view rDiff/examples/results/variance_function_2.mat @ 2:233c30f91d66

updated python based GFF parsing module which will handle GTF/GFF/GFF3 file types
author vipints <vipin@cbio.mskcc.org>
date Tue, 08 Oct 2013 07:15:44 -0400
parents 0f80a5141704
children
line wrap: on
line source

# Created by Octave 3.6.2, Tue Feb 05 20:09:05 2013 UTC <galaxy@ip-10-149-27-54>
# name: VARIANCE2
# type: scalar struct
# ndims: 2
 1 1
# length: 5
# name: data
# type: scalar struct
# ndims: 2
 1 1
# length: 8
# name: x
# type: matrix
# rows: 278
# columns: 1
 -0.6837237318715028
 0.06174800706844703
 0.3938359345009124
 0.6936268096559794
 0.9122011167435973
 0.9161666558511761
 1.086562522614452
 1.090141698976293
 1.098632846081095
 1.098700261688975
 1.247630065657648
 1.508740013379464
 1.618800348362312
 1.702738617754124
 1.770683859700156
 1.792807669949503
 1.87635935853639
 1.941669549847872
 1.941970369931589
 2.017802948251929
 2.090749535590951
 2.140229670178254
 2.1500519573627
 2.196694709486154
 2.304005701521318
 2.304500516266279
 2.344717584725904
 2.347986504652476
 2.352634472154888
 2.406323592433772
 2.449225908696831
 2.478076857683252
 2.48382232268649
 2.504058279551312
 2.557647373888049
 2.563523151155118
 2.563735930504469
 2.67767480537634
 2.68021091770176
 2.685152330257218
 2.6866168913027
 2.692091126103321
 2.696648173029505
 2.701138866636309
 2.70805161496842
 2.739678738898509
 2.74093288633136
 2.746278502501331
 2.748323566646953
 2.762180911756001
 2.764268674173852
 2.767844607969534
 2.771345324739451
 2.833214757922426
 2.857079620381533
 2.86149897045788
 2.880732388557353
 2.880949884236717
 2.891782292595328
 2.891787454295845
 2.916986833055203
 2.917762953154436
 2.928815529016648
 2.939898166242062
 2.970414465569701
 3.05028210275491
 3.056550252011113
 3.08649424007081
 3.089021357119376
 3.090526280779387
 3.09061347841052
 3.090805858442458
 3.093298287488152
 3.11055019199932
 3.114662332422402
 3.115725414147837
 3.13534476640749
 3.15214874092909
 3.157818952910483
 3.177085977697478
 3.180068491795122
 3.196507095511479
 3.219776951192828
 3.219938595156166
 3.236271063210053
 3.238596262695897
 3.238622270382975
 3.258184511042348
 3.258209498242059
 3.261307672704753
 3.273138257683985
 3.277144732992177
 3.295644661278247
 3.295837253233735
 3.30967197554672
 3.31252126260721
 3.31364708015119
 3.315551573005444
 3.319025994877266
 3.333296891516658
 3.367104971509389
 3.371089020913112
 3.381333481597382
 3.38259036877319
 3.382894834196399
 3.401101232166583
 3.401177026091906
 3.40777598978751
 3.424259372526096
 3.435846433621081
 3.445001937877656
 3.447215326423599
 3.466500324258321
 3.496335771780778
 3.498261890607032
 3.525896628494842
 3.550215158651694
 3.587040773972411
 3.591337838935608
 3.598486741570843
 3.624783410872607
 3.637684796476905
 3.653042350005317
 3.659594662386923
 3.669839693286666
