lij,nij,M,m,dd,d) double *li, *lij, *nij, *M; int m, dd, d; { int i, j, k, l, z; double t; for (i=0; i<dd; i++) for (j=0; j<dd; j++) { for (k=0; k<d; k++) { for (l=0; l<d; l++) { t = M[i*d+k] * M[j*d+l]; if (t != 0.0) { for (z=0; z<m; z++) nij[(i*d+j)*m+z] += t*lij[(k*d+l)*m+z]; } } t = M[(k+1)*d*d+i*d+j]; if (t!=0.0) for (z=0; z<m; z++) nij[(i*d+j)*m+z] += t*li[k*m+z]; } } } int k0x(x,d,kap,M) double *x, *kap, *M; int d; { double det, *lij, *nij, z; int j, m, r; r = 1 + ((d>=2) & (kap_terms >= 3)); m = globm = wdf(x,ft,r); memcpy(fd,ft,m*(d+1)*sizeof(double)); if (use_covar) chol_dec(fd,m,d+1); else qr(fd,m,d+1,NULL); det = 1; for (j=1; j<=d; j++) det *= fd[j*(m+1)]/fd[0]; kap[0] = det; if (kap_terms == 1) return(1); kap[1] = 0.0; if ((kap_terms == 2) | (d<=1)) return(2); lij = &ft[(d+1)*m]; nij = &fd[(d+1)*m]; memcpy(nij,lij,m*d*d*sizeof(double)); z = (use_covar) ? k2c(nij,ft,m,d,d) : k2x(nij,ft,m,d,d); kap[2] = z*det; if ((kap_terms == 3) | (d==2)) return(3); kap[3] = 0; return(4); } void d1c(li,ni,m,d,M) double *li, *ni, *M; int m, d; { int i, j, k, l; double t; fd[0] = ft[0]; for (i=0; i<d; i++) { t = 0; for (j=0; j<d; j++) t += M[i*d+j]*li[j*m]; fd[i+1] = ni[i*m] = t; for (j=0; j<d; j++) { t = 0; for (k=0; k<d; k++) for (l=0; l<d; l++) t += li[k*m+l+1] * M[i*d+k] * M[j*d+l]; ni[i*m+j+1] = t; } } } void d1x(li,ni,m,d,M) double *li, *ni, *M; int m, d; { int i, j, k; memcpy(fd,ft,m*sizeof(double)); setzero(ni,m*d); for (j=0; j<d; j++) for (k=0; k<d; k++) if (M[j*d+k]!=0) for (i=0; i<m; i++) ni[j*m+i] += M[j*d+k]*li[k*m+i]; } int l1x(x,d,lap,M) double *x, *lap, *M; int d; { double det, sumcj, *u, v[TUBE_MXDIM]; double *ll, *li, *lij, *ni, *nij; int i, j, m; if (kap_terms<=1) return(0); m = globm; li = &ft[m]; lij = &ft[(d+1)*m]; ni = &fd[m]; nij = &fd[(d+1)*m]; setzero(ni,m*d); setzero(nij,m*d*d); if (use_covar) d1c(li,ni,m,d,M); else d1x(li,ni,m,d,M); /* the last (d+1) columns of nij are free, use for an extra copy of ni */ ll = &fd[d*d*m]; u = &ll[d*m]; if (use_covar) memcpy(u,&ni[(d-1)*m],d*sizeof(double)); /* cov(ld, (l,l1,...ld-1)) */ else memcpy(ll,fd,(d+1)*m*sizeof(double)); if (use_covar) chol_dec(fd,m,d+1); else qr(fd,m,d+1,NULL); det = 1; for (j=1; j<d; j++) det *= fd[(m+1)*j]/fd[0]; lap[0] = det; if ((kap_terms==2) | (d<=1)) return(1); sumcj = 0.0; if (use_covar) { d2c(ft,fd,li,ni,lij,nij,M,m,d-1,d); chol_solve(fd,u,m,d); for (i=0; i<d-1; i++) { v[0] = 0; for (j=0; j<d-1; j++) v[j+1] = nij[(i*d+j)*m+d] - innerprod(u,&nij[(i*d+j)*m],d); chol_solve(fd,v,m,d); sumcj -= v[i+1]; } } else { d2x(li,lij,nij,M,m,d-1,d); rproject(u,ll,fd,m,d); for (i=0; i<d-1; i++) { v[0] = 0; for (j=0; j<d-1; j++) v[j+1] = innerprod(&nij[(i*d+j)*m],u,m); qrsolv(fd,v,m,d); sumcj -= v[i+1]; } } lap[1] = sumcj*det*fd[0]/fd[(m+1)*d]; if ((kap_terms==3) | (d==2)) return(2); if (use_covar) lap[2] = k2c(nij,ll,m,d-1,d)*det; else lap[2] = k2x(nij,ll,m,d-1,d)*det; return(3); } int m0x(x,d,m0,M) double *x, *m0, *M; int d; { double det, *li, *ni, *lij, *nij, *ll, *u1, *u2; double om, so, co, sumcj, v[TUBE_MXDIM]; int m, i, j; if ((kap_terms<=2) | (d<=1)) return(0); m = globm; li = &ft[m]; lij = &ft[(d+1)*m]; ni = &fd[m]; nij = &fd[(d+1)*m]; setzero(ni,m*d); setzero(nij,m*d*d); if (use_covar) d1c(li,ni,m,d,M); else d1x(li,ni,m,d,M); /* the last (d+1) columns of nij are free, use for an extra copy of ni */ ll = &fd[d*d*m]; u1 = &ll[d*m]; u2 = &ll[(d-1)*m]; if (use_covar) { memcpy(u1,&ni[(d-1)*m],d*sizeof(double)); memcpy(u2,&ni[(d-2)*m],d*sizeof(double)); } else memcpy(ll,fd,(d+1)*m*sizeof(double)); if (use_covar) chol_dec(fd,m,d+1); else qr(fd,m,d+1,NULL); det = 1; for (j=1; j<d-1; j++) det *= fd[j*(m+1)]/fd[0]; om = atan2(fd[d*(m+1)],-fd[d*(m+1)-1]); m0[0] = det*om; if ((kap_terms==3) | (d==2)) return(1); so = sin(om)/fd[d*(m+1)]; co = (1-cos(om))/fd[(d-1)*(m+1)]; sumcj = 0.0; if (use_covar) { d2c(ft,fd,li,ni,lij,nij,M,m,d-2,d); chol_solve(fd,u1,m,d); chol_solve(fd,u2,m,d-1); for (i=0; i<d-2; i++) { v[0] = 0; for (j=0; j<d-2; j++) v[j+1] = so*(nij[(i*d+j)*m+d]-innerprod(u1,&nij[(i*d+j)*m],d)) +co*(nij[(i*d+j)*m+d-1]-innerprod(u2,&nij[(i*d+j)*m],d-1)); qrsolv(fd,v,m,d-1); sumcj -= v[i+1]; } } else { d2x(li,lij,nij,M,m,d-2,d); rproject(u1,ll,fd,m,d); rproject(u2,ll,fd,m,d-1); /* now, u1, u2 are unnormalized n1*, n2* */ for (i=0; i<m; i++) u1[i] = so*u1[i] + co*u2[i]; /* for n1*, n2* */ for (i=0; i<d-2; i++) { v[0] = 0; for (j=0; j<d-2; j++) v[j+1] = innerprod(&nij[(i*d+j)*m],u1,m); qrsolv(fd,v,m,d-1); sumcj -= v[i+1]; } } m0[1] = sumcj*det*fd[0]; return(2); } int n0x(x,d,n0,M) double *x, *n0, *M; int d; { double det, *li, *ni, *a0, *a1, *a2; int j, m; if ((kap_terms <= 3) | (d <= 2)) return(0); m = globm; li = &ft[m]; ni = &fd[m]; if (use_covar) d1c(li,ni,m,d,M); else d1x(li,ni,m,d,M); det = 1; if (use_covar) chol_dec(fd,m,d+1); else qr(fd,m,d+1,NULL); for (j=1; j<d-2; j++) det *= fd[j*(m+1)]/fd[0]; a0 = &ni[(d-3)*m+d-2]; a1 = &ni[(d-2)*m+d-2]; a2 = &ni[(d-1)*m+d-2]; a0[0] = a1[1]*a2[2]; a0[1] =-a1[0]*a2[2]; a0[2] = a1[0]*a2[1]-a1[1]*a2[0]; a1[0] = 0; a1[1] = a2[2]; a1[2] =-a2[1]; a2[0] = a2[1] = 0.0; a2[2] = 1.0; rn3(a0); rn3(a1); n0[0] = det*sptarea(a0,a1,a2); return(1); } int kodf(ll,ur,mg,kap,lap) double *ll, *ur, *kap, *lap; int *mg; { double x[1], *l0, *l1, t, sum; int i, j, n; sum = 0.0; for (i=0; i<=mg[0]; i++) { if (i&1) { l1 = fd; l0 = ft; } else { l1 = ft; l0 = fd; } x[0] = ll[0] + (ur[0]-ll[0])*i/mg[0]; n = wdf(x,l0,0); t = sqrt(innerprod(l0,l0,n)); for (j=0; j<n; j++) l0[j] /= t; if (i>0) { t = 0.0; for (j=0; j<n; j++) t += (l1[j]-l0[j])*(l1[j]-l0[j]); sum += 2*asin(sqrt(t)/2); } } kap[0] = sum; if (kap_terms<=1) return(1); kap[1] = 0.0; lap[0] = 