Mercurial > repos > vipints > rdiff
view rDiff/examples/results/variance_function_2.mat @ 2:233c30f91d66
updated python based GFF parsing module which will handle GTF/GFF/GFF3 file types
author | vipints <vipin@cbio.mskcc.org> |
---|---|
date | Tue, 08 Oct 2013 07:15:44 -0400 |
parents | 0f80a5141704 |
children |
line wrap: on
line source
# Created by Octave 3.6.2, Tue Feb 05 20:09:05 2013 UTC <galaxy@ip-10-149-27-54> # name: VARIANCE2 # type: scalar struct # ndims: 2 1 1 # length: 5 # name: data # type: scalar struct # ndims: 2 1 1 # length: 8 # name: x # type: matrix # rows: 278 # columns: 1 -0.6837237318715028 0.06174800706844703 0.3938359345009124 0.6936268096559794 0.9122011167435973 0.9161666558511761 1.086562522614452 1.090141698976293 1.098632846081095 1.098700261688975 1.247630065657648 1.508740013379464 1.618800348362312 1.702738617754124 1.770683859700156 1.792807669949503 1.87635935853639 1.941669549847872 1.941970369931589 2.017802948251929 2.090749535590951 2.140229670178254 2.1500519573627 2.196694709486154 2.304005701521318 2.304500516266279 2.344717584725904 2.347986504652476 2.352634472154888 2.406323592433772 2.449225908696831 2.478076857683252 2.48382232268649 2.504058279551312 2.557647373888049 2.563523151155118 2.563735930504469 2.67767480537634 2.68021091770176 2.685152330257218 2.6866168913027 2.692091126103321 2.696648173029505 2.701138866636309 2.70805161496842 2.739678738898509 2.74093288633136 2.746278502501331 2.748323566646953 2.762180911756001 2.764268674173852 2.767844607969534 2.771345324739451 2.833214757922426 2.857079620381533 2.86149897045788 2.880732388557353 2.880949884236717 2.891782292595328 2.891787454295845 2.916986833055203 2.917762953154436 2.928815529016648 2.939898166242062 2.970414465569701 3.05028210275491 3.056550252011113 3.08649424007081 3.089021357119376 3.090526280779387 3.09061347841052 3.090805858442458 3.093298287488152 3.11055019199932 3.114662332422402 3.115725414147837 3.13534476640749 3.15214874092909 3.157818952910483 3.177085977697478 3.180068491795122 3.196507095511479 3.219776951192828 3.219938595156166 3.236271063210053 3.238596262695897 3.238622270382975 3.258184511042348 3.258209498242059 3.261307672704753 3.273138257683985 3.277144732992177 3.295644661278247 3.295837253233735 3.30967197554672 3.31252126260721 3.31364708015119 3.315551573005444 3.319025994877266 3.333296891516658 3.367104971509389 3.371089020913112 3.381333481597382 3.38259036877319 3.382894834196399 3.401101232166583 3.401177026091906 3.40777598978751 3.424259372526096 3.435846433621081 3.445001937877656 3.447215326423599 3.466500324258321 3.496335771780778 3.498261890607032 3.525896628494842 3.550215158651694 3.587040773972411 3.591337838935608 3.598486741570843 3.624783410872607 3.637684796476905 3.653042350005317 3.659594662386923 3.669839693286666 3.675314648961579 3.676570805196315 3.693510770935168 3.700599285814474 3.712732666501156 3.725889265995356 3.728806916286573 3.737575678868684 3.737640745130216 3.750319896857612 3.766264089362134 3.794839201090781 3.796482184690774 3.816856416946188 3.827728663378093 3.831036527965425 3.849869447193602 3.850168159123043 3.850300845641791 3.870924309170324 3.880258694019726 3.934771313609195 3.967309085255758 3.970291913552122 3.983056440768356 3.987633758403662 4.020384449024863 4.03328099952925 4.043073489125093 4.057518917478322 4.080979358171917 4.131447422745107 4.13323353081808 4.14388459674826 4.15445190993935 4.178274397261848 4.243628001636987 4.255180963745262 4.256188338927372 4.315835089910593 4.323528187705366 4.343172424194938 4.357715673055751 4.358835834519239 4.360156889436634 4.362942117524167 4.363098624788363 