diff tools/discreteWavelet/execute_dwt_IvC_all.pl @ 0:9071e359b9a3

Uploaded
author xuebing
date Fri, 09 Mar 2012 19:37:19 -0500
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tools/discreteWavelet/execute_dwt_IvC_all.pl	Fri Mar 09 19:37:19 2012 -0500
@@ -0,0 +1,210 @@
+#!/usr/bin/perl -w
+use warnings;
+use IO::Handle;
+
+$usage = "execute_dwt_IvC_all.pl [TABULAR.in] [TABULAR.in] [TABULAR.out] [PDF.out]  \n";
+die $usage unless @ARGV == 4;
+
+#get the input arguments
+my $firstInputFile = $ARGV[0];
+my $secondInputFile = $ARGV[1];
+my $firstOutputFile = $ARGV[2];
+my $secondOutputFile = $ARGV[3];
+
+open (INPUT1, "<", $firstInputFile) || die("Could not open file $firstInputFile \n");
+open (INPUT2, "<", $secondInputFile) || die("Could not open file $secondInputFile \n");
+open (OUTPUT1, ">", $firstOutputFile) || die("Could not open file $firstOutputFile \n");
+open (OUTPUT2, ">", $secondOutputFile) || die("Could not open file $secondOutputFile \n");
+open (ERROR,  ">", "error.txt")  or die ("Could not open file error.txt \n");
+
+#save all error messages into the error file $errorFile using the error file handle ERROR
+STDERR -> fdopen( \*ERROR,  "w" ) or die ("Could not direct errors to the error file error.txt \n");
+
+
+print "There are two input data files: \n";
+print "The input data file is: $firstInputFile \n";
+print "The control data file is: $secondInputFile \n";
+
+# IvC test
+$test = "IvC";
+
+# construct an R script to implement the IvC test
+print "\n";
+
+$r_script = "get_dwt_IvC_test.r"; 
+print "$r_script \n";
+
+# R script
+open(Rcmd, ">", "$r_script") or die "Cannot open $r_script \n\n";
+print Rcmd "
+        ###########################################################################################
+        # code to do wavelet Indel vs. Control
+        # signal is the difference I-C; function is second moment i.e. variance from zero not mean
+        # to perform wavelet transf. of signal, scale-by-scale analysis of the function 
+        # create null bands by permuting the original data series
+        # generate plots and table matrix of correlation coefficients including p-values
+        ############################################################################################
+        library(\"Rwave\");
+        library(\"wavethresh\");
+        library(\"waveslim\");
+        
+        options(echo = FALSE)
+        
+        # normalize data
+        norm <- function(data){
+            v <- (data - mean(data))/sd(data);
+            if(sum(is.na(v)) >= 1){
+                v <- data;
+            }
+            return(v);
+        }
+        
+        dwt_cor <- function(data.short, names.short, data.long, names.long, test, pdf, table, filter = 4, bc = \"symmetric\", wf = \"haar\", boundary = \"reflection\") {
+            print(test);
+            print(pdf);
+            print(table);
+            
+            pdf(file = pdf);
+            final_pvalue = NULL;
+            title = NULL;
+                
+            short.levels <- wd(data.short[, 1], filter.number = filter, bc = bc)\$nlevels;
+            title <- c(\"motif\");
+            for (i in 1:short.levels){
+            	title <- c(title, paste(i, \"moment2\", sep = \"_\"), paste(i, \"pval\", sep = \"_\"), paste(i, \"test\", sep = \"_\"));
+            }
+            print(title);
+        
+            # loop to compare a vs a
+            for(i in 1:length(names.short)){
+        		wave1.dwt = NULL;
+        		m2.dwt = diff = var.dwt = NULL;
+        		out = NULL;
+                out <- vector(length = length(title));
+        
+        		print(names.short[i]);
+        		print(names.long[i]);
+                        
+        		# need exit if not comparing motif(a) vs motif(a)
+        		if (names.short[i] != names.long[i]){
+                	stop(paste(\"motif\", names.short[i], \"is not the same as\", names.long[i], sep = \" \"));
+        		}
+        		else {
+                	# signal is the difference I-C data sets
+                    diff<-data.short[,i]-data.long[,i];
+        
+                    # normalize the signal
+                    diff<-norm(diff);
+        
+                    # function is 2nd moment
+                    # 2nd moment m_j = 1/N[sum_N(W_j + V_J)^2] = 1/N sum_N(W_j)^2 + (X_bar)^2 
+            		wave1.dwt <- dwt(diff, wf = wf, short.levels, boundary = boundary);
+            		var.dwt <- wave.variance(wave1.dwt);
+                	m2.dwt <- vector(length = short.levels)
+                    for(level in 1:short.levels){
+                    	m2.dwt[level] <- var.dwt[level, 1] + (mean(diff)^2);