2.0; return(2); } int tube_constants(f,d,m,ev,mg,fl,kap,wk,terms,uc) double *fl, *kap, *wk; int d, m, ev, *mg, (*f)(), terms, uc; { int aw, deb=0; double k0[4], l0[3], m0[2], n0[1], z[TUBE_MXDIM]; wdf = f; aw = (wk==NULL); if (aw) { wk = (double *)calloc(k0_reqd(d,m,uc),sizeof(double)); if ( wk == NULL ) { printf("Problem allocating memory for wk\n");fflush(stdout); } } assignk0(wk,d,m); k0[0] = k0[1] = k0[2] = k0[3] = 0.0; l0[0] = l0[1] = l0[2] = 0.0; m0[0] = m0[1] = 0.0; n0[0] = 0.0; use_covar = uc; kap_terms = terms; if ((kap_terms <=0) | (kap_terms >= 5)) mut_printf("Warning: terms = %2d\n",kap_terms); switch(ev) { case IMONTE: monte(k0x,fl,&fl[d],d,k0,mg[0]); break; case ISPHERIC: if (d==2) integ_disc(k0x,l1x,fl,k0,l0,mg); if (d==3) integ_sphere(k0x,l1x,fl,k0,l0,mg); break; case ISIMPSON: if (use_covar) simpson4(k0x,l1x,m0x,n0x,fl,&fl[d],d,k0,l0,m0,n0,mg,z); else simpson4(k0x,l1x,m0x,n0x,fl,&fl[d],d,k0,l0,m0,n0,mg,z); break; case IDERFREE: kodf(fl,&fl[d],mg,k0,l0); break; default: mut_printf("Unknown integration type in tube_constants().\n"); } if (deb>0) { mut_printf("constants:\n"); mut_printf(" k0: %8.5f %8.5f %8.5f %8.5f\n",k0[0],k0[1],k0[2],k0[3]); mut_printf(" l0: %8.5f %8.5f %8.5f\n",l0[0],l0[1],l0[2]); mut_printf(" m0: %8.5f %8.5f\n",m0[0],m0[1]); mut_printf(" n0: %8.5f\n",n0[0]); if (d==2) mut_printf(" check: %8.5f\n",(k0[0]+k0[2]+l0[1]+m0[0])/(2*PI)); if (d==3) mut_printf(" check: %8.5f\n",(l0[0]+l0[2]+m0[1]+n0[0])/(4*PI)); } if (aw) free(wk); kap[0] = k0[0]; if (kap_terms==1) return(1); kap[1] = l0[0]/2; if ((kap_terms==2) | (d==1)) return(2); kap[2] = (k0[2]+l0[1]+m0[0])/(2*PI); if ((kap_terms==3) | (d==2)) return(3); kap[3] = (l0[2]+m0[1]+n0[0])/(4*PI); return(4); } /* * Copyright 1996-2006 Catherine Loader. */ /* * Copyright (c) 1998-2006 Catherine Loader. * * Computes the critical values from constants kappa0 etc * and significance level. */ #include <math.h> #include "tube.h" #define LOGPI 1.144729885849400174143427 /* area(d) = 2 pi^(d/2) / Gamma(d/2) * = surface area of unit sphere in R^d */ static double A[10] = { 1, /* d=0, whatever */ 2, 6.2831853071795864770, /* 2*pi */ 12.566370614359172954, /* 4*pi */ 19.739208802178717238, /* 2*pi^2 */ 26.318945069571622985, /* 8/3*pi^2 */ 31.006276680299820177, /* pi^3 */ 33.073361792319808190, /* 16/15*pi^3 */ 32.469697011334145747, /* 1/3*pi^4 */ 29.686580124648361825 /* 32/105*pi^4 */ }; double area(d) int d; { if (d<10) return(A[d]); return(2*exp(d*LOGPI/2.0-mut_lgammai(d))); } double tailp_uniform(c,k0,m,d,s,n) double c, *k0, n; int m, d, s; { int i; double p; p = 0.0; for (i=0; i<m; i++) if (k0[i] != 0.0) p += k0[i] * ibeta(1-c*c,(n-d+i-1)/2.0,(d+1-i)/2.0) / area(d+1-i); return( (s==TWO_SIDED) ? 