Mercurial > repos > youngkim > ezbamqc
comparison ezBAMQC/src/htslib/cram/rANS_byte.h @ 0:dfa3745e5fd8
Uploaded
author | youngkim |
---|---|
date | Thu, 24 Mar 2016 17:12:52 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:dfa3745e5fd8 |
---|---|
1 /* rans_byte.h originally from https://github.com/rygorous/ryg_rans | |
2 * | |
3 * This is a public-domain implementation of several rANS variants. rANS is an | |
4 * entropy coder from the ANS family, as described in Jarek Duda's paper | |
5 * "Asymmetric numeral systems" (http://arxiv.org/abs/1311.2540). | |
6 */ | |
7 | |
8 /*-------------------------------------------------------------------------- */ | |
9 | |
10 // Simple byte-aligned rANS encoder/decoder - public domain - Fabian 'ryg' Giesen 2014 | |
11 // | |
12 // Not intended to be "industrial strength"; just meant to illustrate the general | |
13 // idea. | |
14 | |
15 #ifndef RANS_BYTE_HEADER | |
16 #define RANS_BYTE_HEADER | |
17 | |
18 #include <stdint.h> | |
19 | |
20 #ifdef assert | |
21 #define RansAssert assert | |
22 #else | |
23 #define RansAssert(x) | |
24 #endif | |
25 | |
26 // READ ME FIRST: | |
27 // | |
28 // This is designed like a typical arithmetic coder API, but there's three | |
29 // twists you absolutely should be aware of before you start hacking: | |
30 // | |
31 // 1. You need to encode data in *reverse* - last symbol first. rANS works | |
32 // like a stack: last in, first out. | |
33 // 2. Likewise, the encoder outputs bytes *in reverse* - that is, you give | |
34 // it a pointer to the *end* of your buffer (exclusive), and it will | |
35 // slowly move towards the beginning as more bytes are emitted. | |
36 // 3. Unlike basically any other entropy coder implementation you might | |
37 // have used, you can interleave data from multiple independent rANS | |
38 // encoders into the same bytestream without any extra signaling; | |
39 // you can also just write some bytes by yourself in the middle if | |
40 // you want to. This is in addition to the usual arithmetic encoder | |
41 // property of being able to switch models on the fly. Writing raw | |
42 // bytes can be useful when you have some data that you know is | |
43 // incompressible, and is cheaper than going through the rANS encode | |
44 // function. Using multiple rANS coders on the same byte stream wastes | |
45 // a few bytes compared to using just one, but execution of two | |
46 // independent encoders can happen in parallel on superscalar and | |
47 // Out-of-Order CPUs, so this can be *much* faster in tight decoding | |
48 // loops. | |
49 // | |
50 // This is why all the rANS functions take the write pointer as an | |
51 // argument instead of just storing it in some context struct. | |
52 | |
53 // -------------------------------------------------------------------------- | |
54 | |
55 // L ('l' in the paper) is the lower bound of our normalization interval. | |
56 // Between this and our byte-aligned emission, we use 31 (not 32!) bits. | |
57 // This is done intentionally because exact reciprocals for 31-bit uints | |
58 // fit in 32-bit uints: this permits some optimizations during encoding. | |
59 #define RANS_BYTE_L (1u << 23) // lower bound of our normalization interval | |
60 | |
61 // State for a rANS encoder. Yep, that's all there is to it. | |
62 typedef uint32_t RansState; | |
63 | |
64 // Initialize a rANS encoder. | |