 3.675314648961579
 3.676570805196315
 3.693510770935168
 3.700599285814474
 3.712732666501156
 3.725889265995356
 3.728806916286573
 3.737575678868684
 3.737640745130216
 3.750319896857612
 3.766264089362134
 3.794839201090781
 3.796482184690774
 3.816856416946188
 3.827728663378093
 3.831036527965425
 3.849869447193602
 3.850168159123043
 3.850300845641791
 3.870924309170324
 3.880258694019726
 3.934771313609195
 3.967309085255758
 3.970291913552122
 3.983056440768356
 3.987633758403662
 4.020384449024863
 4.03328099952925
 4.043073489125093
 4.057518917478322
 4.080979358171917
 4.131447422745107
 4.13323353081808
 4.14388459674826
 4.15445190993935
 4.178274397261848
 4.243628001636987
 4.255180963745262
 4.256188338927372
 4.315835089910593
 4.323528187705366
 4.343172424194938
 4.357715673055751
 4.358835834519239
 4.360156889436634
 4.362942117524167
 4.363098624788363
 4.381690282465024
 4.412736410900316
 4.412778981044502
 4.430787553370068
 4.442651256490317
 4.448418932931327
 4.494170404470387
 4.516744556825715
 4.52713936959471
 4.548733055985126
 4.569714490304562
 4.59170044353263
 4.605155996397983
 4.605242940947991
 4.629862798578463
 4.649424629297087
 4.654429533956064
 4.658948564073307
 4.663331322393925
 4.672741511961561
 4.677490847567717
 4.686764703424206
 4.707318789136448
 4.749317899616689
 4.754032678873459
 4.755490465765986
 4.756908335620226
 4.761806895306663
 4.764808391879312
 4.774858581905033
 4.774924637360026
 4.828548979652879
 4.844187086458591
 4.883025211799247
 4.901568155021455
 4.907544117680292
 4.908056053531867
 4.927253685157205
 4.945207488773801
 4.945256827797232
 4.952173058084705
 4.983606621708336
 5.000584958242754
 5.01396308418893
 5.014443784488533
 5.039884572964992
 5.072248590936808
 5.108771923346613
 5.12735419916178
 5.132852926820505
 5.146028211303397
 5.158248299892336
 5.178836964178177
 5.178970608915471
 5.181449722914155
 5.198461365947709
 5.210480250531378
 5.216832991062214
 5.233778845410465
 5.246452553112158
 5.260581348332298
 5.27556037942542
 5.286171927979069
 5.288267030694535
 5.293315555829349
 5.295247341944374
 5.305789381386738
 5.327930463402223
 5.351858133476067
 5.361852817838315
 5.392026766517009
 5.418320158942733
 5.427161519729163
 5.487695442128418
 5.511414398014781
 5.531050789197131
 5.535779814289461
 5.578733578716419
 5.581791670759578
 5.593699382398812
 5.598421958998375
 5.629239797571959
 5.674261469894548
 5.698100710092929
 5.74790412745876
 5.789910004502656
 5.795269027081676
 5.83627165770228
 5.857933154483459
 5.91384877998279
 5.916202062607435
 5.938854596835685
 6.036376680772958
 6.045005314036012
 6.091975207898088
 6.093569770045136
 6.134592158096624
 6.189290290437902
 6.417444895389531
 6.476202836110654
 6.531606225208026
 6.532664111291542
 6.624115110677359
 6.838405200847344
 6.89719976504262
 6.913240209212707


