Mercurial > repos > youngkim > ezbamqc
comparison ezBAMQC/src/htslib/kfunc.c @ 0:dfa3745e5fd8
Uploaded
author | youngkim |
---|---|
date | Thu, 24 Mar 2016 17:12:52 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:dfa3745e5fd8 |
---|---|
1 /* The MIT License | |
2 | |
3 Copyright (C) 2010, 2013 Genome Research Ltd. | |
4 Copyright (C) 2011 Attractive Chaos <attractor@live.co.uk> | |
5 | |
6 Permission is hereby granted, free of charge, to any person obtaining | |
7 a copy of this software and associated documentation files (the | |
8 "Software"), to deal in the Software without restriction, including | |
9 without limitation the rights to use, copy, modify, merge, publish, | |
10 distribute, sublicense, and/or sell copies of the Software, and to | |
11 permit persons to whom the Software is furnished to do so, subject to | |
12 the following conditions: | |
13 | |
14 The above copyright notice and this permission notice shall be | |
15 included in all copies or substantial portions of the Software. | |
16 | |
17 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | |
18 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | |
19 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |
20 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | |
21 BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | |
22 ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
23 CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
24 SOFTWARE. | |
25 */ | |
26 | |
27 #include <math.h> | |
28 #include <stdlib.h> | |
29 #include "htslib/kfunc.h" | |
30 | |
31 /* Log gamma function | |
32 * \log{\Gamma(z)} | |
33 * AS245, 2nd algorithm, http://lib.stat.cmu.edu/apstat/245 | |
34 */ | |
35 double kf_lgamma(double z) | |
36 { | |
37 double x = 0; | |
38 x += 0.1659470187408462e-06 / (z+7); | |
39 x += 0.9934937113930748e-05 / (z+6); | |
40 x -= 0.1385710331296526 / (z+5); | |
41 x += 12.50734324009056 / (z+4); | |
42 x -= 176.6150291498386 / (z+3); | |
43 x += 771.3234287757674 / (z+2); | |
44 x -= 1259.139216722289 / (z+1); | |
45 x += 676.5203681218835 / z; | |
46 x += 0.9999999999995183; | |
47 return log(x) - 5.58106146679532777 - z + (z-0.5) * log(z+6.5); | |
48 } | |
49 | |
50 /* complementary error function | |
51 * \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2} dt | |
52 * AS66, 2nd algorithm, http://lib.stat.cmu.edu/apstat/66 | |
53 */ | |
54 double kf_erfc(double x) | |
55 { | |
56 const double p0 = 220.2068679123761; | |
57 const double p1 = 221.2135961699311; | |
58 const double p2 = 112.0792914978709; | |
59 const double p3 = 33.912866078383; | |
60 const double p4 = 6.37396220353165; | |
61 const double p5 = .7003830644436881; | |
62 const double p6 = .03526249659989109; | |
63 const double q0 = 440.4137358247522; | |
64 const double q1 = 793.8265125199484; | |
65 const double q2 = 637.3336333788311; | |
66 const double q3 = 296.5642487796737; | |
67 const double q4 = 86.78073220294608; | |
68 const double q5 = 16.06417757920695; | |
69 const double q6 = 1.755667163182642; | |
70 const double q7 = .08838834764831844; | |
71 double expntl, z, p; | |
72 z = fabs(x) * M_SQRT2; | |
73 if (z > 37.) return x > 0.? 0. : 2.; | |
74 expntl = exp(z * z * - .5); | |
75 if (z < 10. / M_SQRT2) // for small z | |
76 p = expntl * ((((((p6 * z + p5) * z + p4) * z + p3) * z + p2) * z + p1) * z + p0) | |
77 / (((((((q7 * z + q6) * z + q5) * z + q4) * z + q3) * z + q2) * z + q1) * z + q0); | |
78 else p = expntl / 2.506628274631001 / (z + 1. / (z + 2. / (z + 3. / (z + 4. / (z + .65))))); | |
79 return x > 0.? 2. * p : 2. * (1. - p); | |
