view metaMS_runGC.r @ 4:c10824185547 draft

planemo upload for repository https://github.com/workflow4metabolomics/metaMS commit 174a1713024f246c1485cbd75218577e89353522
author workflow4metabolomics
date Wed, 03 Jul 2019 05:14:32 -0400
parents
children b8d4129dd2a6
line wrap: on
line source

#!/usr/bin/env Rscript
# metaMS_runGC.r version="3.0.0"
#created by Yann GUITTON and updated by Julien SAINT-VANNE
#use RI options + add try on plotUnknown add session Info
#use make.names in sampleMetadata to avoid issues with files names 


# ----- LOG FILE -----
#log_file=file("log.txt", open = "wt")
#sink(log_file)
#sink(log_file, type = "output")


# ----- PACKAGE -----
cat("\tSESSION INFO\n\n")

#Import the different functions and packages
source_local <- function(fname) {
    argv <- commandArgs(trailingOnly = FALSE)
    base_dir <- dirname(substring(argv[grep("--file=", argv)], 8))
    source(paste(base_dir, fname, sep="/"))
}
source_local("lib_metams.r")

pkgs <- c("metaMS","stringr","batch","CAMERA") #"batch" necessary for parseCommandArgs function
loadAndDisplayPackages(pkgs)

cat("\n\n")

modNamC <- "metaMS:runGC" ## module name
cat("\nStart of the '", modNamC, "' Galaxy module call: ", format(Sys.time(), "%a %d %b %Y %X"), "\n", sep="")


# ----- PROCESSING INFILE -----
cat("\n\n\tARGUMENTS PROCESSING INFO\n\n")
args = parseCommandArgs(evaluate=FALSE) #interpretation of arguments given in command line as an R list of objects
#write.table(as.matrix(args), col.names=F, quote=F, sep='\t\t')
print(cbind(value = unlist(args)))

# ----- PROCESSING INFILE -----
cat("\n\n\tARGUMENTS PROCESSING INFO\n\n")

# Saving the specific parameters
#RI parameter
if (args$ri!="NULL"){
    RIarg=read.table(args$ri)
    if (ncol(RIarg) < 2) RIarg=read.table(args$ri, h=T, sep=";")
    if (ncol(RIarg) < 2) RIarg=read.table(args$ri, h=T, sep="\t")
    if (ncol(RIarg) < 2) RIarg=read.table(args$ri, h=T, sep=",")
    if (ncol(RIarg) < 2) {
        error_message="Your RI file seems not well formatted. The column separators accepted are ; , and tabulation"
        print(error_message)
        stop(error_message)
    }
    #to do check real column names
    colnames(RIarg)<-c("rt","RI")
} else {
    RIarg = NULL
}

#RIshift parameter
if (args$rishift!="none"){
    RIshift=args$rishift
} else {
    RIshift = "none"
}

#Personal database parameter
if (args$db!="NULL"){
    DBgc=args$db
} else {
    DBgc = NULL
}   

#settings process
if (args$settings=="default") {
    cat("Using default parameters")
    data(FEMsettings) 
    if (args$rtrange[1]!="NULL") {
        rtrange=args$rtrange
    } else {
        rtrange=NULL
    }

    if (!is.null(DBgc)){
        manual <- read.msp(DBgc)
        DBgc <- createSTDdbGC(stdInfo = NULL, settings = TSQXLS.GC, manualDB = manual)
    }

    #use RI instead of rt for time comparison vs DB
    if (RIshift!="none"){
        TSQXLS.GC@match2DB.timeComparison<-"RI"
        TSQXLS.GC@match2DB.RIdiff<-as.numeric(RIshift)
        TSQXLS.GC@betweenSamples.timeComparison<-"RI"        
        TSQXLS.GC@betweenSamples.RIdiff<-as.numeric(RIshift)
    }
    nSlaves=args$nSlaves
}

if (args$settings=="User_defined") {
    cat("Using user's parameters\n")
    fwhmparam=args$fwhm
    rtdiffparam=args$rtdiff
    minfeatparam=args$minfeat
    simthreshparam=args$simthreshold
    minclassfractionparam=args$minclassfraction
    minclasssizeparam=args$minclasssize

    if (args$rtrange!="NULL") {
        rtrange=args$rtrange
        cat("rtrange= ",rtrange)
    } else {
        rtrange=NULL
        cat("rtrange= ",rtrange)
    }