4.381690282465024 4.412736410900316 4.412778981044502 4.430787553370068 4.442651256490317 4.448418932931327 4.494170404470387 4.516744556825715 4.52713936959471 4.548733055985126 4.569714490304562 4.59170044353263 4.605155996397983 4.605242940947991 4.629862798578463 4.649424629297087 4.654429533956064 4.658948564073307 4.663331322393925 4.672741511961561 4.677490847567717 4.686764703424206 4.707318789136448 4.749317899616689 4.754032678873459 4.755490465765986 4.756908335620226 4.761806895306663 4.764808391879312 4.774858581905033 4.774924637360026 4.828548979652879 4.844187086458591 4.883025211799247 4.901568155021455 4.907544117680292 4.908056053531867 4.927253685157205 4.945207488773801 4.945256827797232 4.952173058084705 4.983606621708336 5.000584958242754 5.01396308418893 5.014443784488533 5.039884572964992 5.072248590936808 5.108771923346613 5.12735419916178 5.132852926820505 5.146028211303397 5.158248299892336 5.178836964178177 5.178970608915471 5.181449722914155 5.198461365947709 5.210480250531378 5.216832991062214 5.233778845410465 5.246452553112158 5.260581348332298 5.27556037942542 5.286171927979069 5.288267030694535 5.293315555829349 5.295247341944374 5.305789381386738 5.327930463402223 5.351858133476067 5.361852817838315 5.392026766517009 5.418320158942733 5.427161519729163 5.487695442128418 5.511414398014781 5.531050789197131 5.535779814289461 5.578733578716419 5.581791670759578 5.593699382398812 5.598421958998375 5.629239797571959 5.674261469894548 5.698100710092929 5.74790412745876 5.789910004502656 5.795269027081676 5.83627165770228 5.857933154483459 5.91384877998279 5.916202062607435 5.938854596835685 6.036376680772958 6.045005314036012 6.091975207898088 6.093569770045136 6.134592158096624 6.189290290437902 6.417444895389531 6.476202836110654 6.531606225208026 6.532664111291542 6.624115110677359 6.838405200847344 6.89719976504262 6.913240209212707 # name: y # type: matrix # rows: 278 # columns: 1 0.5095128105889919 2.262890989492474 0.3903719176547771 0.003839794327176179 0.3917961576267153 0.496893837511402 7.567980505420947 1.685461076123281 0.0003700448443042101 0.001583723349696673 0.1150036957558873 12.87751485408255 2.870984752978563 0.1723395917674941 4.588390742570005 2.148519041909404 1.144045334454488 1.004323412123323 17.22379945006875 1.053407918098356 10.74263120456703 0.5462425905480218 2.606281302384316 1.824426951409311 0.2847278134999736 8.751508279579989 37.53685881304948 2.816933632549801 5.041012616330716 11.76866786127581 15.964992427774 2.704612128199408 0.07467211870818209 25.71792964454761 12.646384232166 31.03048801094295 7.157799659878497 0.8418322427126725 17.26157534096623 50.1090176598573 3.938591528206427 38.43861162504254 39.26418566485877 10.98116344553044 0.0006362411438755319 11.35863078981493 0.5858538344805686 4.059245305277956 10.51531849309278 38.79804374952369 22.80997050547674 12.71915897537465 6.668584472241394 0.0008172164025779054 3.528197481757015 3.589683182832203 53.84986923287117 36.9806756408968 51.81573326646112 0.9193214924445007 11.40291322301973 0.4892928254180323 25.56162911063156 10.47539394445285 4.5 16.67347386036222 36.61111542576936 6.140759039343298 2.67879046113072 6.965678000266726 7.145939865379905 17.53912632527845 5.510984395324954 4.565656077236426 0.6107524045157247 44.87800362415224 31.68304694687573 28.88041757211065 0.1326295092775012 15.69432191852325 0.9497159281593975 6.239608926743183 1.127931527145661 20.57511668565869 2.868866242400571 0.2383249665199263 0.3380965677503775 0.1189552204883287 18.30422151798077 2.243951000983381 86.60547316148667 60.5 17.43519099066326 0.0005645808026262814 25.1054243244803 