80 } | |
81 | |
82 /* The following computes regularized incomplete gamma functions. | |
83 * Formulas are taken from Wiki, with additional input from Numerical | |
84 * Recipes in C (for modified Lentz's algorithm) and AS245 | |
85 * (http://lib.stat.cmu.edu/apstat/245). | |
86 * | |
87 * A good online calculator is available at: | |
88 * | |
89 * http://www.danielsoper.com/statcalc/calc23.aspx | |
90 * | |
91 * It calculates upper incomplete gamma function, which equals | |
92 * kf_gammaq(s,z)*tgamma(s). | |
93 */ | |
94 | |
95 #define KF_GAMMA_EPS 1e-14 | |
96 #define KF_TINY 1e-290 | |
97 | |
98 // regularized lower incomplete gamma function, by series expansion | |
99 static double _kf_gammap(double s, double z) | |
100 { | |
101 double sum, x; | |
102 int k; | |
103 for (k = 1, sum = x = 1.; k < 100; ++k) { | |
104 sum += (x *= z / (s + k)); | |
105 if (x / sum < KF_GAMMA_EPS) break; | |
106 } | |
107 return exp(s * log(z) - z - kf_lgamma(s + 1.) + log(sum)); | |
108 } | |
109 // regularized upper incomplete gamma function, by continued fraction | |
110 static double _kf_gammaq(double s, double z) | |
111 { | |
112 int j; | |
113 double C, D, f; | |
114 f = 1. + z - s; C = f; D = 0.; | |
115 // Modified Lentz's algorithm for computing continued fraction | |
116 // See Numerical Recipes in C, 2nd edition, section 5.2 | |
117 for (j = 1; j < 100; ++j) { | |
118 double a = j * (s - j), b = (j<<1) + 1 + z - s, d; | |
119 D = b + a * D; | |
120 if (D < KF_TINY) D = KF_TINY; | |
121 C = b + a / C; | |
122 if (C < KF_TINY) C = KF_TINY; | |
123 D = 1. / D; | |
124 d = C * D; | |
125 f *= d; | |
126 if (fabs(d - 1.) < KF_GAMMA_EPS) break; | |
127 } | |
128 return exp(s * log(z) - z - kf_lgamma(s) - log(f)); | |
129 } | |
130 | |
131 double kf_gammap(double s, double z) | |
132 { | |
133 return z <= 1. || z < s? _kf_gammap(s, z) : 1. - _kf_gammaq(s, z); | |
134 } | |
135 | |
136 double kf_gammaq(double s, double z) | |
137 { | |
138 return z <= 1. || z < s? 1. - _kf_gammap(s, z) : _kf_gammaq(s, z); | |
139 } | |
140 | |
141 /* Regularized incomplete beta function. The method is taken from | |
142 * Numerical Recipe in C, 2nd edition, section 6.4. The following web | |
143 * page calculates the incomplete beta function, which equals | |
144 * kf_betai(a,b,x) * gamma(a) * gamma(b) / gamma(a+b): | |
145 * | |
146 * http://www.danielsoper.com/statcalc/calc36.aspx | |
147 */ | |
148 static double kf_betai_aux(double a, double b, double x) | |
149 { | |
150 double C, D, f; | |
151 int j; | |
152 if (x == 0.) return 0.; | |
153 if (x == 1.) return 1.; | |
154 f = 1.; C = f; D = 0.; | |
155 // Modified Lentz's algorithm for computing continued fraction | |
156 for (j = 1; j < 200; ++j) { | |
157 double aa, d; | |
158 int m = j>>1; | |
159 aa = (j&1)? -(a + m) * (a + b + m) * x / ((a + 2*m) * (a + 2*m + 1)) | |
160 : m * (b - m) * x / ((a + 2*m - 1) * (a + 2*m)); | |
161 D = 1. + aa * D; | |
162 if (D < KF_TINY) D = KF_TINY; | |
163 C = 1. + aa / C; | |
164 if (C < KF_TINY) C = KF_TINY; | |
165 D = 1. / D; | |
166 d = C * D; | |
167 f *= d; | |
168 if (fabs(d - 1.) < KF_GAMMA_EPS) break; | |
169 } | |
170 return exp(kf_lgamma(a+b) - kf_lgamma(a) - kf_lgamma(b) + a * log(x) + b * log(1.-x)) / a / f; | |
171 } | |
172 double kf_betai(double a, double b, double x) | |
173 { | |
174 return x < (a + 1.) / (a + b + 2.)? kf_betai_aux(a, b, x) : 1. - kf_betai_aux(b, a, 1. - x); | |
175 } | |
176 | |
177 #ifdef KF_MAIN | |
178 #include <stdio.h> | |
179 int main(int argc, char *argv[]) | |
180 { | |
181 double x = 5.5, y = 3; | |
182 double a, b; | |