# name: y
# type: matrix
# rows: 278
# columns: 1
 0.5095128105889919
 2.262890989492474
 0.3903719176547771
 0.003839794327176179
 0.3917961576267153
 0.496893837511402
 7.567980505420947
 1.685461076123281
 0.0003700448443042101
 0.001583723349696673
 0.1150036957558873
 12.87751485408255
 2.870984752978563
 0.1723395917674941
 4.588390742570005
 2.148519041909404
 1.144045334454488
 1.004323412123323
 17.22379945006875
 1.053407918098356
 10.74263120456703
 0.5462425905480218
 2.606281302384316
 1.824426951409311
 0.2847278134999736
 8.751508279579989
 37.53685881304948
 2.816933632549801
 5.041012616330716
 11.76866786127581
 15.964992427774
 2.704612128199408
 0.07467211870818209
 25.71792964454761
 12.646384232166
 31.03048801094295
 7.157799659878497
 0.8418322427126725
 17.26157534096623
 50.1090176598573
 3.938591528206427
 38.43861162504254
 39.26418566485877
 10.98116344553044
 0.0006362411438755319
 11.35863078981493
 0.5858538344805686
 4.059245305277956
 10.51531849309278
 38.79804374952369
 22.80997050547674
 12.71915897537465
 6.668584472241394
 0.0008172164025779054
 3.528197481757015
 3.589683182832203
 53.84986923287117
 36.9806756408968
 51.81573326646112
 0.9193214924445007
 11.40291322301973
 0.4892928254180323
 25.56162911063156
 10.47539394445285
 4.5
 16.67347386036222
 36.61111542576936
 6.140759039343298
 2.67879046113072
 6.965678000266726
 7.145939865379905
 17.53912632527845
 5.510984395324954
 4.565656077236426
 0.6107524045157247
 44.87800362415224
 31.68304694687573
 28.88041757211065
 0.1326295092775012
 15.69432191852325
 0.9497159281593975
 6.239608926743183
 1.127931527145661
 20.57511668565869
 2.868866242400571
 0.2383249665199263
 0.3380965677503775
 0.1189552204883287
 18.30422151798077
 2.243951000983381
 86.60547316148667
 60.5
 17.43519099066326
 0.0005645808026262814
 25.1054243244803
 35.2979971078162
 2.617655847694602
 0.1503558422449883
 25.07963462065321
 21.29308861248387
 0.08062339413751202
 93.61118902992681
 11.46074728431915
 3.2212220909995
 1.083900153566068
 17.65221538732596
 1.92602520012967
 53.2311882281321
 22.28872505539069
 3.583418585972517
 13.94302863035861
 10.7507774521911
 21.01778409915793
 1.127811889399884
 1.887870662802517
 5.653240354397706
 11.50036957558872
 5.777646429812394
 50.7213718715639
 4.661622164066101
 14.88641784073798
 72.56869163238274
 53.75000964928081
 18.02409241043141
 66.57760750659131
 3.989009822875355
 0.1171681483774458
 30.55919037570892
 0.7412895458428543
 83.33135616607402
 0.07890085258687321
 13.35910285199716
 1.249366663768299
 7.79494880360532
 0.9181308748332482
 106.3921500888627
 19.00851241582381
 2.763205174640964
 53.1857790604999
 41.93033263885174
 15.7927846475879
 15.44556024941331
 0.09082545122977904
 0.04928298427633633
 5.134615943214277
 144.2045655465189
 43.76162830689096
 9.57849896670632
 8
 42.4531833840209
 6.016508594494942
 21.51904670522827
 5.717876684214008
 8.286281189893426
 119.6182328287741
 32.0990231127498
 202.5908175513118
 13.17926760757914
 1.979611199950268
 18.52660612743934
 439.0796236488824
 670.0413786389963
 25.7917458355514
 123.3965219031716
 152.323399026547
 24.82013448743075
 12.50518413769069
 5.585321488235243
 145.2882926543925
 38.20824400245006
 8.189037768595981
 4.5
 119.2384328499567
 2.535606663085825
 59.9730856777977
 31.16914771144889
 338
 0.02485817059294484
 0.7766392300095919
 5.185276266923797
 110.116552519697
 8.601269367714169
 270.8514958450469
 543.5051672954272
 0.05862129698714816
 74.88223459185733
 144.5
 21.63534895991268
 50.58683598060291
 536.7538588085558
 12.6952289795521
 2.078276634789749
 84.5
 13.17535528840555
 244.3457722262002
 0.6805884503107203
 3.726301055476219
 49.57020185604524
 425.5479680122224
 179.3510453262694
 51.77014068844062
 0.10929374572545
 5.134940811146142
 30.96112585651044
 2
 143.1443174846983
 0.7592791592896813
 82.86905454705295
 57.87230629294996
 18
 112.5
 7.916787061613076
 2.097412593499173
 450
 0.5
 144.5
 34.19672040897215
 80.24143186888391
 59.51029515959627
 60.71257252937583
 225.5462885974688
 312.5
 2273.573248113467
 125.3902452855249
 107.881261698402
 12.5
 45.99355213633316
 93.26797939755375
 165.4852034614071
 35.77962908834288
 4.5
 8.632186775251466
 51.15784902960518
 24.5
 1.875114482072241
 288
 0.2068083135269022
 42.53473699158519
 0.5
 1555.619385970493
 98
 110.3351589580429
 69.62635351188125
 40.5
 14.74306022481423
 38.11485731129793
 1.261804747487579
 89.37477174828831
 86.35282028414471
 696.8618376765238
 28.72606530132975
 1394.700550373311
 648
 1.805052914514951
 248.24852220784
 351.8088925759497
 1717.05861787253
 266.1121842193227
 576.4607548007504
 1200.5
 1152
 248.6603663960368
 512
 220.5
 102.7360122575716
 242
 1233.477909589782
 162
 2599.462654032517
 0.5
 73.53753364090731
 1012.5
 1104.5
 1574.372465098846
 2.534770870396374
 882
 2112.5
 180.5