65 static inline void RansEncInit(RansState* r) | |
66 { | |
67 *r = RANS_BYTE_L; | |
68 } | |
69 | |
70 // Renormalize the encoder. Internal function. | |
71 static inline RansState RansEncRenorm(RansState x, uint8_t** pptr, uint32_t freq, uint32_t scale_bits) | |
72 { | |
73 uint32_t x_max = ((RANS_BYTE_L >> scale_bits) << 8) * freq; // this turns into a shift. | |
74 if (x >= x_max) { | |
75 uint8_t* ptr = *pptr; | |
76 do { | |
77 *--ptr = (uint8_t) (x & 0xff); | |
78 x >>= 8; | |
79 } while (x >= x_max); | |
80 *pptr = ptr; | |
81 } | |
82 return x; | |
83 } | |
84 | |
85 // Encodes a single symbol with range start "start" and frequency "freq". | |
86 // All frequencies are assumed to sum to "1 << scale_bits", and the | |
87 // resulting bytes get written to ptr (which is updated). | |
88 // | |
89 // NOTE: With rANS, you need to encode symbols in *reverse order*, i.e. from | |
90 // beginning to end! Likewise, the output bytestream is written *backwards*: | |
91 // ptr starts pointing at the end of the output buffer and keeps decrementing. | |
92 static inline void RansEncPut(RansState* r, uint8_t** pptr, uint32_t start, uint32_t freq, uint32_t scale_bits) | |
93 { | |
94 // renormalize | |
95 RansState x = RansEncRenorm(*r, pptr, freq, scale_bits); | |
96 | |
97 // x = C(s,x) | |
98 *r = ((x / freq) << scale_bits) + (x % freq) + start; | |
99 } | |
100 | |
101 // Flushes the rANS encoder. | |
102 static inline void RansEncFlush(RansState* r, uint8_t** pptr) | |
103 { | |
104 uint32_t x = *r; | |
105 uint8_t* ptr = *pptr; | |
106 | |
107 ptr -= 4; | |
108 ptr[0] = (uint8_t) (x >> 0); | |
109 ptr[1] = (uint8_t) (x >> 8); | |
110 ptr[2] = (uint8_t) (x >> 16); | |
111 ptr[3] = (uint8_t) (x >> 24); | |
112 | |
113 *pptr = ptr; | |
114 } | |
115 | |
116 // Initializes a rANS decoder. | |
117 // Unlike the encoder, the decoder works forwards as you'd expect. | |
118 static inline void RansDecInit(RansState* r, uint8_t** pptr) | |
119 { | |
120 uint32_t x; | |
121 uint8_t* ptr = *pptr; | |
122 | |
123 x = ptr[0] << 0; | |
124 x |= ptr[1] << 8; | |
125 x |= ptr[2] << 16; | |
126 x |= ptr[3] << 24; | |
127 ptr += 4; | |
128 | |
129 *pptr = ptr; | |
130 *r = x; | |
131 } | |
132 | |
133 // Returns the current cumulative frequency (map it to a symbol yourself!) | |
134 static inline uint32_t RansDecGet(RansState* r, uint32_t scale_bits) | |
135 { | |
136 return *r & ((1u << scale_bits) - 1); | |
137 } | |
138 | |
139 // Advances in the bit stream by "popping" a single symbol with range start | |
140 // "start" and frequency "freq". All frequencies are assumed to sum to "1 << scale_bits", | |
141 // and the resulting bytes get written to ptr (which is updated). | |
142 static inline void RansDecAdvance(RansState* r, uint8_t** pptr, uint32_t start, uint32_t freq, uint32_t scale_bits) | |
143 { | |
144 uint32_t mask = (1u << scale_bits) - 1; | |
145 | |
146 // s, x = D(x) | |
147 uint32_t x = *r; | |
148 x = freq * (x >> scale_bits) + (x & mask) - start; | |
149 | |
150 // renormalize | |
151 if (x < RANS_BYTE_L) { | |
152 uint8_t* ptr = *pptr; | |
153 do x = (x << 8) | *ptr++; while (x < RANS_BYTE_L); | |
154 *pptr = ptr; | |
155 } | |
156 | |
157 *r = x; | |
158 } | |
159 | |
160 // -------------------------------------------------------------------------- | |
161 | |
162 // That's all you need for a full encoder; below here are some utility | |
