# Documentation of S–MART

# Matthias Zytnicki

# June 7, 2010

# Contents

| 1        | Intr                      | roduction                                      | 3  |  |  |  |  |  |  |  |  |  |
|----------|---------------------------|------------------------------------------------|----|--|--|--|--|--|--|--|--|--|
| <b>2</b> | Inst                      | Installation and requirements                  |    |  |  |  |  |  |  |  |  |  |
|          | 2.1                       | For Windows                                    | 3  |  |  |  |  |  |  |  |  |  |
|          | 2.2                       | For Linux or Mac                               | 5  |  |  |  |  |  |  |  |  |  |
|          | 2.3                       | Test the configuration                         | 7  |  |  |  |  |  |  |  |  |  |
| 3        | Ger                       | neral description 7                            |    |  |  |  |  |  |  |  |  |  |
| 4        | Which tool for your need? |                                                |    |  |  |  |  |  |  |  |  |  |
|          | 4.1                       | Mapping conversion                             | 9  |  |  |  |  |  |  |  |  |  |
|          | 4.2                       | Data comparison                                | 11 |  |  |  |  |  |  |  |  |  |
|          | 4.3                       | Merging data                                   | 13 |  |  |  |  |  |  |  |  |  |
|          |                           | 4.3.1 Clustering                               | 13 |  |  |  |  |  |  |  |  |  |
|          |                           | 4.3.2 Sliding Windows                          | 14 |  |  |  |  |  |  |  |  |  |
|          | 4.4                       | Data selection                                 | 15 |  |  |  |  |  |  |  |  |  |
|          |                           | 4.4.1 Sequences                                | 15 |  |  |  |  |  |  |  |  |  |
|          |                           | 4.4.2 Genomic coordinates                      | 16 |  |  |  |  |  |  |  |  |  |
|          | 4.5                       | Data modification                              | 16 |  |  |  |  |  |  |  |  |  |
|          |                           | 4.5.1 Sequences                                | 16 |  |  |  |  |  |  |  |  |  |
|          |                           | 4.5.2 Genomic coordinates                      | 17 |  |  |  |  |  |  |  |  |  |
|          | 4.6                       | Data collection                                | 17 |  |  |  |  |  |  |  |  |  |
|          | 4.7                       | Data visualization                             | 17 |  |  |  |  |  |  |  |  |  |
|          |                           | 4.7.1 Sequences                                | 18 |  |  |  |  |  |  |  |  |  |
|          |                           | 4.7.2 Genomic coordinates                      | 18 |  |  |  |  |  |  |  |  |  |
|          | 4.8                       | Conversion tools                               | 23 |  |  |  |  |  |  |  |  |  |
|          | 4.9                       | Other tasks                                    | 25 |  |  |  |  |  |  |  |  |  |
| <b>5</b> | Pos                       | sible pipe-lines                               | 25 |  |  |  |  |  |  |  |  |  |
|          | 5.1                       |                                                |    |  |  |  |  |  |  |  |  |  |
|          | 5.2                       |                                                |    |  |  |  |  |  |  |  |  |  |
|          | 5.3                       | •                                              |    |  |  |  |  |  |  |  |  |  |
|          | 5.4                       | Compare two sets of reads with sliding windows | 27 |  |  |  |  |  |  |  |  |  |

|   | 5.5 Compare RNA-Seq with tiling arrays using sliding windows $\ldots$ 2 |                                             |          |  |  |  |  |  |
|---|-------------------------------------------------------------------------|---------------------------------------------|----------|--|--|--|--|--|
|   | 5.6                                                                     | Compute differential expression             | 29       |  |  |  |  |  |
| 6 | More about S–MART 3                                                     |                                             |          |  |  |  |  |  |
|   | 6.1                                                                     | Data structures                             | 31       |  |  |  |  |  |
|   | 6.2                                                                     | Tags                                        | 31       |  |  |  |  |  |
|   | 6.3                                                                     | How mySQL is used?                          | 31       |  |  |  |  |  |
|   | 6.4                                                                     | Contribute to S–MART!                       | 32       |  |  |  |  |  |
| 7 | Con                                                                     | tact                                        | 32       |  |  |  |  |  |
|   |                                                                         |                                             |          |  |  |  |  |  |
| • | Con                                                                     |                                             | 02       |  |  |  |  |  |
| A | _                                                                       | d data on your genome browser               | 32       |  |  |  |  |  |
|   | Loa                                                                     |                                             |          |  |  |  |  |  |
|   | Load<br>Get                                                             | d data on your genome browser<br>other data | 32<br>33 |  |  |  |  |  |
| в | Loa                                                                     | d data on your genome browser<br>other data | 32       |  |  |  |  |  |
| в | Load<br>Get<br>Cave                                                     | d data on your genome browser<br>other data | 32<br>33 |  |  |  |  |  |

# 1 Introduction

S–MART should be pronounced "ess-mart" (better pronounced with a slight Spanish accent) and stands for "Short reads MART". It could have many other meanings. The one you choose is the best.

It provides a set of Python scripts which transform your short reads which have been mapped to a genome. So, it supposes that you already have mapped your data to a reference genome. For that, you can use Maq, ZOOM, Mosaik or any other tool. S–MART supports many formats.

You can also compare S–MART with other data, such as RefSeq sequences or any kind of annotation, as long as their formats are supported by S–MART (which is usually the case). However, S–MART does not include these data, simply because they are too many of them, and too many organisms. If you want to known where I get my data, read Appendix B.

# 2 Installation and requirements

Depending on the system you are using installation can be different. However, in both cases, you will need Python, mySQL, R and Java.

**Python** Python is the language used to code the algorithms. Why Python? Well, why not?

**mySQL** mySQL is a database management system which is used to handle efficiently the reads (remember that there can be several millions reads, so that every algorithmic improvement is highly important). Normally, you should not even see that S–MART uses some databases, since it reads flat files (like GFF files), and outputs flat files. But, internally, it uses databases. If you want to know how mySQL is used, you can read Section 6.3.

**R** R is a statistatical computing tool which can do many things, but, here, it is only used to plot the data.

**Java** Java is used here simply because it contains a good graphical user interface. So, it is used for the GUI in S–MART.

## 2.1 For Windows

Setting up your system for S–MART should not take more that 15 minutes.

**Python** You should have downloaded and extracted a bundle which contains all the Python scripts files. First check that Python version 2.5 is installed. You should get it from their Web site.

Each Python script uses many other scripts (basically, the structure of the files is organised by classes). So, you should add to your PATH variable the

directory where you have installed the scripts. To do so, click on My Computer, then Control Panel, System, Advanced, Environment variables. Click on New and add the following variables:

name: PATH, value: %PATH%; where\_you\_installed\_Python (probably C:\Python25) name: PYTHONPATH, value: where\_you\_installed\_S-MART

Now, download a Python extension for MySQL and install it.

**mySQL** You can download mySQL Server 5 *via* their Web site. Install it. You might need to reboot in order to start the mySQL daemon (yes, there will be a kind of demon in your computer... the kind which makes Word buggy, I guess) and create the sockets (yup, your computer needs sockets, otherwise it will catch a cold).

Install it, choose the Standard Configuration, then default options. At some point, you will have to create some user accounts. Create root account and keep the password.

Check that one user has read and write rights granted. You can do it by starting mySQL (you should find mySQL Command Line Client in the Programs menu) and write:

```
CREATE USER 'smart'@'localhost';
GRANT ALL PRIVILEGES ON *.* TO 'smart'@'localhost'
WITH GRANT OPTION;
```

Create also a database that S-MART will be able to use.