2*p : p ); } double tailp_gaussian(c,k0,m,d,s,n) double c, *k0, n; int m, d, s; { int i; double p; p = 0.0; for (i=0; i<m; i++) if (k0[i] != 0.0) p += k0[i] * (1-pchisq(c*c,(double) d+1-i)) / area(d+1-i); return( (s==TWO_SIDED) ? 2*p : p ); } double tailp_tprocess(c,k0,m,d,s,n) double c, *k0, n; int m, d, s; { int i; double p; p = 0.0; for (i=0; i<m; i++) if (k0[i] != 0.0) p += k0[i] * (1-pf(c*c/(d+1-i),(double) d+1-i, n)) / area(d+1-i); return( (s==TWO_SIDED) ? 2*p : p ); } double taild_uniform(c,k0,m,d,s,n) double c, *k0, n; int m, d, s; { int i; double p; p = 0.0; for (i=0; i<m; i++) if (k0[i] != 0.0) p += k0[i] * 2*c*dbeta(1-c*c,(n-d+i-1)/2.0,(d+1-i)/2.0,0) / area(d+1-i); return( (s==TWO_SIDED) ? 2*p : p ); } double taild_gaussian(c,k0,m,d,s,n) double c, *k0, n; int m, d, s; { int i; double p; p = 0.0; for (i=0; i<m; i++) if (k0[i] != 0.0) p += k0[i] * 2*c*dchisq(c*c,(double) d+1-i,0) / area(d+1-i); return( (s==TWO_SIDED) ? 2*p : p ); } double taild_tprocess(c,k0,m,d,s,n) double c, *k0, n; int m, d, s; { int i; double p; p = 0.0; for (i=0; i<m; i++) if (k0[i] != 0.0) p += k0[i] * 2*c*df(c*c/(d+1-i),(double) d+1-i, n,0) / ((d+1-i)*area(d+1-i)); return( (s==TWO_SIDED) ? 2*p : p ); } double tailp(c,k0,m,d,s,nu, process) double c, *k0, nu; int m, d, s, process; { switch(process) { case UNIF: return(tailp_uniform(c,k0,m,d,s,nu)); case GAUSS: return(tailp_gaussian(c,k0,m,d,s,nu)); case TPROC: return(tailp_tprocess(c,k0,m,d,s,nu)); } mut_printf("taild: unknown process.\n"); return(0.0); } double taild(c,k0,m,d,s,nu, process) double c, *k0, nu; int m, d, s, process; { switch(process) { case UNIF: return(taild_uniform(c,k0,m,d,s,nu)); case GAUSS: return(taild_gaussian(c,k0,m,d,s,nu)); case TPROC: return(taild_tprocess(c,k0,m,d,s,nu)); } mut_printf("taild: unknown process.\n"); return(0.0); } double critval(alpha,k0,m,d,s,nu,process) double alpha, *k0, nu; int m, d, s, process; { double c, cn, c0, c1, tp, td; int j, maxit; double (*tpf)(), (*tdf)(); maxit = 20; if (m<0) { mut_printf("critval: no terms?\n"); return(2.0); } if (m>d+1) m = d+1; if ((alpha<=0) | (alpha>=1)) { mut_printf("critval: invalid alpha %8.5f\n",alpha); return(2.0); } if (alpha>0.5) mut_printf("critval: A mighty large tail probability alpha=%8.5f\n",alpha); if (m==0) { d = 0; k0[0] = 1; m = 1; } switch(process) { case UNIF: c = 0.5; c0 = 0.0; c1 = 1.0; tpf = tailp_uniform; tdf = taild_uniform; break; case GAUSS: c = 2.0; c0 = 0.0; c1 = 0.0; tpf = tailp_gaussian; tdf = taild_gaussian; break; case TPROC: c = 2.0; c0 = 0.0; c1 = 0.0; tpf = tailp_tprocess; tdf = taild_tprocess; break; default: mut_printf("critval: unknown process.\n"); return(0.0); } for (j=0; j<maxit; j++) { tp = tpf(c,k0,m,d,s,nu)-alpha; td = tdf(c,k0,m,d,s,nu); if (tp>0) c0 = c; if (tp<0) c1 = c; cn = c + tp/td; if (cn<c0) cn = (c+c0)/2; if ((c1>0.0) && (cn>c1)) cn = (c+c1)/2; c = cn; if (fabs(tp/alpha)<1.0e-10) return(c); } return(c); }