163 // functions with extra convenience or optimizations. | |
164 | |
165 // Encoder symbol description | |
166 // This (admittedly odd) selection of parameters was chosen to make | |
167 // RansEncPutSymbol as cheap as possible. | |
168 typedef struct { | |
169 uint32_t x_max; // (Exclusive) upper bound of pre-normalization interval | |
170 uint32_t rcp_freq; // Fixed-point reciprocal frequency | |
171 uint32_t bias; // Bias | |
172 uint16_t cmpl_freq; // Complement of frequency: (1 << scale_bits) - freq | |
173 uint16_t rcp_shift; // Reciprocal shift | |
174 } RansEncSymbol; | |
175 | |
176 // Decoder symbols are straightforward. | |
177 typedef struct { | |
178 uint16_t start; // Start of range. | |
179 uint16_t freq; // Symbol frequency. | |
180 } RansDecSymbol; | |
181 | |
182 // Initializes an encoder symbol to start "start" and frequency "freq" | |
183 static inline void RansEncSymbolInit(RansEncSymbol* s, uint32_t start, uint32_t freq, uint32_t scale_bits) | |
184 { | |
185 RansAssert(scale_bits <= 16); | |
186 RansAssert(start <= (1u << scale_bits)); | |
187 RansAssert(freq <= (1u << scale_bits) - start); | |
188 | |
189 // Say M := 1 << scale_bits. | |
190 // | |
191 // The original encoder does: | |
192 // x_new = (x/freq)*M + start + (x%freq) | |
193 // | |
194 // The fast encoder does (schematically): | |
195 // q = mul_hi(x, rcp_freq) >> rcp_shift (division) | |
196 // r = x - q*freq (remainder) | |
197 // x_new = q*M + bias + r (new x) | |
198 // plugging in r into x_new yields: | |
199 // x_new = bias + x + q*(M - freq) | |
200 // =: bias + x + q*cmpl_freq (*) | |
201 // | |
202 // and we can just precompute cmpl_freq. Now we just need to | |
203 // set up our parameters such that the original encoder and | |
204 // the fast encoder agree. | |
205 | |
206 s->x_max = ((RANS_BYTE_L >> scale_bits) << 8) * freq; | |
207 s->cmpl_freq = (uint16_t) ((1 << scale_bits) - freq); | |
208 if (freq < 2) { | |
209 // freq=0 symbols are never valid to encode, so it doesn't matter what | |
210 // we set our values to. | |
211 // | |
212 // freq=1 is tricky, since the reciprocal of 1 is 1; unfortunately, | |
213 // our fixed-point reciprocal approximation can only multiply by values | |
214 // smaller than 1. | |
215 // | |
216 // So we use the "next best thing": rcp_freq=0xffffffff, rcp_shift=0. | |
217 // This gives: | |
218 // q = mul_hi(x, rcp_freq) >> rcp_shift | |
219 // = mul_hi(x, (1<<32) - 1)) >> 0 | |
220 // = floor(x - x/(2^32)) | |
221 // = x - 1 if 1 <= x < 2^32 | |
222 // and we know that x>0 (x=0 is never in a valid normalization interval). | |
223 // | |
224 // So we now need to choose the other parameters such that | |
225 // x_new = x*M + start | |
226 // plug it in: | |
227 // x*M + start (desired result) | |
228 // = bias + x + q*cmpl_freq (*) | |
229 // = bias + x + (x - 1)*(M - 1) (plug in q=x-1, cmpl_freq) | |
230 // = bias + 1 + (x - 1)*M | |
231 // = x*M + (bias + 1 - M) | |
232 // | |
233 // so we have start = bias + 1 - M, or equivalently | |
234 // bias = start + M - 1. | |
235 s->rcp_freq = ~0u; | |
236 s->rcp_shift = 0; | |
237 s->bias = start + (1 << scale_bits) - 1; | |
238 } else { | |
239 // Alverson, "Integer Division using reciprocals" | |
240 // shift=ceil(log2(freq)) | |
241 uint32_t shift = 0; | |
242 while (freq > (1u << shift)) | |
243 shift++; | |
244 | |