    nSlaves=args$nSlaves

    GALAXY.GC <- 
        metaMSsettings("protocolName" = "GALAXY.GC",
                       "chrom" = "GC",
                       PeakPicking = list(
                        method = "matchedFilter",
                        step = 0.5,
                        steps = 2,
                        mzdiff = .5,
                        fwhm = fwhmparam,
                        snthresh = 2,
                        max = 500),
                       CAMERA = list(perfwhm = 1))
   
    metaSetting(GALAXY.GC, "DBconstruction") <- list(
                minintens = 0.0,
                rttol = rtdiffparam,
                intensityMeasure = "maxo",
                DBthreshold = .80, 
                minfeat = minfeatparam)
    metaSetting(GALAXY.GC, "match2DB") <- list(
                simthresh = simthreshparam,
                timeComparison = "rt",
                rtdiff = rtdiffparam,
                RIdiff = 5,
                minfeat = minfeatparam)

    #to used if contaminant filter

    # metaSetting(GALAXY.GC, "matchIrrelevants") <- list(
                # irrelevantClasses = c("Bleeding", "Plasticizers"),
                # timeComparison = "RI",
                # RIdiff = RIdiffparam,    
                # rtdiff = rtdiffparam,
                # simthresh = simthreshparam)

    metaSetting(GALAXY.GC, "betweenSamples") <- list(
                min.class.fraction = minclassfractionparam,
                min.class.size = minclasssizeparam,
                timeComparison = "rt",
                rtdiff = rtdiffparam,
                RIdiff = 2,    
                simthresh = simthreshparam)

    #ONLY use RI instead of rt for time comparison vs DB or samples
    if (RIshift!="none"){
        GALAXY.GC@match2DB.timeComparison<-"RI"
        GALAXY.GC@match2DB.RIdiff<-as.numeric(RIshift)
        GALAXY.GC@betweenSamples.timeComparison<-"RI"
        GALAXY.GC@betweenSamples.RIdiff<-as.numeric(RIshift)    
    }
    
    if (!is.null(DBgc)){
        manual <- read.msp(DBgc)
        DBgc <- createSTDdbGC(stdInfo = NULL, settings = GALAXY.GC, manualDB = manual)
    }
}


# ----- INFILE PROCESSING -----
cat("\n\n\n\tINFILE PROCESSING INFO\n\n")

# Handle infiles
if (!exists("singlefile")) singlefile <- NULL
if (!exists("zipfile")) zipfile <- NULL
rawFilePath <- getRawfilePathFromArguments(singlefile, zipfile, args)
zipfile <- rawFilePath$zipfile
singlefile <- rawFilePath$singlefile
directory <- retrieveRawfileInTheWorkingDirectory(singlefile, zipfile)


# ----- MAIN PROCESSING INFO -----
cat("\n\tMAIN PROCESSING INFO\n")

cat("\t\tCOMPUTE\n\n")

#runGC accept either a list of files a zip folder or an xset object from xcms.xcmsSet tool
#From xset is an .RData file necessary to use the xcmsSet object generated by xcms.xcmsSet given by previous tools
if (!is.null(args$singlefile_galaxyPath)){
    cat("Loading datas from XCMS file(s)...\n")
    load(args$singlefile_galaxyPath)
    
    #Transform XCMS object if needed
    if(!exists("xset")) {
        if(exists("xdata")) {
            xset<-getxcmsSetObject(xdata)
        } else {
            error_message="no xset and no xdata... Probably a problem"
            print(error_message)
            stop(error_message)
        }
    }

    #xset from xcms.xcmsSet is not well formatted for metaMS this function do the formatting
    if (class(xset)=="xcmsSet"){
        if (length(xset@rt$raw)>1){
            #create an exceptable list of xset for metaMS
            xset.l<-vector("list",length(xset@rt$raw))
            for (i in 1:length(xset@rt$raw)){
                xset.l[[i]]<-new("xcmsSet")
                xset.l[[i]]@peaks<-xset@peaks[which(xset@peaks[,"sample"]==i),]
                df<-data.frame(class=xset@phenoData[i,])
                rownames(df)<-rownames(xset@phenoData)[i]
                xset.l[[i]]@phenoData<-df
                xset.l[[i]]@rt$raw<-xset@rt$raw[[i]]
                xset.l[[i]]@rt$corrected<-xset@rt$corrected[[i]]
                xset.l[[i]]@filepaths<-xset@filepaths[i]
                xset.l[[i]]@profinfo<-xset@profinfo
            }
        } else {
            xset.l<-xset
        }
    
