comparison ezBAMQC/src/htslib/cram/rANS_byte.h @ 0:dfa3745e5fd8

Uploaded
author youngkim
date Thu, 24 Mar 2016 17:12:52 -0400
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:dfa3745e5fd8
1 /* rans_byte.h originally from https://github.com/rygorous/ryg_rans
2 *
3 * This is a public-domain implementation of several rANS variants. rANS is an
4 * entropy coder from the ANS family, as described in Jarek Duda's paper
5 * "Asymmetric numeral systems" (http://arxiv.org/abs/1311.2540).
6 */
7
8 /*-------------------------------------------------------------------------- */
9
10 // Simple byte-aligned rANS encoder/decoder - public domain - Fabian 'ryg' Giesen 2014
11 //
12 // Not intended to be "industrial strength"; just meant to illustrate the general
13 // idea.
14
15 #ifndef RANS_BYTE_HEADER
16 #define RANS_BYTE_HEADER
17
18 #include <stdint.h>
19
20 #ifdef assert
21 #define RansAssert assert
22 #else
23 #define RansAssert(x)
24 #endif
25
26 // READ ME FIRST:
27 //
28 // This is designed like a typical arithmetic coder API, but there's three
29 // twists you absolutely should be aware of before you start hacking:
30 //
31 // 1. You need to encode data in *reverse* - last symbol first. rANS works
32 // like a stack: last in, first out.
33 // 2. Likewise, the encoder outputs bytes *in reverse* - that is, you give
34 // it a pointer to the *end* of your buffer (exclusive), and it will
35 // slowly move towards the beginning as more bytes are emitted.
36 // 3. Unlike basically any other entropy coder implementation you might
37 // have used, you can interleave data from multiple independent rANS
38 // encoders into the same bytestream without any extra signaling;
39 // you can also just write some bytes by yourself in the middle if
40 // you want to. This is in addition to the usual arithmetic encoder
41 // property of being able to switch models on the fly. Writing raw
42 // bytes can be useful when you have some data that you know is
43 // incompressible, and is cheaper than going through the rANS encode
44 // function. Using multiple rANS coders on the same byte stream wastes
45 // a few bytes compared to using just one, but execution of two
46 // independent encoders can happen in parallel on superscalar and
47 // Out-of-Order CPUs, so this can be *much* faster in tight decoding
48 // loops.
49 //
50 // This is why all the rANS functions take the write pointer as an
51 // argument instead of just storing it in some context struct.
52
53 // --------------------------------------------------------------------------
54
55 // L ('l' in the paper) is the lower bound of our normalization interval.
56 // Between this and our byte-aligned emission, we use 31 (not 32!) bits.
57 // This is done intentionally because exact reciprocals for 31-bit uints
58 // fit in 32-bit uints: this permits some optimizations during encoding.
59 #define RANS_BYTE_L (1u << 23) // lower bound of our normalization interval
60
61 // State for a rANS encoder. Yep, that's all there is to it.
62 typedef uint32_t RansState;
63
64 // Initialize a rANS encoder.
65 static inline void RansEncInit(RansState* r)
66 {
67 *r = RANS_BYTE_L;
68 }
69
70 // Renormalize the encoder. Internal function.
71 static inline RansState RansEncRenorm(RansState x, uint8_t** pptr, uint32_t freq, uint32_t scale_bits)
72 {
73 uint32_t x_max = ((RANS_BYTE_L >> scale_bits) << 8) * freq; // this turns into a shift.
74 if (x >= x_max) {
75 uint8_t* ptr = *pptr;
76 do {
77 *--ptr = (uint8_t) (x & 0xff);
78 x >>= 8;
79 } while (x >= x_max);
80 *pptr = ptr;
81 }
82 return x;
83 }
84
85 // Encodes a single symbol with range start "start" and frequency "freq".
86 // All frequencies are assumed to sum to "1 << scale_bits", and the
87 // resulting bytes get written to ptr (which is updated).
88 //
89 // NOTE: With rANS, you need to encode symbols in *reverse order*, i.e. from
90 // beginning to end! Likewise, the output bytestream is written *backwards*:
91 // ptr starts pointing at the end of the output buffer and keeps decrementing.
92 static inline void RansEncPut(RansState* r, uint8_t** pptr, uint32_t start, uint32_t freq, uint32_t scale_bits)
93 {
94 // renormalize
95 RansState x = RansEncRenorm(*r, pptr, freq, scale_bits);
96
97 // x = C(s,x)
98 *r = ((x / freq) << scale_bits) + (x % freq) + start;
99 }
100
101 // Flushes the rANS encoder.