CREATE DATABASE smart; GRANT ALL ON smart.\* TO 'smart'@'localhost';

Close the window.

If you decided to choose a password for the mySQL, or a different login, you will have to modify consequently the file called .pythonConnection.txt which is the directory where you install S-MART. By default, the file contains:

```
user = smart
host = localhost
password =
database = smart
port = 3306
```

Write the corresponding login, password, database or port in the appropriate field.

**R** Again, download R *using* CRAN mirror download page.

Two packages are furthermore needed: RColorBrewer, to have a good palette of colors (I am color blind, so it is important to me), and Hmisc, which does Spearman correlations (among others). There are many ways to do so. The simplest one is to start R (find it in you **Programs** menu), and write:

install.packages("RColorBrewer", dependencies = TRUE)
install.packages("Hmisc", dependencies = TRUE)

R will probably ask you some questions, that you could blindly answer y (yes). It may also ask you the repository from where you can download the packages. You can choose the closest location. Alternatively, I know that the mirror from Toulouse, France, works well. Downloading the second package, Hmisc, takes some time because it has a lot dependencies.

Quit with q(). Done.

**Java** In the very unlikely case you had not Java (it is now a standard tool used with you Web browser), you can download it and install it afterwards.

## 2.2 For Linux or Mac

This has been tested on a Debian 2.22.3 and a MacOS 10.6.3.

**Python** You should have downloaded and extracted a bundle which contains all the Python scripts and the Java files. First check that Python is installed. I can guarantee that it works for version 2.5.2. Versions earlier than 2.4 will not work. Later versions may work. Or not.

Each Python script uses many other scripts (basically, the structure of the files is organised by classes). So, you should add to your PATH and PYTHON-PATH variables the directory where you have installed the scripts. To do so, supposing you use the standard Bash shell, open your .bashrc file on your root directory and add the following line at the end of the file:

# export PATH=\$PATH: the\_directory\_where\_you\_installed\_the\_files export PYTHONPATH=\$PYTHONPATH: the\_same\_directory

Some nice guy has made a mySQL API for Python, which is useful for S-MART. You could probably download it from your package repository (look for python-mysqldb).

Alternatively, you can download the package from Sourceforge and install it with:

python setup.py build sudo python setup.py install **mySQL** You can download mySQL *via* your usual package manager or using their Web site. The Mac users can use the installation help page if they experience some problems. Just in case, reboot to be sure you have the daemon started and the sockets created. Check that one user has read and write rights granted. You can do it by starting mySQL in a console with super-user rights (type mysql -u root -p in a console for instance) and write:

```
CREATE USER 'user_name'@'localhost';
GRANT ALL PRIVILEGES ON *.* TO 'user_name'@'localhost'
WITH GRANT OPTION;
```

Create also a database that S-MART will be able to use.

```
CREATE DATABASE your_database;
GRANT ALL ON your_database.* TO 'user_name'@'localhost';
GRANT FILE ON *.* TO 'user_name'@'localhost';
```

You can quit mySQL with Ctrl-D.

Modify in your parent directory the flat file called .pythonConnection.txt. It should have the following content:

```
user = your_user_name
host = localhost (most probably)
password = (probably empty)
database = the_database_you_created
port = 3306 (most probably)
```

 $\mathbf{R}$  Again, download R *via* your package manager or using the CRAN mirror download page.

One package is furthermore needed: RColorBrewer, to have a good palette of colors, and Hmisc, for the Spearman correlations. There are many ways to do so. The simplest one is to start R (type R in a console), then write:

install.packages("RColorBrewer", dependencies = TRUE)
install.packages("Hmisc", dependencies = TRUE)

R will probably ask you some questions, that you could blindly answer y (yes). It may also ask you the repository from where you can download the packages. You can choose the closest location. Alternatively, I know that the mirror from Toulouse, France, works well. Downloading the second package, Hmisc, takes some time because it has a lot dependencies.

Quit with q(). Done.

In case it does not work, you will have to download the RColorBrewer and Hmisc packages, then install them with:

```
R CMD INSTALL -1 where/you/dowloaded/the/packages RColorBrewer_xxx.tar.gz
R CMD INSTALL -1 where/you/dowloaded/the/packages Hmisc_xxx.tar.gz
```

| 100                                 |                                                                    |                                         |               |            |                   |                             |                                  | Mart                                  |
|-------------------------------------|--------------------------------------------------------------------|-----------------------------------------|---------------|------------|-------------------|-----------------------------|----------------------------------|---------------------------------------|
| Files                               | Data Selection                                                     | Sequences                               | Visualization | Conversion | Data Modification | Merge Mappi                 | ngs 🕺 Sliding Windo              | ws Other Data Comparison              |
|                                     |                                                                    |                                         |               |            |                   |                             | Format<br>File<br>Existing files | junacopri ( ) pri ( )<br>Opri a File. |
|                                     |                                                                    |                                         |               |            |                   | Look jn:                    |                                  |                                       |
|                                     |                                                                    |                                         |               |            |                   | File Name:<br>Files of Type | test.gff3<br>All Files           |                                       |
| Log                                 |                                                                    |                                         |               |            |                   |                             |                                  | Open Cased<br>Open selected file      |
| Python<br>mySQL<br>R is a<br>Set up | scripts are cor<br>Matabase is corr<br>rallable.<br>Is finel Enjoy | rectly read.<br>ectly set up<br>S-MARTI |               |            |                   |                             |                                  |                                       |

Figure 1: The "file" panel of the GUI.

Java I guess you already have a Java somewhere, have not you?

### 2.3 Test the configuration

To check if everything is correctly set up double-click on the Smart.jar icon, located where you download S-MART. On Linux, you can also open a terminal, go to the installation directory and write java -jar Smart.jar. The first time you start it, S-MART might ask you where the executable files for Python and R are (for the Windows users, they might be at C:\Python25\Python.exe and C:\Progam Files\R\R-2.10.0\bin\R.exe respectively, depending on the versions of you executables).

Is it OK? Cool! You can now start with your S–MART experience. Otherwse, you may drop me email and I might help you with the configuration.

# 3 General description

**The GUI** I have developped a graphical user interface so that every tool can be started easily.

On Windows, start it by double clicking on the Smart.jar file. On Linux, type java -jar Smart.jar.

You have to set the files that you will use (together with their formats) in the first panel. In the other panels, you will be able to start all the tools S–MART contains.

Figure 1 shows the GUI on the "file" panel. The GUI is divided into four regions, from top to bottom. On the top region (in the red rectangle), you can select the type of action you want to perform by selecting the right panel.

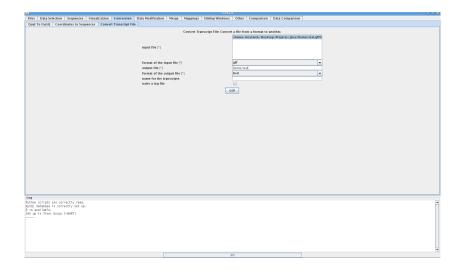


Figure 2: The "Convert Transcript File" program panel of the GUI.

The second area (the green one) lets you perform the task. The third region (the blue one) is the log area, where you can interactively read the output of the programs, or any relevant information. The last area (the yellow one) is a progress bar and shows you how much time the program will run to perform the task.