183 printf("erfc(%lg): %lg, %lg\n", x, erfc(x), kf_erfc(x)); | |
184 printf("upper-gamma(%lg,%lg): %lg\n", x, y, kf_gammaq(y, x)*tgamma(y)); | |
185 a = 2; b = 2; x = 0.5; | |
186 printf("incomplete-beta(%lg,%lg,%lg): %lg\n", a, b, x, kf_betai(a, b, x) / exp(kf_lgamma(a+b) - kf_lgamma(a) - kf_lgamma(b))); | |
187 return 0; | |
188 } | |
189 #endif | |
190 | |
191 | |
192 // log\binom{n}{k} | |
193 static double lbinom(int n, int k) | |
194 { | |
195 if (k == 0 || n == k) return 0; | |
196 return lgamma(n+1) - lgamma(k+1) - lgamma(n-k+1); | |
197 } | |
198 | |
199 // n11 n12 | n1_ | |
200 // n21 n22 | n2_ | |
201 //-----------+---- | |
202 // n_1 n_2 | n | |
203 | |
204 // hypergeometric distribution | |
205 static double hypergeo(int n11, int n1_, int n_1, int n) | |
206 { | |
207 return exp(lbinom(n1_, n11) + lbinom(n-n1_, n_1-n11) - lbinom(n, n_1)); | |
208 } | |
209 | |
210 typedef struct { | |
211 int n11, n1_, n_1, n; | |
212 double p; | |
213 } hgacc_t; | |
214 | |
215 // incremental version of hypergenometric distribution | |
216 static double hypergeo_acc(int n11, int n1_, int n_1, int n, hgacc_t *aux) | |
217 { | |
218 if (n1_ || n_1 || n) { | |
219 aux->n11 = n11; aux->n1_ = n1_; aux->n_1 = n_1; aux->n = n; | |
220 } else { // then only n11 changed; the rest fixed | |
221 if (n11%11 && n11 + aux->n - aux->n1_ - aux->n_1) { | |
222 if (n11 == aux->n11 + 1) { // incremental | |
223 aux->p *= (double)(aux->n1_ - aux->n11) / n11 | |
224 * (aux->n_1 - aux->n11) / (n11 + aux->n - aux->n1_ - aux->n_1); | |
225 aux->n11 = n11; | |
226 return aux->p; | |
227 } | |
228 if (n11 == aux->n11 - 1) { // incremental | |
229 aux->p *= (double)aux->n11 / (aux->n1_ - n11) | |
230 * (aux->n11 + aux->n - aux->n1_ - aux->n_1) / (aux->n_1 - n11); | |
231 aux->n11 = n11; | |
232 return aux->p; | |
233 } | |
234 } | |
235 aux->n11 = n11; | |
236 } | |
237 aux->p = hypergeo(aux->n11, aux->n1_, aux->n_1, aux->n); | |
238 return aux->p; | |
239 } | |
240 | |
241 double kt_fisher_exact(int n11, int n12, int n21, int n22, double *_left, double *_right, double *two) | |
242 { | |
243 int i, j, max, min; | |
244 double p, q, left, right; | |
245 hgacc_t aux; | |
246 int n1_, n_1, n; | |
247 | |
248 n1_ = n11 + n12; n_1 = n11 + n21; n = n11 + n12 + n21 + n22; // calculate n1_, n_1 and n | |
249 max = (n_1 < n1_) ? n_1 : n1_; // max n11, for right tail | |
250 min = n1_ + n_1 - n; // not sure why n11-n22 is used instead of min(n_1,n1_) | |
251 if (min < 0) min = 0; // min n11, for left tail | |
252 *two = *_left = *_right = 1.; | |
253 if (min == max) return 1.; // no need to do test | |
254 q = hypergeo_acc(n11, n1_, n_1, n, &aux); // the probability of the current table | |
255 // left tail | |
256 p = hypergeo_acc(min, 0, 0, 0, &aux); | |
257 for (left = 0., i = min + 1; p < 0.99999999 * q && i<=max; ++i) // loop until underflow | |
258 left += p, p = hypergeo_acc(i, 0, 0, 0, &aux); | |
259 --i; | |
260 if (p < 1.00000001 * q) left += p; | |
261 else --i; | |
262 // right tail | |
263 p = hypergeo_acc(max, 0, 0, 0, &aux); | |
264 for (right = 0., j = max - 1; p < 0.99999999 * q && j>=0; --j) // loop until underflow | |
265 right += p, p = hypergeo_acc(j, 0, 0, 0, &aux); | |
266 ++j; | |
267 if (p < 1.00000001 * q) right += p; | |
268 else ++j; | |
269 // two-tail | |
270 *two = left + right; | |
271 if (*two > 1.) *two = 1.; | |
272 // adjust left and right | |
273 if (abs(i - n11) < abs(j - n11)) right = 1. - left + q; | |
274 else left = 1.0 - right + q; | |
275 *_left = left; *_right = right; | |
276 return q; | |
277 } | |
278 | |
279 | |
280 |