245 s->rcp_freq = (uint32_t) (((1ull << (shift + 31)) + freq-1) / freq); | |
246 s->rcp_shift = shift - 1; | |
247 | |
248 // With these values, 'q' is the correct quotient, so we | |
249 // have bias=start. | |
250 s->bias = start; | |
251 } | |
252 | |
253 s->rcp_shift += 32; // Avoid the extra >>32 in RansEncPutSymbol | |
254 } | |
255 | |
256 // Initialize a decoder symbol to start "start" and frequency "freq" | |
257 static inline void RansDecSymbolInit(RansDecSymbol* s, uint32_t start, uint32_t freq) | |
258 { | |
259 RansAssert(start <= (1 << 16)); | |
260 RansAssert(freq <= (1 << 16) - start); | |
261 s->start = (uint16_t) start; | |
262 s->freq = (uint16_t) freq; | |
263 } | |
264 | |
265 // Encodes a given symbol. This is faster than straight RansEnc since we can do | |
266 // multiplications instead of a divide. | |
267 // | |
268 // See RansEncSymbolInit for a description of how this works. | |
269 static inline void RansEncPutSymbol(RansState* r, uint8_t** pptr, RansEncSymbol const* sym) | |
270 { | |
271 RansAssert(sym->x_max != 0); // can't encode symbol with freq=0 | |
272 | |
273 // renormalize | |
274 uint32_t x = *r; | |
275 uint32_t x_max = sym->x_max; | |
276 | |
277 if (x >= x_max) { | |
278 uint8_t* ptr = *pptr; | |
279 do { | |
280 *--ptr = (uint8_t) (x & 0xff); | |
281 x >>= 8; | |
282 } while (x >= x_max); | |
283 *pptr = ptr; | |
284 } | |
285 | |
286 // x = C(s,x) | |
287 // NOTE: written this way so we get a 32-bit "multiply high" when | |
288 // available. If you're on a 64-bit platform with cheap multiplies | |
289 // (e.g. x64), just bake the +32 into rcp_shift. | |
290 //uint32_t q = (uint32_t) (((uint64_t)x * sym->rcp_freq) >> 32) >> sym->rcp_shift; | |
291 | |
292 // The extra >>32 has already been added to RansEncSymbolInit | |
293 uint32_t q = (uint32_t) (((uint64_t)x * sym->rcp_freq) >> sym->rcp_shift); | |
294 *r = x + sym->bias + q * sym->cmpl_freq; | |
295 } | |
296 | |
297 // Equivalent to RansDecAdvance that takes a symbol. | |
298 static inline void RansDecAdvanceSymbol(RansState* r, uint8_t** pptr, RansDecSymbol const* sym, uint32_t scale_bits) | |
299 { | |
300 RansDecAdvance(r, pptr, sym->start, sym->freq, scale_bits); | |
301 } | |
302 | |
303 // Advances in the bit stream by "popping" a single symbol with range start | |
304 // "start" and frequency "freq". All frequencies are assumed to sum to "1 << scale_bits". | |
305 // No renormalization or output happens. | |
306 static inline void RansDecAdvanceStep(RansState* r, uint32_t start, uint32_t freq, uint32_t scale_bits) | |
307 { | |
308 uint32_t mask = (1u << scale_bits) - 1; | |
309 | |
310 // s, x = D(x) | |
311 uint32_t x = *r; | |
312 *r = freq * (x >> scale_bits) + (x & mask) - start; | |
313 } | |
314 | |
315 // Equivalent to RansDecAdvanceStep that takes a symbol. | |
316 static inline void RansDecAdvanceSymbolStep(RansState* r, RansDecSymbol const* sym, uint32_t scale_bits) | |
317 { | |
318 RansDecAdvanceStep(r, sym->start, sym->freq, scale_bits); | |
319 } | |
320 | |
321 // Renormalize. | |
322 static inline void RansDecRenorm(RansState* r, uint8_t** pptr) | |
323 { | |
324 // renormalize | |
325 uint32_t x = *r; | |
326 | |
327 if (x < RANS_BYTE_L) { | |
328 uint8_t* ptr = *pptr; | |
329 do x = (x << 8) | *ptr++; while (x < RANS_BYTE_L); | |
330 *pptr = ptr; | |
331 } | |
332 | |
333 *r = x; | |
334 } | |
335 | |
336 #endif // RANS_BYTE_HEADER |