On the "file" panel, you can submit the files that you are going to use, together with their format. In the example, we enter the file test.gff3, which is a transcript list in GFF3 format. First select the type of data: mapping data (coming from your mapper), transcripts and other files. Then, select the right format. As you can see, S-MART supports many formats. Finally, click on the button Open a File to browse your hard disk and select the right file.

You can then use any tool of the toolbox by changing the panel. Figure 2 shows a conversion utility tool. Then, we select the file that we have mentionned (test.gff3) to convert it into a BED file. We specify that the input file is in GFF3 and that the output file is in BED format. We also specify the output file name (do not write the extension: S-MART adds it by itself). We click on the button, the program starts, as visible in the log area. Finally, the output file appears. We can open it in a file browser (see Figure 3)

**The command line** For the real hackers, every tool can be used in command line. All the scripts are in the **Python** directory and you can start them there. They all have several parameters that you can adjust depending on what you want to do, so a typical command would be:

```
python mapperAnalyzer.py -i mappedData.psl -f psl
-q rawData.fasta -o coordinates -n 1 -s 100 -m 0
-p 0 -e -x -r -b -B -g -G -u -U -2 -y -c green
```

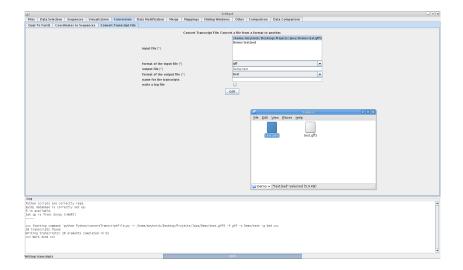


Figure 3: The result of the tool.

#### -t shortReads -v 50 -1

(It should be only one line but it does not fit in the page. Do not be afraid, commands usually are shorter.)

An important paramater is the -v number option, which gives the verbosity level (highest is most verbose). Another general option is the -1 option, which writes a log file (usually utterly verbose, but sometimes useful). A last useful option is -h, which displays a notice, a comment for each option and exits. Moreover, the -y, which is sometimes available, keeps the output file in the internal representation of S-MART (which is in a mySQL database). If you want to know why it could be useful to use this option, read Section 6.3.

## 4 Which tool for your need?

This section present the scripts that you may want to use for a particular task.

## 4.1 Mapping conversion

Once you have used your preferred mapping tool, you may want to play a bit with your data. Actually, it is not straightforward, since mapping formats (such as SAM, for instance) and transcript formats (such as GFF3) are quite different. Mapping formats generally include information about the reads (number of mismatches, number of gaps, number of mappings, etc.) which are usually not relevant for the transcript formats. So, first thing you can do is to convert your data into transcript format. You may also want to select the mappings using some criteria (you may want to exclude the reads which have mapped several times, for instance). The following tools do that for you. mapperAnalyzer.py The first program you may use is mapperAnalyzer.py. It reads a set of mapping given by the tool you have used to map your data on the reference genome and translate it to a set of genomic coordinates. You also have the possibility to extract only those that you are interested in (few matches in the genome, few errors in the mapping, etc.). You can also select those reads which map less than a given of times in the genome. Moreover, you can output the data in various different formats, which you can use to visualize them *via* UCSC genome browser or GBrowse<sup>1</sup>. Unmatched reads can be written in an other file, in case you would like to try to map them with another tool (may sometimes work!).

The script can parse data given by the following programs (the corresponding option is given in parenthesis):

- Blast (use -m 8 format for Blast and -f blast)
- Blat (-f psl)
- Exonerate<sup>2</sup> (-f exo)
- Maq (-f maq)
- Mosaik (output in axt format for Mosaik and use -f axt)
- Nucmer (-f nucmer)
- Rmap (-f blast)
- Seqmap (-f seqmap)
- Shrimp (-f shrimp)
- Soap (-f soap)
- Soap2 (-f soap2)
- and more...

You can filter your data according to:

- number of errors in the mapping
- number of occurrences of the mapping in the genome
- size of the read mapped
- number of gaps in the mapping

<sup>&</sup>lt;sup>1</sup>Look at Appendix A to know more about it.

 $<sup>^2\</sup>mathrm{Exonerate}$  can display its results in many formats. Currently, S–MART only support the following output format:

<sup>--</sup>ryo "%S %em %V\n" --showvulgar FALSE --showalignment FALSE Please add these parameters to your command line while using Exonerate!

The script needs an input file (your mapped reads) together with its format and the read sequences file together with its format (FASTA or FASTQ). If you want, you can also append the results of this script to another GFF3 file. This is useful when the GFF3 file is the result of the mapping using another tool.

By default, any gap in the alignment to the reference sequence is treated like an exon. You can decide to remove this feature by merging short introns (actually, gaps).

mappingToCoordinates.py If you just want to convert your mapping data to genomic coordinates, without any filtering, you can use mappingToCoordinates.py. It needs a mapping file (output of your mapper) together with its format, an output format (GFF3, BED) and prints you the corresponding file.

### 4.2 Data comparison

This section presents you several ways to compare to different sets of transcripts.

compareOverlapping.py This script may be the most important one. It basically compares two sets of transcripts and keeps those from the first set which overlap with the second one. The first set is considered as the query set (basically, your data) and the second one is the reference set (RefSeq data, for example, see Figure 4). Various modifiers are available:

- Restrict query / reference set to the first nucleotide. Useful to check if the TSS of one set overlap with the other one.
- Extend query / reference set on the 5' / 3' direction. Useful to check if one set is located upstream / downstream the other one.
- Include introns in the comparison.
- Invert selection (report those which do not overlap).
- Keep colinear / anti-sense overlapping data.
- Keep the query data even if they do not strictly overlap with the reference data, but are located not further away than *n* nucleotide from some reference data.

The mechanism of shrinking and extending is also useful to make a fine grain comparison. For example, if you want to keep those such that the TSS is overlapping the reference set, you just shrink the query set to 1 nucleotide (see Figure 5). Now, if you want to keep those which are overlapping you data or located 2kb downstream of it, just extend the query data in the downstream direction, and you will have what you want. You can also extend in the opposite direction to get the possible transcript factor sites which are upstream.

Some option reverses the selection. Put in other words, it performs the comparison as usual, and outputs all those query data which do not overlap.

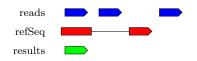


Figure 4: Simple comparison between your reads and RefSeq data, for example, using compareOverlapping.py.



Figure 5: Shrinking and extending your data before comparison with compareOverlapping.py.

getDifferentialExpression.py This tool compares two sets of data and find the differential expression. One very important component of the tool is the reference set. Actually, to use the tool, you need the two input sets of data, of course, and the reference set. The reference set is a set of genomic coordinates and, for each interval, it will count the number of feature on each sample and compute the differential expression. For each reference interval, it will output the direction of the regulation (up or down, with respect to the first input set), and a *p*-value from a Fisher exact test (see figure 6).

This reference set seems boring. Why not computing the differential expression without this set? The answer is: the differential expression of what? I cannot guess it. Actually, you might want to compare the expression of genes, of small RNAs, of transposable elements, of anything... So the reference set can be a list of genes, and in this case, you can compute the differential expression of genes. But you can also compute many other things.

Suppose that you cluster the data of your two input samples (you can do it with the clusterize and the mergeTranscriptLists tools). You now have a list of all the regions which are transcribed in at least one of the input samples. This can be your reference set. This reference set is interesting since you can detect the differential expression of data which is outside any annotation.