        #create sampleMetadata, get sampleMetadata and class
        sampleMetadata<-xset@phenoData
        colnames(sampleMetadata) <- c("sampleMetadata","sample_group","class")
        sampleMetadata<-sampleMetadata[,-2]
        row.names(sampleMetadata)<-NULL
        samples<-xset@filepaths
    } else {
        xset<-NULL
    }
    if(args$settings == "default") {
        settingslist=TSQXLS.GC
        if (class(xset.l[[1]])!="xsAnnotate"){
            cat("Process xsAnnotate with CAMERA package...\n")
            xsetCAM<-lapply(xset.l,
                 function(x) {
                   y <- xsAnnotate(x, sample = 1)
                   capture.output(z <- groupFWHM(y, perfwhm = settingslist@CAMERA$perfwhm),
                                  file = NULL)
                   z})
        } else {
            xsetCAM <- xset.l
        }
        
        #default settings for GC from Wehrens et al
        cat("Process runGC with metaMS package...\n\n")
        print(str(TSQXLS.GC))  
        resGC<-runGC(xset=xsetCAM,settings=TSQXLS.GC, rtrange=rtrange, DB= DBgc, removeArtefacts = TRUE, 
                    findUnknowns = TRUE, returnXset = TRUE, RIstandards = RIarg, nSlaves = nSlaves)
    } else {
        if(args$settings == "User_defined") {
            settingslist=GALAXY.GC
            if (class(xset.l[[1]])!="xsAnnotate") {
                cat("Process xsAnnotate with CAMERA package...\n")
                xsetCAM<-lapply(xset.l,
                    function(x) {
                    y <- xsAnnotate(x, sample = 1)
                    capture.output(z <- groupFWHM(y, perfwhm = settingslist@CAMERA$perfwhm),
                                  file = NULL)
                    z}) 
            } else {
                xsetCAM <- xset.l
            }

            #user settings for GC
            cat("Process runGC with metaMS package...\n\n")
            print(str(GALAXY.GC))
            resGC<-runGC(xset=xsetCAM,settings=GALAXY.GC,rtrange = rtrange, DB= DBgc, removeArtefacts = TRUE, 
                        findUnknowns = TRUE, returnXset = TRUE, RIstandards = RIarg, nSlaves = nSlaves)
        } else {
            error_message <- "There is no xset"
            print(error_message)
            stop(error_message)
        } 
    }
} else {
    error_message <- "No galaxy path entered"
    print(error_message)
    stop(error_message)
}


# ----- EXPORT -----
#peakTable ordered by rt
cat("\nGenerating peakTable file")
peaktable<-getCorrectFileName(resGC$PeakTable,sampleMetadata)
cat("\t.\t.")
write.table(peaktable, file="peaktable.tsv", sep="\t", row.names=FALSE)
cat("\t.\tOK")

#peakTable for PCA 
#dataMatrix
cat("\nGenerating dataMatrix file")
dataMatrix<-cbind(Name=peaktable[,"Name"],peaktable[,(colnames(peaktable) %in% sampleMetadata[,1])])
rownames(dataMatrix)<-NULL
cat("\t.\t.")
write.table(dataMatrix, file="dataMatrix.tsv", sep="\t", row.names=FALSE, quote=FALSE)
cat("\t.\tOK")

#variableMetadata
cat("\nGenerating variableMetadata file")
variableMetadata<-peaktable[,!(colnames(peaktable) %in% sampleMetadata[,1])]
rownames(variableMetadata)<-NULL
cat("\t.")
write.table(variableMetadata, file="variableMetadata.tsv", sep="\t", row.names=FALSE, quote=FALSE)
cat("\t.\tOK")

#sampleMetadata
cat("\nGenerating sampleMetadata file")
cat("\t.\t.")
write.table(sampleMetadata, file="sampleMetadata.tsv", sep="\t", row.names=FALSE, quote=FALSE)
cat("\t.\tOK")

#peak spectrum as MSP for DB search
cat("\nGenerating",length(resGC$PseudoSpectra),"peakspectra in peakspectra.msp file\n")
write.msp(resGC$PseudoSpectra, file="peakspectra.msp", newFile = TRUE)

#saving R data in .Rdata file to save the variables used in the present tool
objects2save <- c("resGC", "xset", "singlefile", "zipfile", "DBgc")
save(list = objects2save[objects2save %in% ls()], file = "runGC.RData")

cat("\nEnd of '", modNamC, "' Galaxy module call: ", as.character(Sys.time()), "\n", sep = "")