Mercurial > repos > xuebing > sharplabtool
diff tools/discreteWavelet/execute_dwt_IvC_all.pl @ 0:9071e359b9a3
Uploaded
author | xuebing |
---|---|
date | Fri, 09 Mar 2012 19:37:19 -0500 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/tools/discreteWavelet/execute_dwt_IvC_all.pl Fri Mar 09 19:37:19 2012 -0500 @@ -0,0 +1,210 @@ +#!/usr/bin/perl -w +use warnings; +use IO::Handle; + +$usage = "execute_dwt_IvC_all.pl [TABULAR.in] [TABULAR.in] [TABULAR.out] [PDF.out] \n"; +die $usage unless @ARGV == 4; + +#get the input arguments +my $firstInputFile = $ARGV[0]; +my $secondInputFile = $ARGV[1]; +my $firstOutputFile = $ARGV[2]; +my $secondOutputFile = $ARGV[3]; + +open (INPUT1, "<", $firstInputFile) || die("Could not open file $firstInputFile \n"); +open (INPUT2, "<", $secondInputFile) || die("Could not open file $secondInputFile \n"); +open (OUTPUT1, ">", $firstOutputFile) || die("Could not open file $firstOutputFile \n"); +open (OUTPUT2, ">", $secondOutputFile) || die("Could not open file $secondOutputFile \n"); +open (ERROR, ">", "error.txt") or die ("Could not open file error.txt \n"); + +#save all error messages into the error file $errorFile using the error file handle ERROR +STDERR -> fdopen( \*ERROR, "w" ) or die ("Could not direct errors to the error file error.txt \n"); + + +print "There are two input data files: \n"; +print "The input data file is: $firstInputFile \n"; +print "The control data file is: $secondInputFile \n"; + +# IvC test +$test = "IvC"; + +# construct an R script to implement the IvC test +print "\n"; + +$r_script = "get_dwt_IvC_test.r"; +print "$r_script \n"; + +# R script +open(Rcmd, ">", "$r_script") or die "Cannot open $r_script \n\n"; +print Rcmd " + ########################################################################################### + # code to do wavelet Indel vs. Control + # signal is the difference I-C; function is second moment i.e. variance from zero not mean + # to perform wavelet transf. of signal, scale-by-scale analysis of the function + # create null bands by permuting the original data series + # generate plots and table matrix of correlation coefficients including p-values + ############################################################################################ + library(\"Rwave\"); + library(\"wavethresh\"); + library(\"waveslim\"); + + options(echo = FALSE) + + # normalize data + norm <- function(data){ + v <- (data - mean(data))/sd(data); + if(sum(is.na(v)) >= 1){ + v <- data; + } + return(v); + } + + dwt_cor <- function(data.short, names.short, data.long, names.long, test, pdf, table, filter = 4, bc = \"symmetric\", wf = \"haar\", boundary = \"reflection\") { + print(test); + print(pdf); + print(table); + + pdf(file = pdf); + final_pvalue = NULL; + title = NULL; + + short.levels <- wd(data.short[, 1], filter.number = filter, bc = bc)\$nlevels; + title <- c(\"motif\"); + for (i in 1:short.levels){ + title <- c(title, paste(i, \"moment2\", sep = \"_\"), paste(i, \"pval\", sep = \"_\"), paste(i, \"test\", sep = \"_\")); + } + print(title); + + # loop to compare a vs a + for(i in 1:length(names.short)){ + wave1.dwt = NULL; + m2.dwt = diff = var.dwt = NULL; + out = NULL; + out <- vector(length = length(title)); + + print(names.short[i]); + print(names.long[i]); + + # need exit if not comparing motif(a) vs motif(a) + if (names.short[i] != names.long[i]){ + stop(paste(\"motif\", names.short[i], \"is not the same as\", names.long[i], sep = \" \")); + } + else { + # signal is the difference I-C data sets + diff<-data.short[,i]-data.long[,i]; + + # normalize the signal + diff<-norm(diff); + + # function is 2nd moment + # 2nd moment m_j = 1/N[sum_N(W_j + V_J)^2] = 1/N sum_N(W_j)^2 + (X_bar)^2 + wave1.dwt <- dwt(diff, wf = wf, short.levels, boundary = boundary); + var.dwt <- wave.variance(wave1.dwt); + m2.dwt <- vector(length = short.levels) + for(level in 1:short.levels){ + m2.dwt[level] <- var.dwt[level, 1] + (mean(diff)^2); + } + + # CI bands by permutation of time series + feature1 = feature2 = NULL; + feature1 = data.short[, i]; + feature2 = data.long[, i]; + null = results = med = NULL; + m2_25 = m2_975 = NULL; + + for (k in 1:1000) { + nk_1 = nk_2 = NULL; + m2_null = var_null = NULL; + null.levels = null_wave1 = null_diff = NULL; + nk_1 <- sample(feature1, length(feature1), replace = FALSE); + nk_2 <- sample(feature2, length(feature2), replace = FALSE); + null.levels <- wd(nk_1, filter.number = filter, bc = bc)\$nlevels; + null_diff <- nk_1-nk_2; + null_diff <- norm(null_diff); + null_wave1 <- dwt(null_diff, wf = wf, short.levels, boundary = boundary); + var_null <- wave.variance(null_wave1); + m2_null <- vector(length = null.levels); + for(level in 1:null.levels){ + m2_null[level] <- var_null[level, 1] + (mean(null_diff)^2); + } + null= rbind(null, m2_null); + } + + null <- apply(null, 2, sort, na.last = TRUE); + m2_25 <- null[25,]; + m2_975 <- null[975,]; + med <- apply(null, 2, median, na.rm = TRUE); + + # plot + results <- cbind(m2.dwt, m2_25, m2_975); + matplot(results, type = \"b\", pch = \"*\", lty = 1, col = c(1, 2, 2), xlab = \"Wavelet Scale\", ylab = c(\"Wavelet 2nd Moment\", test), main = (names.short[i]), cex.main = 0.75); + abline(h = 1); + + # get pvalues by comparison to null distribution + out <- c(names.short[i]); + for (m in 1:length(m2.dwt)){ + print(paste(\"scale\", m, sep = \" \")); + print(paste(\"m2\", m2.dwt[m], sep = \" \")); + print(paste(\"median\", med[m], sep = \" \")); + out <- c(out, format(m2.dwt[m], digits = 4)); + pv = NULL; + if(is.na(m2.dwt[m])){ + pv <- \"NA\"; + } + else { + if (m2.dwt[m] >= med[m]){ + # R tail test + tail <- \"R\"; + pv <- (length(which(null[, m] >= m2.dwt[m])))/(length(na.exclude(null[, m]))); + } + else{ + if (m2.dwt[m] < med[m]){ + # L tail test + tail <- \"L\"; + pv <- (length(which(null[, m] <= m2.dwt[m])))/(length(na.exclude(null[, m]))); + } + } + } + out <- c(out, pv); + print(pv); + out <- c(out, tail); + } + final_pvalue <-rbind(final_pvalue, out); + print(out); + } + } + + colnames(final_pvalue) <- title; + write.table(final_pvalue, file = table, sep = \"\\t\", quote = FALSE, row.names = FALSE); + dev.off(); + }\n"; + +print Rcmd " + # execute + # read in data + + inputData <- read.delim(\"$firstInputFile\"); + inputDataNames <- colnames(inputData); + + controlData <- read.delim(\"$secondInputFile\"); + controlDataNames <- colnames(controlData); + + # call the test function to implement IvC test + dwt_cor(inputData, inputDataNames, controlData, controlDataNames, test = \"$test\", pdf = \"$secondOutputFile\", table = \"$firstOutputFile\"); + print (\"done with the correlation test\"); +\n"; + +print Rcmd "#eof\n"; + +close Rcmd; + +system("echo \"wavelet IvC test started on \`hostname\` at \`date\`\"\n"); +system("R --no-restore --no-save --no-readline < $r_script > $r_script.out\n"); +system("echo \"wavelet IvC test ended on \`hostname\` at \`date\`\"\n"); + +#close the input and output and error files +close(ERROR); +close(OUTPUT2); +close(OUTPUT1); +close(INPUT2); +close(INPUT1); \ No newline at end of file