Suppose now that you clusterize using a sliding window the two input samples (you can do it with the clusterizeBySlidingWindows and the mergeSlidingWindowsClusters tools). You can now select all the regions of a given size which contain at least one read in one of the two input samples (do it with selectByTag and the tag nbElements). Again, this can be an other interesting reference set.

In most cases, the sizes of the two input samples will be different, so you should probably normalize the data, which is an available option. The —rather crude— normalization increases the number of data in the least populated sample and decreases the number of data in the most populated sample to the

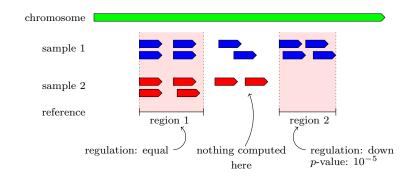


Figure 6: Differential expression computed on two reference intervals.

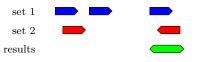


Figure 7: Finding transcription on both strands using mergeTranscriptLists.py.

average number of data.

You can also plot the differential expression. A point (x, y) refers to a reference interval which contains x data in the first sample and y data in the second sample. If you normalized the data, then the plot reports the normalized figures.

### 4.3 Merging data

This section presents you some ways to merge two sets of transcripts, or clusterize a set of transcript.

#### 4.3.1 Clustering

mergeTranscriptLists.py The script is similar to compareOverlapping.py, except that when data of two different sets overlap, they are merged. You can use the same parameters as compareOverlapping.py and use them to look for transcription on both strands, for example (see Figure 7).

Some option outputs all the data from the two samples, not only the data of the first sample that overlap with the second sample.

This script can also be used with one input data set. In this case, its behavior is similar to clusterize.py.

clusterize.py The script clusterizes the reads. Two reads are clusterized when their genomic intervals overlap (see Figure 8). The output is a GFF3 file, where each element is a cluster. The number of elements in the cluster is given by the tag nbElements.



Figure 8: Clustering using clusterize.py.



Figure 9: Finding TSS using findTss.py.

Alternatively, some options may clusterize the features which are closer than a given threshold.

By default, the tool clusterizes all features which overlap (or nearly overlap), even if they are on different strands. If you want to clusterize the features which are on the same strand only, you can specify it.

findTss.py This script is specially useful when you have 5' capped reads, that is to say, when the reads that you have mark the beginning of the transcripts. This script find all the TSS that are found by your data (see Figure 9).

In some —most, actually— cases, there is no clear TSS, but a stretch of possible TSSs. So you can choose the maximal distance between two reads for them to mark the same transcription start (for example, two reads that are distant by 20 nt. can mark 1 or 2 TSS, depending on the value of a parameter).

You can plot the distribution of the number of reads per TSS: a point (x, y) tells you that y transcripts starts are marked by x reads. The plot has sometimes a long tail towards the high values in the x-axis, so you can zoom to plot only the first points on this axis by using some parameters.

#### 4.3.2 Sliding Windows

Sliding windows are a convenient ways to clusterize data mapped on the genome. There are two important parameters of a sliding window: the size of the window and the size of the overlap. In Figure 10, a sliding window counts the number of reads.

clusterizeBySlidingWindows.py By default, sliding windows count the number of reads. However, you can basically merge any information which is contained in the tags (look at Section 6.2 if you want to know more about tags). You can compute the average, sum, median, max or min of the tags for each window. For instance, every window can contain the average cluster size, if you merge clusters instead of reads.

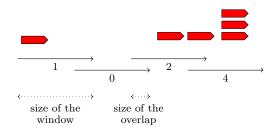


Figure 10: Sliding windows: counting the number of reads.

The output file is a GFF3 file, where each element is a window. There is a special tag for each window, whose name is nbElements if you counted the number of transcripts per sliding window. However, if you performed a "min" (resp. "max", "sum", "median", "average") operation on the tags value of the transcripts, then the tag of the window will be minValue (resp. maxValue, sumValue, medValue, avgValue).

You also have different option, which can select the n% highest regions, or the regions with at least n features in it, or even the regions with at least nunique features. This last option is useful when you want to cluster the reads which have mapped only once, for instance.

mergeSlidingWindowsClusters.py Sliding windows are also useful to compare two (or more!) sets of data. This can be very valuable when you want to compare differential expression in two different conditions. When you have two different sliding windows sets, this function merges them into one, where each window contains the two pieces of information. You may want to plot the data afterwards using the plot.py function.

A good motivation for this tool is given in Section 5.4. Suppose that you have two sets of reads, for two different conditions on the same genome. What you can do is use a sliding window for each condition using clusterizeBySlidingWindows.py. Now, to perform any comparison, you will have to merge the two conditions into a single file. This is were you need mergeSlidingWindowsClusters.py.

The tool needs two files given by clusterizeBySlidingWindows.py together with their format (GFF3, actually) and outputs a new file, in GFF3 format.

### 4.4 Data selection

This set of scripts reads a list of sequences or genomic coordinates and select those with some given simple properties.

#### 4.4.1 Sequences

restrictFromSize.py Reads a list of sequences or genomic coordinates and outputs those which are longer and / or shorter than a given size —which you provide.

getSequence.py Get a sequence from you FASTA or FASTQ file, given the name of the sequence. If you provide a multi-FASTA/Q file and the name of a sequence, this script will fetch the sequence for you.

restrictSequenceList.py This tool is somewhat similar to getSequence.py, but it is used to fetch several sequences at once. It uses a list of sequences and a list of sequence names (in a flat file, one name per line), and select those sequences such that the name is in the sequence name.

#### 4.4.2 Genomic coordinates

restrictGenomicCoordinates.py Reads a list of genomic coordinates and outputs those which on a given chromosome and / or between two given positions.

selectByTag.py Reads a list a list of transcripts and output all the transcripts with specific tag values. If you want to know more about tags, read Section 6.2.

The tools reads the input file (in GFF3 format) and more specifically the tag that you specified. You can mention a lower and a upper bound for its value and the tool will print all the transcripts such that the tags are between the specified bounds.

A tag has to be present for each transcript. If not, you can specify a default value which will be used if the tag is absent.

This tool can be used to select the clusters with a minimum number of elements (the tag **nbElements** counts the number of elements per clusters) or to select the reads which have mapped less than n times (the tag **nbOccurrences** counts the number of mappings per read).

## 4.5 Data modification

These tools do the "dirty job" that is sometimes useful to do: shrink or extend some genomic coordinates, get the first 20 nucleotides of your reads, etc.

#### 4.5.1 Sequences

These tools are dedicated to data in FASTA or FASTQ files (usually, your reads).

modifySequenceList.py This tool reads a list of sequences (in multi-FASTA/Q format) that you provide and shrinks each sequence to the n first nucleotides or the n last nucleotides.

trimAdaptator.py This function removes the adaptor from the 3' end of your reads. It can even recognize the adaptators which are partially present.

#### 4.5.2 Genomic coordinates

These tools are dedicated to data in a transcript file format such as GFF3 or BED (usually, your mapped reads).

modifyGenomicCoordinates.py This tool reads a list of transcripts and modifies each transcript by:

- shrinking it to the n first nucleotides or the n last nucleotides, or
- extending it to *n* nucleotides towards the 5' direction (upstream) or the 3' direction (downstream).

Note that the 5' or 3' direction depends on the orientation of the transcript (the 5' end of a transcript located on the minus strand is on the right hand of this transcript!).