+                    }
+                                
+            		# CI bands by permutation of time series
+            		feature1 = feature2 = NULL;
+            		feature1 = data.short[, i];
+            		feature2 = data.long[, i];
+            		null = results = med = NULL; 
+            		m2_25 = m2_975 = NULL;
+            
+            		for (k in 1:1000) {
+                		nk_1 = nk_2 = NULL;
+                		m2_null = var_null = NULL;
+                		null.levels = null_wave1 = null_diff = NULL;
+                		nk_1 <- sample(feature1, length(feature1), replace = FALSE);
+                		nk_2 <- sample(feature2, length(feature2), replace = FALSE);
+                		null.levels <- wd(nk_1, filter.number = filter, bc = bc)\$nlevels;
+                		null_diff <- nk_1-nk_2;
+                		null_diff <- norm(null_diff);
+                		null_wave1 <- dwt(null_diff, wf = wf, short.levels, boundary = boundary);
+                        var_null <- wave.variance(null_wave1);
+                		m2_null <- vector(length = null.levels);
+                		for(level in 1:null.levels){
+                        	m2_null[level] <- var_null[level, 1] + (mean(null_diff)^2);
+                		}
+                		null= rbind(null, m2_null);
+            		}
+                
+            		null <- apply(null, 2, sort, na.last = TRUE);
+            		m2_25 <- null[25,];
+            		m2_975 <- null[975,];
+            		med <- apply(null, 2, median, na.rm = TRUE);
+
+            		# plot
+            		results <- cbind(m2.dwt, m2_25, m2_975);
+            		matplot(results, type = \"b\", pch = \"*\", lty = 1, col = c(1, 2, 2), xlab = \"Wavelet Scale\", ylab = c(\"Wavelet 2nd Moment\", test), main = (names.short[i]), cex.main = 0.75);
+            		abline(h = 1);
+
+            		# get pvalues by comparison to null distribution
+            		out <- c(names.short[i]);
+            		for (m in 1:length(m2.dwt)){
+                    	print(paste(\"scale\", m, sep = \" \"));
+                        print(paste(\"m2\", m2.dwt[m], sep = \" \"));
+                        print(paste(\"median\", med[m], sep = \" \"));
+                        out <- c(out, format(m2.dwt[m], digits = 4));	
+                        pv = NULL;
+                        if(is.na(m2.dwt[m])){
+                        	pv <- \"NA\"; 
+                        } 
+                        else {
+                        	if (m2.dwt[m] >= med[m]){
+                            	# R tail test
+                                tail <- \"R\";
+                                pv <- (length(which(null[, m] >= m2.dwt[m])))/(length(na.exclude(null[, m])));
+                            }
+                            else{
+                                if (m2.dwt[m] < med[m]){
+                                	# L tail test
+                                    tail <- \"L\";
+                                    pv <- (length(which(null[, m] <= m2.dwt[m])))/(length(na.exclude(null[, m])));
+                                }
+                            }
+                        }
+                        out <- c(out, pv);
+                        print(pv);  
+                        out <- c(out, tail);
+                    }
+                    final_pvalue <-rbind(final_pvalue, out);
+                    print(out);
+                }
+            }
+            
+            colnames(final_pvalue) <- title;
+            write.table(final_pvalue, file = table, sep = \"\\t\", quote = FALSE, row.names = FALSE);
+            dev.off();
+        }\n";
+
+print Rcmd "
+        # execute
+        # read in data 
+        
+        inputData <- read.delim(\"$firstInputFile\");
+        inputDataNames <- colnames(inputData);
+        
+        controlData <- read.delim(\"$secondInputFile\");
+        controlDataNames <- colnames(controlData);
+        
+        # call the test function to implement IvC test
+        dwt_cor(inputData, inputDataNames, controlData, controlDataNames, test = \"$test\", pdf = \"$secondOutputFile\", table = \"$firstOutputFile\");
+        print (\"done with the correlation test\");
+\n";
+
+print Rcmd "#eof\n";
+
+close Rcmd;
+
+system("echo \"wavelet IvC test started on \`hostname\` at \`date\`\"\n");
+system("R --no-restore --no-save --no-readline < $r_script > $r_script.out\n");
+system("echo \"wavelet IvC test ended on \`hostname\` at \`date\`\"\n");
+
+#close the input and output and error files
+close(ERROR);
+close(OUTPUT2);
+close(OUTPUT1);
+close(INPUT2);
+close(INPUT1);
\ No newline at end of file