102 static inline void RansEncFlush(RansState* r, uint8_t** pptr)
103 {
104 uint32_t x = *r;
105 uint8_t* ptr = *pptr;
106
107 ptr -= 4;
108 ptr[0] = (uint8_t) (x >> 0);
109 ptr[1] = (uint8_t) (x >> 8);
110 ptr[2] = (uint8_t) (x >> 16);
111 ptr[3] = (uint8_t) (x >> 24);
112
113 *pptr = ptr;
114 }
115
116 // Initializes a rANS decoder.
117 // Unlike the encoder, the decoder works forwards as you'd expect.
118 static inline void RansDecInit(RansState* r, uint8_t** pptr)
119 {
120 uint32_t x;
121 uint8_t* ptr = *pptr;
122
123 x = ptr[0] << 0;
124 x |= ptr[1] << 8;
125 x |= ptr[2] << 16;
126 x |= ptr[3] << 24;
127 ptr += 4;
128
129 *pptr = ptr;
130 *r = x;
131 }
132
133 // Returns the current cumulative frequency (map it to a symbol yourself!)
134 static inline uint32_t RansDecGet(RansState* r, uint32_t scale_bits)
135 {
136 return *r & ((1u << scale_bits) - 1);
137 }
138
139 // Advances in the bit stream by "popping" a single symbol with range start
140 // "start" and frequency "freq". All frequencies are assumed to sum to "1 << scale_bits",
141 // and the resulting bytes get written to ptr (which is updated).
142 static inline void RansDecAdvance(RansState* r, uint8_t** pptr, uint32_t start, uint32_t freq, uint32_t scale_bits)
143 {
144 uint32_t mask = (1u << scale_bits) - 1;
145
146 // s, x = D(x)
147 uint32_t x = *r;
148 x = freq * (x >> scale_bits) + (x & mask) - start;
149
150 // renormalize
151 if (x < RANS_BYTE_L) {
152 uint8_t* ptr = *pptr;
153 do x = (x << 8) | *ptr++; while (x < RANS_BYTE_L);
154 *pptr = ptr;
155 }
156
157 *r = x;
158 }
159
160 // --------------------------------------------------------------------------
161
162 // That's all you need for a full encoder; below here are some utility
163 // functions with extra convenience or optimizations.
164
165 // Encoder symbol description
166 // This (admittedly odd) selection of parameters was chosen to make
167 // RansEncPutSymbol as cheap as possible.
168 typedef struct {
169 uint32_t x_max; // (Exclusive) upper bound of pre-normalization interval
170 uint32_t rcp_freq; // Fixed-point reciprocal frequency
171 uint32_t bias; // Bias
172 uint16_t cmpl_freq; // Complement of frequency: (1 << scale_bits) - freq
173 uint16_t rcp_shift; // Reciprocal shift
174 } RansEncSymbol;
175
176 // Decoder symbols are straightforward.
177 typedef struct {
178 uint16_t start; // Start of range.
179 uint16_t freq; // Symbol frequency.
180 } RansDecSymbol;
181
182 // Initializes an encoder symbol to start "start" and frequency "freq"
183 static inline void RansEncSymbolInit(RansEncSymbol* s, uint32_t start, uint32_t freq, uint32_t scale_bits)
184 {
185 RansAssert(scale_bits <= 16);
186 RansAssert(start <= (1u << scale_bits));
187 RansAssert(freq <= (1u << scale_bits) - start);
188
189 // Say M := 1 << scale_bits.
190 //
191 // The original encoder does:
192 // x_new = (x/freq)*M + start + (x%freq)
193 //
194 // The fast encoder does (schematically):
195 // q = mul_hi(x, rcp_freq) >> rcp_shift (division)
196 // r = x - q*freq (remainder)
197 // x_new = q*M + bias + r (new x)
198 // plugging in r into x_new yields:
199 // x_new = bias + x + q*(M - freq)
200 // =: bias + x + q*cmpl_freq (*)
201 //
202 // and we can just precompute cmpl_freq. Now we just need to
203 // set up our parameters such that the original encoder and
204 // the fast encoder agree.
205
206 s->x_max = ((RANS_BYTE_L >> scale_bits) << 8) * freq;
207 s->cmpl_freq = (uint16_t) ((1 << scale_bits) - freq);
208 if (freq < 2) {
209 // freq=0 symbols are never valid to encode, so it doesn't matter what
210 // we set our values to.
211 //
212 // freq=1 is tricky, since the reciprocal of 1 is 1; unfortunately,
213 // our fixed-point reciprocal approximation can only multiply by values
214 // smaller than 1.
215 //
216 // So we use the "next best thing": rcp_freq=0xffffffff, rcp_shift=0.
217 // This gives:
218 // q = mul_hi(x, rcp_freq) >> rcp_shift
219 // = mul_hi(x, (1<<32) - 1)) >> 0
220 // = floor(x - x/(2^32))
221 // = x - 1 if 1 <= x < 2^32
222 // and we know that x>0 (x=0 is never in a valid normalization interval).