The tool needs a transcript file, its format, and outputs a new transcript file.

changeTagName.py It changes the name of a tag in a transcript list (see Section 6.2 to know more about tags). This may be useful to change the name of a tag which have been automatically addressed, like nbElements while clustering, to a more precise name (such as nbReadsInRoot for instance).

## 4.6 Data collection

getWigData.py Reads a transcript list, computes the average value of some WIG data for each transcript and adds a tag corresponding to this average value to the transcript.

WIG is the format used to store the kind of information which is attached to —nearly— every nucleotide of a genome. Examples include nucleosome occupancy using ChIP-Seq data. getWigData.py finds all the data which correspond to the genomic coordinates of a transcript, average these data and store the result into a tag. Then, the transcripts are written in an output file, together with the tag (see Figure 11).

You can then plot your data using plotTranscriptList.py.

WIG files are usually very big, so you should use wigExploder.py first to dispatch the content of each chromosome in a different file. Then, getWigData.py uses indices for each chromosome to fetch the data faster. This indices can be large, so if your are short of memory, you can remove them; S-MART will build them on the fly.

#### 4.7 Data visualization

This set of tools do not modify your data, but simply outputs graphs.

| chr1 S-MART transcript 100 102 . + . Na<br>(a) A GFF line. | wariableStep chrom=chr1<br>100 0.1<br>101 0.1<br>101 0.4<br>(b) A short WIG file. |  |  |  |  |  |  |
|------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|--|--|--|--|
| chr1 S-MART transcript 100 102 . + . Na                    | me=test;value=0.4                                                                 |  |  |  |  |  |  |
| (c) The output of getWigData.py.                           |                                                                                   |  |  |  |  |  |  |

Figure 11: Including WIG data with getWigData.py. The first two figures show toy GFF3 and WIG files. The tool computes the average values for the transcript and creates a new tag with this result.

#### 4.7.1 Sequences

getReadDistribution.py This function analyzes your reads, count the number of times each read is sequenced and plots this distribution. A point (x, y) means that y different sequences have been sequenced x times. Put in other words, that you will find the word ACGUACGUACGU x times in you FASTA file, and y - 1 other different words like this.

You can also select the *n* most sequenced reads (or the x% highest).

getLetterDistribution.py Gets the nucleotide distribution of the input sequence list. It outputs two files. The first file shows the nucleotide distribution of the data (see Figure 12(a)). More precisely, a point (x, y) on the curve A shows that y sequences have x% of A.

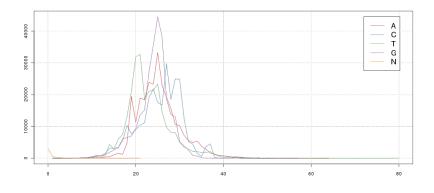
The second plot shows the average nucleotide distribution for each position of the read (see Figure 12(b)). You can use it to detect a bias in the first nucleotides, for instance. A point (x, y) on the curve A shows that at the position x, there are y% of A. A point (x, y) on the curve # tells you that y%of the sequences contain not less than x nucleotides. By definition, this latter line is a decreasing function. It usually explains why the tail of the other curves are sometimes erratic: there are few sequences.

#### 4.7.2 Genomic coordinates

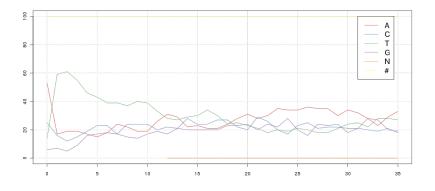
getDistance.py Give the distances between every data from the first input set and the data from the second input set. It outputs the size distribution (see Figure 13). Each point (x, y) tells you that there exists y pairs of elements which are separated by x nucleotides.

The general algorithm is the following. For each element of the first input set, it finds the closest element of the second set and computes the distance between the two elements. The distance is zero if the two elements overlap. This distance may not exist if the element of the first input set is alone on its chromosome (or contig).

Actually, considering an element from the first input set, the algorithm will look at the vicinity of this element (1kb by default). You can increase the size



(a) Nucleotide profile for the whole distribution. The x-axis is the proportion each nucleotide and the the y-axis is the number of reads with the corresponding distribution. There is, for instance, more that 40,000 reads with around 25% of  $\mathsf{G}$ .



(b) Nucleotide by nucleotide. The x-axis is the index of the nucleotides (start at 0), y-axis is the percentage of nucleotides. The # curve give the percentage of reads with at least the given size. In this example, all reads have exactly 36 nucleotides.

Figure 12: Nucleotide distributions using getLetterDistribution.py.

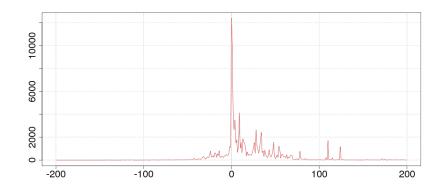


Figure 13: Distance between some reads and RefSeq genes in *Drosophila melanogaster*, using getDistance.py.

of the vicinity using the appropriate option.

As in compareOverlapping.py, you can shrink or extend your sets of genomic coordinates, so that you can get the distance between starts of reads and starts or genes, for instance. You can also compute the distance from elements which are on the same strand only (which is not the case by default) or on the opposite strand only.

You have several options for the output plot. You can first choose the region on the x-axis you want to plot. You can also display histograms instead of line plot. In this case, the data are summed into buckets, whose sizes are given as an option. For instance, a bucket of size s at the point (x, y) means that there are y pairs of elements which are separated by x to x + s nucleotides.

You can also save the distances into a GFF3 output file. In this case, the output file will the same as the first input file, except that some tags will be added (see Section 6.2 to know more about tags): the distance from the closest element in the second set, and the name of this latter element (using tags distance and closestElement respectively). If an element from the first input has no element from the second set in its vicinity, the tags will be set to None.

getNb.py Get the number times the reads have mapped, the number of exons for each mapping, or the number of elements in the clusters (see Figure 14). By default, the output is a line plot, but you can choose to have a bar plot instead.

getRepartition.py Print a density profile of the data for each chromosome, see Figure 15. You have to provide the reference genome, to know the sizes of the chromosomes. You can also provide the number of points (called *bins*) you want per chromosome.

By default, only one curve is plotted per chromosome, but you can plot one curve per strand and per chromosome (the minus strand will be plotted with

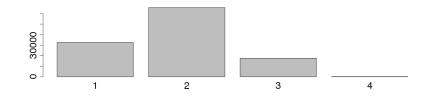


Figure 14: Number of exons per transcript of some 454 mapped reads, using getNb.py.

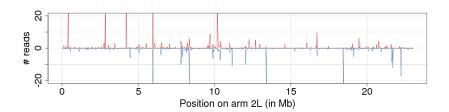


Figure 15: Density profile of some reads, using getRepartition.py. x-axis is the genomic coordinates of the chromosome 2L of *Drosophila melanogaster*, release 5. y-axis is the number of reads.

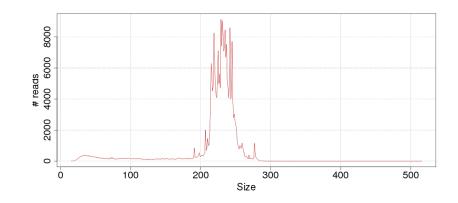


Figure 16: Size distribution of some 454 reads, using getSizes.py. x-axis is the size, y-axis is the number of reads.

chr1 S-MART transcript 100 200 . + . ID=region1;nbReadsRoot=1;nbReadsLeaf=1
chr1 S-MART transcript 200 300 . + . ID=region2;nbReadsRoot=5;nbReadsLeaf=3
chr1 S-MART transcript 300 400 . + . ID=region3;nbReadsRoot=3;nbReadsLeaf=2
(a) A short GFF file, with the results of sliding windows counting the number of reads in two
conditions (root and leaf).