# name: weights
# type: matrix
# rows: 278
# columns: 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1


# name: censor
# type: scalar
0


# name: baseline
# type: scalar
0


# name: style
# type: sq_string
# elements: 1
# length: 1
n


# name: scales
# type: scalar
1


# name: xlim
# type: matrix
# rows: 2
# columns: 1
 0
 0




# name: evaluation_structure
# type: scalar struct
# ndims: 2
 1 1
# length: 8
# name: type
# type: sq_string
# elements: 1
# length: 4
tree


# name: module
# type: scalar struct
# ndims: 2
 1 1
# length: 3
# name: name
# type: sq_string
# elements: 1
# length: 3
std


# name: directory
# type: null_sq_string
# elements: 0


# name: parameters
# type: scalar
0




# name: lower_left
# type: scalar
0


# name: upper_right
# type: scalar
0


# name: grid
# type: scalar
10


# name: cut
# type: scalar
0.8


# name: maxk
# type: scalar
1000


# name: derivative
# type: scalar
0




# name: smoothing_parameters
# type: scalar struct
# ndims: 2
 1 1
# length: 11
# name: alpha
# type: matrix
# rows: 1
# columns: 3
 0.7 0 0


# name: adaptive_criterion
# type: sq_string
# elements: 1
# length: 2
cp


# name: degree
# type: scalar
2


# name: family
# type: sq_string
# elements: 1
# length: 5
gamma


# name: link
# type: sq_string
# elements: 1
# length: 7
default


# name: kernel
# type: sq_string
# elements: 1
# length: 4
tcub


# name: kernel_type
# type: sq_string
# elements: 1
# length: 3
sph


# name: deren
# type: scalar
0


# name: deit
# type: sq_string
# elements: 1
# length: 7
default


# name: demint
# type: scalar
20


# name: debug
# type: scalar
0




# name: fit_points
# type: scalar struct
# ndims: 2
 1 1
# length: 6
# name: evaluation_points
# type: matrix
# rows: 1
# columns: 7
 -0.6837237318715028 6.913240209212707 3.114758238670602 1.21551725339955 2.165137746035076 5.013999223941655 4.064378731306128


# name: fitted_values
# type: matrix
# rows: 7
# columns: 11
 -0.01330035006682273 0.03549149179896849 0.1171744754683572 -0.1157830276837744 0.1436402017837177 -0.1560111882333693 -107.7016511367838 1.80158141020965 80.52755086076489 6.283471469295979 2
 -0.00322819774656935 -0.002942076412471462 0.000229194745680672 0.0003147470408328135 0.004963490633641321 0.006166109709918072 -366.3976007523046 2.805436492021192 267.1463897916529 16.38279486152116 2
 -0.1382583082248194 -0.3151712696066232 0.02790531465043584 0.03272622243426083 0.03240992631060767 0.03768146004595135 -161.6897918193248 2.133747885643269 130.4556649799812 1.729428847787989 2
 0.07272184174380869 0.07335641909763269 0.01023466211516438 0.02742166543143666 0.02773520037321356 0.02631840711620755 -114.5747801738878 1.928611167838315 87.50517249826758 3.471247450024657 2
 0.08100726007375658 0.05350461332979739 0.0261079364404702 0.001117115458406925 0.03533605016257906 -0.008540646183670259 -144.5321677263554 1.876727159571737 113.5097456430282 2.542181043101372 2
 0.0008821100229878809 0.003341839823870485 0.002664146062638081 -0.009764906705681444 0.004653318505989421 -0.01351712615463752 -337.9024717149328 2.528354686181343 247.1484042796377 5.710033194810371 2
 -0.03332092173150825 0.005610510035149119 0.0106149310659126 0.005675385127543298 0.01426256403251089 0.005931200770144539 -321.7080844695797 2.350231475064818 235.9857941424283 3.75878515578307 2


# name: evaluation_vectors
# type: scalar struct
# ndims: 2
 1 1
# length: 4
# name: cell
# type: matrix
# rows: 2
# columns: 1
 0
 1


# name: splitvar
# type: matrix
# rows: 1
# columns: 7
 0 0 0 0 0 0 0


# name: lo
# type: matrix
# rows: 1
# columns: 7
 0 0 0 0 2 1 2


# name: hi
# type: matrix
# rows: 1
# columns: 7
 0 0 1 2 3 2 5




# name: fit_limits
# type: matrix
# rows: 1
# columns: 2
 -0.6837237318715028 6.913240209212707


# name: family_link
# type: matrix
# rows: 1
# columns: 2
 7 4


# name: kappa
# type: matrix
# rows: 1
# columns: 6
 -375.7721737197621 4.326393078218434 3.999531468963915 1 0 1




# name: parametric_component
# type: matrix
# rows: 1
# columns: 31
 3.90847716899872 3.785893132825661 1.141655260726247 0.06671440640915378 0.05997601419754899 0.1360995310701148 0.1762974062515398 0.4032892358880494 1.169276954369894e-16 0 1.169276954369894e-16 0.9999999922835233 -1.561047579446026e-10 0 -1.561047579446026e-10 1.596710771828427 0.6764432915558409 0.2912884333568486 0.6764432880157893 -0.2059720129428417 0.9566352745913731 -0.205972040072825 -0.7071067834446033 1.908104674112378e-08 0.7071067789284913 -0.1121234137810513 0.1476679348555476 0.1371987652463793 0.05997601419754899 0.04529459702766524 0.03905309530472187