223 //
224 // So we now need to choose the other parameters such that
225 // x_new = x*M + start
226 // plug it in:
227 // x*M + start (desired result)
228 // = bias + x + q*cmpl_freq (*)
229 // = bias + x + (x - 1)*(M - 1) (plug in q=x-1, cmpl_freq)
230 // = bias + 1 + (x - 1)*M
231 // = x*M + (bias + 1 - M)
232 //
233 // so we have start = bias + 1 - M, or equivalently
234 // bias = start + M - 1.
235 s->rcp_freq = ~0u;
236 s->rcp_shift = 0;
237 s->bias = start + (1 << scale_bits) - 1;
238 } else {
239 // Alverson, "Integer Division using reciprocals"
240 // shift=ceil(log2(freq))
241 uint32_t shift = 0;
242 while (freq > (1u << shift))
243 shift++;
244
245 s->rcp_freq = (uint32_t) (((1ull << (shift + 31)) + freq-1) / freq);
246 s->rcp_shift = shift - 1;
247
248 // With these values, 'q' is the correct quotient, so we
249 // have bias=start.
250 s->bias = start;
251 }
252
253 s->rcp_shift += 32; // Avoid the extra >>32 in RansEncPutSymbol
254 }
255
256 // Initialize a decoder symbol to start "start" and frequency "freq"
257 static inline void RansDecSymbolInit(RansDecSymbol* s, uint32_t start, uint32_t freq)
258 {
259 RansAssert(start <= (1 << 16));
260 RansAssert(freq <= (1 << 16) - start);
261 s->start = (uint16_t) start;
262 s->freq = (uint16_t) freq;
263 }
264
265 // Encodes a given symbol. This is faster than straight RansEnc since we can do
266 // multiplications instead of a divide.
267 //
268 // See RansEncSymbolInit for a description of how this works.
269 static inline void RansEncPutSymbol(RansState* r, uint8_t** pptr, RansEncSymbol const* sym)
270 {
271 RansAssert(sym->x_max != 0); // can't encode symbol with freq=0
272
273 // renormalize
274 uint32_t x = *r;
275 uint32_t x_max = sym->x_max;
276
277 if (x >= x_max) {
278 uint8_t* ptr = *pptr;
279 do {
280 *--ptr = (uint8_t) (x & 0xff);
281 x >>= 8;
282 } while (x >= x_max);
283 *pptr = ptr;
284 }
285
286 // x = C(s,x)
287 // NOTE: written this way so we get a 32-bit "multiply high" when
288 // available. If you're on a 64-bit platform with cheap multiplies
289 // (e.g. x64), just bake the +32 into rcp_shift.
290 //uint32_t q = (uint32_t) (((uint64_t)x * sym->rcp_freq) >> 32) >> sym->rcp_shift;
291
292 // The extra >>32 has already been added to RansEncSymbolInit
293 uint32_t q = (uint32_t) (((uint64_t)x * sym->rcp_freq) >> sym->rcp_shift);
294 *r = x + sym->bias + q * sym->cmpl_freq;
295 }
296
297 // Equivalent to RansDecAdvance that takes a symbol.
298 static inline void RansDecAdvanceSymbol(RansState* r, uint8_t** pptr, RansDecSymbol const* sym, uint32_t scale_bits)
299 {
300 RansDecAdvance(r, pptr, sym->start, sym->freq, scale_bits);
301 }
302
303 // Advances in the bit stream by "popping" a single symbol with range start
304 // "start" and frequency "freq". All frequencies are assumed to sum to "1 << scale_bits".
305 // No renormalization or output happens.
306 static inline void RansDecAdvanceStep(RansState* r, uint32_t start, uint32_t freq, uint32_t scale_bits)
307 {
308 uint32_t mask = (1u << scale_bits) - 1;
309
310 // s, x = D(x)
311 uint32_t x = *r;
312 *r = freq * (x >> scale_bits) + (x & mask) - start;
313 }
314
315 // Equivalent to RansDecAdvanceStep that takes a symbol.
316 static inline void RansDecAdvanceSymbolStep(RansState* r, RansDecSymbol const* sym, uint32_t scale_bits)
317 {
318 RansDecAdvanceStep(r, sym->start, sym->freq, scale_bits);
319 }
320
321 // Renormalize.
322 static inline void RansDecRenorm(RansState* r, uint8_t** pptr)
323 {
324 // renormalize
325 uint32_t x = *r;
326
327 if (x < RANS_BYTE_L) {
328 uint8_t* ptr = *pptr;
329 do x = (x << 8) | *ptr++; while (x < RANS_BYTE_L);
330 *pptr = ptr;
331 }
332
333 *r = x;
334 }
335
336 #endif // RANS_BYTE_HEADER