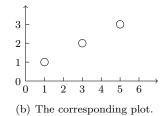


Figure 17: A plot using plotTranscriptList.py.

non-positive values on the *y*-axis). Moreover, the density is plotted (i.e. the ratio of the number of reads divided by the size of the bins), but you can also plot the raw number of reads. Actually, the two results are equal (modulo a constant multiplication factor) except for the last bin of the chromosome, which is usually smaller than the other bins.

If you want, you can also plot a specific region, by mentionning the chromosome, the start and the end positions of the region.

getSizes.py Get the read size distribution, see Figure 16. A point (x, y) means that y reads have a size of x nucleotides.

When your mapping include exon/intron structures, you can decide to count the size of the introns, the sizes of the exons or the size of the first exons.

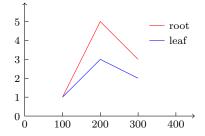


Figure 18: A plot using the data in 17(a) and plotRepartition.py.

plotTranscriptList.py Plot the data attached as tags in a transcript list. See Section 6.2 if you want to know more about tags. This can be used for displaying the comparison of different sets of sliding windows (see Figure 17).

The tool reads the tags of a transcript file (actually, a GFF3 file). It considers more specifically the tag names that you specify as parameter. If you use only one tag name, you can display a line plot. In this case, you have to specify a bucket size s (which is by defaut 1) and a point (x, y) tells you that there are ytranscripts with tag values x to x + s.

You can display could plots if you use two tag names. Each point represents the values of the two tags of a transcript. If you use three variables, the third variable will be the color of the point. You can also use a log scale and name the axes of the plot.

Each transcript must contain the tags which are specified. If not, you should provide a default value, which is used when the tag is not present.

If you use a cloud plot, you can compute the Spearman's rho to quantify a correlation between your two tag values.

plotRepartition.py Plot the data attached as tags in a transcript list along the genome. See Section 6.2 if you want to know more about tags. This is espacially interesting for displaying the regions where different sets of sliding windows differ (see Figure 18).

getWigDistance.py Plots the average data contained in a set of WIG files around the first nucleotides of a list of transcripts (see Figure 19).

The tool needs an transcript list, some WIG files, and a distance. For each transcript, it collects all the values around its first nucleotide, the radius being given by the distance. Then, it computes the average value for each position. A point (x, y) means that the average value in the WIG file for a nucleotide distant by x nucleotides from the first nucleotide of an input transcript is y.

You can possibly use a log scale for the *y*-axis.

### 4.8 Conversion tools

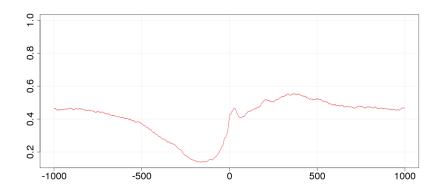


Figure 19: A plot using getWigDistance.py: the conservation given by Phast-Cons around the TSSs of very expressed regions (TSS is at x = 0).

convertTranscriptFile.py Converts some data from one format to another format. You should provide the input and the output file names, together with their formats.

The input format has been previously listed. They can be transcript format (BED, GFF) or mapping format (SAM, Blast -m 8). The output formats are:

- Excel format
- BED format,
- GFF2 format,
- GFF3 format,
- SAM format,
- the format used by GBrowse,
- the format used by UCSC genome browser,
- the intern mySQL format.

Note that the Excel format mentionned here is not precisely the XLS nor the XLSX format. It is the CSV format, which is simple enough to be understood by Excel (or OpenOffice). If you use OpenOffice, it will ask you some question about the separator of the fields and the lines. Simply say "OK"

coordinatesToSequence.py Provide a list of genomic coordinates, a reference genome, and it will output the sequence corresponding to the genomic coordinates, in a multi-FASTA file.

qualToFastQ.py Converts a QUAL file (together with the corresponding FASTA file) to a FASTQ file, that S-MART can use.

For some reasons (the first one being I am lazy), I have not implemented any QUAL parser. So, if you want to use them, you should convert them to FASTQ files, using this tool. It supposes that the base names of the files are the same in your QUAL file and your FASTA file (for instance foo.qual and foo.fasta).

### 4.9 Other tasks

cleanGff.py This tool tries to "clean" a GFF by removing all the unrelevant lines and possibly altering others. This is specially useful when you download a genome wide annotation file from NCBI, for instance. Look at Appendix D to see the kind of problems it can solve.

wigExploder.py Dispatches the content of a big WIG files into several files, one for each chromosome.

WIG files are very big and S-MART uses an index to parse them quickly. But for that, it should have one data per chromosome in a proper directory. This is what wigExploder.py does.

getRandomRegions.py Generates a set of random regions in a reference genome. Useful to compare your data with random data.

You have to provide a reference genome (otherwise, the tool does not know the number of chromosomes nor their sizes). You can choose the sizes of the regions (which will all be the same) and the number of them.

removeAllTmpTables.py The toolbox may generate some mySQL that you may want to drop. Use this script to do so.

Notice that if you interrupt the execution of a program while it is running, the tables and the temporary files which are currently used cannot be removed and you have to do it by yourself using this tool.

## 5 Possible pipe-lines

I will describe here a couple of "pipe-lines" that I have found useful.

## 5.1 Use two mappers

Up to now, there is no clear consensus about which mapper gives best results (there is probably none, though). So I used two of them. In this example, I mapped with Blat and Exonerate.

```
python mapperAnalyzer.py -i blatOutput.psl -f psl
-q reference.fasta -o mappingWithBlat
```

```
python mapperAnalyzer.py -i exonerateOutput.exo -f exo
-q reference.fasta -a mappingWithBlat -r
```

```
-o mappingWithBlatAndExo
```

## 5.2 Find piRNA clusters

Some papers show an interesting way to find potential clusters of piRNAs. They:

- sequence the transcriptome with RNA-Seq,
- map the data,
- keep the data which sizes between 25 and 31 nucleotides,
- exclude everything which overlaps with RefSeq data,
- merge the mappings into clusters (20 kb),
- keep those clusters which have at least ten elements,
- convert the output to Excel format.

Here is how it can been done.

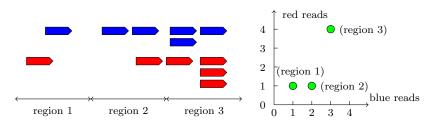
```
python restrictFromSize.py -i mappedData.gff3 -f gff
-m 25 -M 31 -o goodSize
python compareOverlapping.py -i goodSize.gff3 -f gff
-j refSeqGenes.bed -g bed -c -x -o noGene
python clusterize.py -i noGene.gff3 -f gff
-d 20000 -o clustered
python selectByTag.py -i clustered.gff3 -f gff
-g nbElements -m 10 -o bigClusters
python convertTranscriptFile.py -i bigClusters.gff3 -f gff
-o bigClusters -g excel
```

#### 5.3 Get the letter distribution of the beginning of the data

It might be interesting to see if you have a bias in the distribution of the nucleotides at the beginning of the data that you have selected. For example, piRNA usually start with U, RefSeq data, with ATT, and so on. To visualize it, you can:

- select the first 30 nucleotides of your data,
- get back the sequences from your genomic coordinates,
- get the nucleotide distribution.

It can be done this way.