35.2979971078162 2.617655847694602 0.1503558422449883 25.07963462065321 21.29308861248387 0.08062339413751202 93.61118902992681 11.46074728431915 3.2212220909995 1.083900153566068 17.65221538732596 1.92602520012967 53.2311882281321 22.28872505539069 3.583418585972517 13.94302863035861 10.7507774521911 21.01778409915793 1.127811889399884 1.887870662802517 5.653240354397706 11.50036957558872 5.777646429812394 50.7213718715639 4.661622164066101 14.88641784073798 72.56869163238274 53.75000964928081 18.02409241043141 66.57760750659131 3.989009822875355 0.1171681483774458 30.55919037570892 0.7412895458428543 83.33135616607402 0.07890085258687321 13.35910285199716 1.249366663768299 7.79494880360532 0.9181308748332482 106.3921500888627 19.00851241582381 2.763205174640964 53.1857790604999 41.93033263885174 15.7927846475879 15.44556024941331 0.09082545122977904 0.04928298427633633 5.134615943214277 144.2045655465189 43.76162830689096 9.57849896670632 8 42.4531833840209 6.016508594494942 21.51904670522827 5.717876684214008 8.286281189893426 119.6182328287741 32.0990231127498 202.5908175513118 13.17926760757914 1.979611199950268 18.52660612743934 439.0796236488824 670.0413786389963 25.7917458355514 123.3965219031716 152.323399026547 24.82013448743075 12.50518413769069 5.585321488235243 145.2882926543925 38.20824400245006 8.189037768595981 4.5 119.2384328499567 2.535606663085825 59.9730856777977 31.16914771144889 338 0.02485817059294484 0.7766392300095919 5.185276266923797 110.116552519697 8.601269367714169 270.8514958450469 543.5051672954272 0.05862129698714816 74.88223459185733 144.5 21.63534895991268 50.58683598060291 536.7538588085558 12.6952289795521 2.078276634789749 84.5 13.17535528840555 244.3457722262002 0.6805884503107203 3.726301055476219 49.57020185604524 425.5479680122224 179.3510453262694 51.77014068844062 0.10929374572545 5.134940811146142 30.96112585651044 2 143.1443174846983 0.7592791592896813 82.86905454705295 57.87230629294996 18 112.5 7.916787061613076 2.097412593499173 450 0.5 144.5 34.19672040897215 80.24143186888391 59.51029515959627 60.71257252937583 225.5462885974688 312.5 2273.573248113467 125.3902452855249 107.881261698402 12.5 45.99355213633316 93.26797939755375 165.4852034614071 35.77962908834288 4.5 8.632186775251466 51.15784902960518 24.5 1.875114482072241 288 0.2068083135269022 42.53473699158519 0.5 1555.619385970493 98 110.3351589580429 69.62635351188125 40.5 14.74306022481423 38.11485731129793 1.261804747487579 89.37477174828831 86.35282028414471 696.8618376765238 28.72606530132975 1394.700550373311 648 1.805052914514951 248.24852220784 351.8088925759497 1717.05861787253 266.1121842193227 576.4607548007504 1200.5 1152 248.6603663960368 512 220.5 102.7360122575716 242 1233.477909589782 162 2599.462654032517 0.5 73.53753364090731 1012.5 1104.5 1574.372465098846 2.534770870396374 882 2112.5 180.5 # name: weights # type: matrix # rows: 278 # columns: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 # name: censor # type: scalar 0 # name: baseline # type: scalar 0 # name: style # type: sq_string # elements: 1 # length: 1 n # name: scales # type: scalar 1 # name: xlim # type: matrix # rows: 2 # columns: 1 0 0 # name: evaluation_structure # type: scalar struct # ndims: 2 1 1 # length: 8 # name: type # type: sq_string # elements: 1 # length: 4 tree # name: module # type: scalar struct # ndims: 2 1 1 # length: 3 # name: name # type: sq_string # elements: 1 # length: 3 std # name: directory # type: null_sq_string # elements: 0 # name: parameters # type: scalar 0 # name: lower_left # type: scalar 0 # name: upper_right # type: scalar 0 # name: grid # type: scalar 10 # name: cut # type: scalar 0.8 # name: maxk # type: scalar 1000 # name: derivative # type: scalar 0 # name: smoothing_parameters # type: scalar struct # ndims: 2 1 1 # length: 11 # name: alpha # type: matrix # rows: 1 # columns: 3 0.7 0 0 # name: adaptive_criterion # type: sq_string # elements: 1 # length: 2 cp # name: degree # type: scalar 2 # name: family # type: sq_string # elements: 1 # length: 5 gamma # name: link # type: sq_string # elements: 1 # length: 7 default # name: kernel # type: sq_string # elements: 1 # length: 4 tcub # name: kernel_type # type: sq_string # elements: 1 # length: 3 sph # name: deren # type: scalar 0 # name: deit # type: sq_string # elements: 1 # length: 7 default # name: demint # type: scalar 20 # name: debug # type: scalar 0 # name: fit_points # type: scalar struct # ndims: 2 1 1 # length: 6 # name: evaluation_points # type: matrix # rows: 1 # columns: 7 -0.6837237318715028 6.913240209212707 3.114758238670602 1.21551725339955 2.165137746035076 5.013999223941655 4.064378731306128 # name: fitted_values # type: matrix # rows: 7 # columns: 11 -0.01330035006682273 0.03549149179896849 0.1171744754683572 -0.1157830276837744 0.1436402017837177 -0.1560111882333693 -107.7016511367838 1.80158141020965 80.52755086076489 6.283471469295979 2 -0.00322819774656935 -0.002942076412471462 0.000229194745680672 0.0003147470408328135 0.004963490633641321 0.006166109709918072 -366.3976007523046 2.805436492021192 267.1463897916529 16.38279486152116 2 -0.1382583082248194 -0.3151712696066232 0.02790531465043584 0.03272622243426083 0.03240992631060767 0.03768146004595135 -161.6897918193248 2.133747885643269 130.4556649799812 1.729428847787989 2 0.07272184174380869 0.07335641909763269 0.01023466211516438 0.02742166543143666 0.02773520037321356 0.02631840711620755 -114.5747801738878 1.928611167838315 87.50517249826758 3.471247450024657 2 0.08100726007375658 0.05350461332979739 0.0261079364404702 0.001117115458406925 0.03533605016257906 -0.008540646183670259 -144.5321677263554 1.876727159571737 113.5097456430282 2.542181043101372 2 0.0008821100229878809 0.003341839823870485 0.002664146062638081 -0.009764906705681444 0.004653318505989421 -0.01351712615463752 -337.9024717149328 2.528354686181343 247.1484042796377 5.710033194810371 2 -0.03332092173150825 0.005610510035149119 0.0106149310659126 0.005675385127543298 0.01426256403251089 0.005931200770144539 -321.7080844695797 2.350231475064818 235.9857941424283 3.75878515578307 2 # name: evaluation_vectors # type: scalar struct # ndims: 2 1 1 # length: 4 # name: cell # type: matrix # rows: 2 # columns: 1 0 1 # name: splitvar # type: matrix # rows: 1 # columns: 7 0 0 0 0 0 0 0 # name: lo # type: matrix # rows: 1 # columns: 7 0 0 0 0 2 1 2 # name: hi # type: matrix # rows: 1 # columns: 7 0 0 1 2 3 2 5 # name: fit_limits # type: matrix # rows: 1 # columns: 2 -0.6837237318715028 6.913240209212707 # name: family_link # type: matrix # rows: 1 # columns: 2 7 4 # name: kappa # type: matrix # rows: 1 # columns: 6 -375.7721737197621 4.326393078218434 3.999531468963915 1 0 1 # name: parametric_component # type: matrix # rows: 1 # columns: 31 3.90847716899872 3.785893132825661 1.141655260726247 0.06671440640915378 0.05997601419754899 0.1360995310701148 0.1762974062515398 0.4032892358880494 1.169276954369894e-16 0 1.169276954369894e-16 0.9999999922835233 -1.561047579446026e-10 0 -1.561047579446026e-10 1.596710771828427 0.6764432915558409 0.2912884333568486 0.6764432880157893 -0.2059720129428417 0.9566352745913731 -0.205972040072825 -0.7071067834446033 1.908104674112378e-08 0.7071067789284913 -0.1121234137810513 0.1476679348555476 0.1371987652463793 0.05997601419754899 0.04529459702766524 0.03905309530472187