(a) Example of two sets of reads (one blue, one (b) The corresponding plot. For red), clustered by sliding windows into three re- each dot, the corresponding region gions. is given in parenthesis.

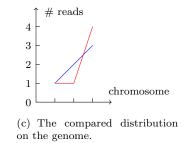


Figure 20: Comparing two sets of reads with sliding windows.

```
python modifyGenomicCoordinates.py -i data.gff3 -f gff -s 30
  -o cutData
python coordinatesToSequence.py -i cutData.gff3 -f gff
  -s reference.fasta -o sequences.fasta
python getLetterDistribution.py -i sequences.fasta
  -o nucleotideDistribution
```

## 5.4 Compare two sets of reads with sliding windows

Suppose you have two sets of reads (for instance, from two conditions) and you want to have a broad picture of a possible correlation between the two sets. What you can do is to use a sliding window to cluster the two sets of reads (see Figure 20(a)). Then, you can plot the results, where each point (x, y) comes from a sliding window which contains x reads from the first set and y reads from the second set (see Figure 20(b)).

Here are the steps you have to perform to do so:

• Use a sliding window to cluster each set (here the size of the window is 1kb, and the overlap is 500 nt.). You may or you may not consider that two reads on opposite strands can be in the same window. Use option -2 to consider the strands independantly. You now have two GFF3 files, and the tag nbElements counts the number of reads for each window.

- Change the name of the tags nbElements to two different names (here: set1 and set2). You will have some problems otherwise in the next step.
- Merge the two files.
- Plot the distribution. Here, we will use log bases for x and y-axes (-1 option). We also have to specify the default values for missing data with the -X and -Y options. We can specify a label for the axes with the -m and -n options.

Supposing that the reads are in the files set1.gff3 and set2.gff3, you can use the following commands to perform the steps:

```
python clusterizeBySlidingWindows.py -i set1.gff3 -f gff
-s 1000 -e 500 -o set1Clustered -2
python clusterizeBySlidingWindows.py -i set2.gff3 -f gff
-s 1000 -e 500 -o set2Clustered -2
python changeTagName.py -i set1Clustered -f gff -t nbElements
-n set1 -o set1ClusteredGoodTag
python changeTagName.py -i set2Clustered -f gff -t nbElements
-n set2 -o set2ClusteredGoodTag
python mergeSlidingWindowsClusters.py -i set1ClusteredGoodTag.gff3
-f gff -j set2ClusteredGoodTag.gff3 -g gff -o set12Clustered
python plotTranscriptList.py -i set12Clustered.gff3 -f gff -x set1
-y set2 -X 0 -Y 0 -l xy -n set1 -m set2 -s points
-o set12ClusteredPlot
```

And, yes, you get the Spearman rho!

Moreover, if you want to see the distribution of the two sets of reads on the chromosome (see Figure 20(c)), you can do it with:

```
python plotRepartition.py -i set12Clustered.gff3 -n set1,set2
  -c blue,red -r -o set12ClusteredGenome
```

# 5.5 Compare RNA-Seq with tiling arrays using sliding windows

Let us suppose that you have some tiling array you want to compare with your sequencing. Let us also suppose you have analyzed your array data and you now have some *p*-value, *t*-value or anything which is a proxy to gene intensity. You may want to use sliding windows to compare with your reads. Of course, for a fair comparison, you want to compare the regions where you have at least 1 chip (you may have not covered the whole genome).

The steps are the following:

• Cluster the array data into sliding windows, with a window size of 1kb, and an overlap of 500 nt., just to count the number of chips per window.

- Cluster the array data into sliding windows by using the average intensity value in the window (but we can use min, max or median value). Here we will suppose you have a GFF3 file with a intensity tag.
- Merge the two previous files.
- Keep the regions where you have at least 1 chip.
- Cluster the reads as done in section 5.4.
- Merge the array file and the reads file.
- Plot the distribution with log base on *y*-axis (for the reads).

```
python clusterizeBySlidingWindows.py -i array.gff3 -f gff
  -s 1000 -e 500 -o arrayNb -2
python clusterizeBySlidingWindows.py -i array.gff3 -f gff
  -s 1000 -e 500 -o arrayIntensity -g intensity -r avg -2
python mergeSlidingWindowsClusters.py -i arrayNb.gff3
  -f gff -j arrayIntensity.gff3 -g gff -o arrayNbIntensity
python selectByTag.py -i arrayNbIntensity.gff3 -f gff
  -g nbElements -m 1 -o arrayNbIntensity1chip
python clusterizeBySlidingWindows.py -i reads.gff3 -f gff
  -s 1000 -e 500 -o readsClustered -2
python changeTagName.py -i readsClustered -f gff -t nbElements
  -n nbReads -o readsClusteredGoodTag
python mergeSlidingWindowsClusters.py
  -i arrayNbIntensity1chip.gff3 -f gff
  -j readsClusteredGoodTag.gff3 -g gff -o arrayReadsClustered
python plotTranscriptList.py -i arrayReadsClustered.gff3 -f gff
  -x avgIntensity -y nbReads -Y 0 -l y -n array -m reads
  -s points -o arrayReadsPlot
```

#### 5.6 Compute differential expression

Suppose you have two sets of reads, from two different conditions and you want to compare them. The main difficulty here is to decide where you are going to compare. You could decide to slice the genome into sliding windows and perform the comparison on the sliding windows, but that is probably not the best thing to do (although you can do it with S–MART). What you should do is to find the clusters of reads and compare the clusters.

For instance, look at figure 21, which represents two sets of reads mapped on a genome. Obviously, we have two clusters, altough the red reads are not present in the second cluster (which is a particularly good case of differential expression). Basically, we have to find these two regions from the two sets of data. Notice that in the first region, there is a small gap which is not covered

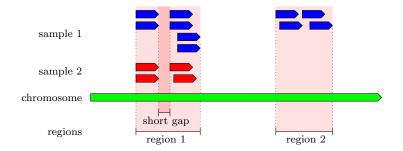


Figure 21: Finding the regions where to compare the two clusters.

by any read. So, we have to accept some small gaps to merge the reads into clusters.

Then, it could be nice to keep the regions where there is a clear differential expression and see where they are on the genome.

From the previous reasoning, we can conclude that we have to follow the following steps:

- Cluster the reads from sample 1 with some gap allowed (here, 10 nt.). Only cluster the reads which are on the same strand (-c option).
- Do the same for the sample 2.
- Merge the two sets of clusters. Again, the clusters on different strands should not be merged.
- Compute the differential expression from sample 1 and sample 2 using the regions previously found. We now have a set of regions with a *p*-value associated to differential expression.
- Select the regions with a very low *p*-value (here,  $10^{-100}$ ).
- Plot these regions onto the genome (you will need the reference genome genome.fasta for that).

Expressed in the S-MART language, this becomes:

```
python clusterize.py -i sample1.gff3 -f gff -c -d 10
  -o sample1clustered
python clusterize.py -i sample2.gff3 -f gff -c -d 10
  -o sample2clustered
python mergeTranscriptLists.py -i sample1clustered.gff3
  -f gff -j sample2clustered -k -c -o sample12clustered
python getDifferentialExpression.py -i sample1.gff3 -f gff
  -j sample2.gff3 -g gff -k sample12clustered -l gff
  -o sample12differential
python selectByTag.py -i sample12differential -f gff
```

```
chr1 S-MART transcript 100 400 . + . ID=read1;nbMismatches=2
chr1 S-MART exon 100 200 . + . ID=read1-1;Parent=read1
chr1 S-MART exon 300 400 . + . ID=read1-2;Parent=read1
```

Figure 22: A short GFF3 file, containing a transcript with two exons. The tags are in the last field of each line.

```
-g pValue -M 10e-100 -o sample12differentialLowPValue
python getRepartition.py -i sample12differentialLowPValue
-f gff -r genome.fasta -2 -o sample12differentialLowPValuePlot
```

# 6 More about S–MART

I will give you here some details about the internal representations of the data in S–MART. Just in case you would like to know how it works...

#### 6.1 Data structures

S–MART mainly use a data structure that models a transcript. A transcript can be decomposed as a set of exons, which basically are genomic intervals. So, a transcript is a set of genomic intervals. So is a mapped read; short reads usually have only one exon, but longer ones often have several.

A cluster is modeled the same way. While clusterizing, S–MART merges the exons of the transcripts one by one (if they overlap), thus forming a new set of new exons.

## 6.2 Tags

S–MART for each "transcript", S–MART attaches some information, called *tags*. The information might be the number of mismatches of a mapped read, or the number of elements in a cluster.

S–MART automatically load the tags from a GFF3 file (see Figure 22 for an example of a GFF3 file with tags). It updates the tags while mapping the reads and clusterizing them.

## 6.3 How mySQL is used?

S–MART stores all the data in a mySQL table. That is to say, S–MART (see Figure 23):

- 1. reads your data,
- 2. stores them in a database,

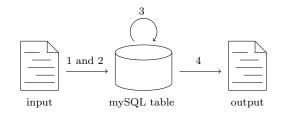


Figure 23: Use of mySQL tables in S-MART, in 4 steps.

- 3. processes them (it basically uses an B-tree on nested bins to compute the overlaps faster) and
- 4. outputs them into an output file.

So, in some cases, you can skip the steps 1 and 2. Suppose that you use the tool compareOverlapping.py to keep only those reads which overlap with RefSeq data, then clusterize.py to merge them into clusters. In compareOverlapping.py, you can use the -y option to keep into the database the data. Then, if you mention that the input format of clusterize.py is -f sql, S-MART directly uses the data which is available in your mySQL database. So, you can skip the steps 1 and 2, and save some time! Be aware, however, that it takes some place on your hard disk.

### 6.4 Contribute to S–MART!

If you want to add your own tool to S-MART, please do not hesitate. You can develop it using the API I have made. Look at the format I have used to generate the help from my Python scripts (using OptionParser) in the Python directory and add your own Python file in the same directory. That is it! It will be automatically included in the GUI and you will be able to start your own tool from there.

## 7 Contact

For any comment, suggestion, remark, do not hesitate to contact me.

## A Load data on your genome browser

**UCSC genome browser** Go to the UCSC genome browser. Select your species (if available). Click on the add custom track button. Upload your data in a ".ucsc" or ".bed" file.

**GBrowse** Go to your favorite GBrowse, for example the fly GBrowse. Go down, to the Add your own tracks section. Select your data in a ".gb" file after clicking on the Browse... button. Now watch amazed your reads.

# **B** Get other data

**UCSC** As long as your organism is covered by UCSC (including Mammals, other Vertebrates, Insects, Nematodes and a few other species), this may be the right place to get your data. Go to their database to retrieve the annotation. Select the right organism, select the group, track and table where your data are (it may take some time to find the right combination), select BED as the output format, and mention an output file. This is it!

**RefSeq** NCBI provides a list of RefSeq sequences on their public FTP. You can browse it with your normal browser. Choose the right organism, then you should download the data chromosome by chromosome (which is pain, I reckon). Be sure that you get the GFF files. Afterwards, you should concatenate the files.

**FlyBase** If you work on an insect, you can go to the FlyBase Web site to download your annotation. Select your organism, then the release (latest is best), then the GFF folder. You can then download the whole annotation in a file whose name contains the word **all**. Be careful, you will download the whole annotation of your insect! It may not exactly be what you need!

**Other data** Many Web site are dedicated to a specific organism or some specific data (miRNAs, transcription factor binding sites, etc.). I cannot cover them all, but you can probably find there the data that you need. It is a matter of patience. Just make sure that the data is available in the usual formats (GFF or BED, for instance).

# C Caveats

**Never modify your data with Word** (or a similar text processor)

I reckon Word is a very good tool, but is it not made to view and alter flat files. Word converts a flat file to its own format, which is very hard to read (change a .doc extension to a .txt extension and try to open the file... you might be surprised). Every file that we S-MART uses should be viewed with NotePad or the like. Except images, of course.

# D Troubleshooting

**My GFF file is not parsed!** A problem with a GFF file may have different causes.

First, it seems that there is no gold standard for GFF files. Current files are usually produced in GFF3 format, which includes an ID and possibly a **Parent** fields. However, this convention is sometimes not followed. If they are not present, it is hard for S-MART to link a line which contains a transcript annotation to the lines which contains the annotations of its exons.

Second, please make sure that your files contains *only* the data you are interested in. For instance, when you download some genome wide annotation, you have information of the size of the chromosomes, annotation of the start and stop codon, of the 5' and 3' UTR. This is usually something you are not interested in and S–MART can be confused. Basically, you just want the annotation of the transcripts and their exons (see Figure 22 for an exemple of a very simple GFF3 file).

Third, different sources may name the chromosomes differently. Compare chr\_I with Chr1 (or even worse: gi|157069709|gb|AABX02000103.1|). S-MART cannot see they actually are the same chromosome (actually, UN-S-MART could have been a better name). So you have to change the names of the chromosomes accordingly.

In all cases, you can use the tool "Clean GFF" (see Section 4.9), which tries to produce a GFF3 file which can be understood by S–MART. But please check the output file to make sure the output is correct!

My WIG file is not parsed! S-MART needs to have a specific directory which contains one WIG file per chromosome. The reason for that is that WIG files usually are large files, and S-MART uses indices to parse them quickly. So, if in your transcript list file, you have chromosomes like chr1, chr2, etc., you *must* have files like chr1.wig, chr2.wig, etc.

S–MART creates the indices for the WIG files only once, so the first time you use these WIG files, S–MART might be slow. But it like become much faster afterwards.

# Index

```
changeTagName.py, 17
cleanGff.py, 24
clusterize.py, 13
clusterizeBySlidingWindows.py, 14
compareOverlapping.py, 11
convertTranscriptFile.py, 24
coordinatesToSequence.py, 24
findTss.py, 14
```

```
getDifferentialExpression.py, 12
getDistance.py, 18
getLetterDistribution.py, 18
getRandomRegions.py, 25
getReadDistribution.py, 18
getRepartition.py, 20
getSequence.py, 15
getDistance.py, 21
getWigData.py, 17
getWigDistance.py, 23
```

```
mapperAnalyzer.py, 9
mappingToCoordinates.py, 11
mergeSlidingWindowsClusters.py, 15
mergeTranscriptLists.py, 13
modifyGenomicCoordinates.py, 17
modifySequenceList.py, 16
```

```
plotRepartition.py, 23
plotTranscriptList.py, 21
```

```
\verb+qualToFastQ.py,\,24
```

```
removeAllTmpTables.py, 25
restrictFromSize.py, 15
restrictGenomicCoordinates.py, 16
restrictSequenceList.py, 16
```

```
\texttt{selectByTag.py}, 16
```

```
trimAdaptator.py, 16
```

```
\tt wigExploder.py,\,25
```