
Documentation of S–MART

Matthias Zytnicki

June 7, 2010

Contents

1 Introduction 3

2 Installation and requirements 3
2.1 For Windows . 3
2.2 For Linux or Mac . 5
2.3 Test the configuration . 7

3 General description 7

4 Which tool for your need? 9
4.1 Mapping conversion . 9
4.2 Data comparison . 11
4.3 Merging data . 13

4.3.1 Clustering . 13
4.3.2 Sliding Windows . 14

4.4 Data selection . 15
4.4.1 Sequences . 15
4.4.2 Genomic coordinates . 16

4.5 Data modification . 16
4.5.1 Sequences . 16
4.5.2 Genomic coordinates . 17

4.6 Data collection . 17
4.7 Data visualization . 17

4.7.1 Sequences . 18
4.7.2 Genomic coordinates . 18

4.8 Conversion tools . 23
4.9 Other tasks . 25

5 Possible pipe-lines 25
5.1 Use two mappers . 25
5.2 Find piRNA clusters . 26
5.3 Get the letter distribution of the beginning of the data 26
5.4 Compare two sets of reads with sliding windows 27

1

5.5 Compare RNA-Seq with tiling arrays using sliding windows . . . 28
5.6 Compute differential expression 29

6 More about S–MART 31
6.1 Data structures . 31
6.2 Tags . 31
6.3 How mySQL is used? . 31
6.4 Contribute to S–MART! . 32

7 Contact 32

A Load data on your genome browser 32

B Get other data 33

C Caveats 33

D Troubleshooting 33

2

1 Introduction

S–MART should be pronounced “ess-mart” (better pronounced with a slight
Spanish accent) and stands for “Short reads MART”. It could have many other
meanings. The one you choose is the best.

It provides a set of Python scripts which transform your short reads which
have been mapped to a genome. So, it supposes that you already have mapped
your data to a reference genome. For that, you can use Maq, ZOOM, Mosaik
or any other tool. S–MART supports many formats.

You can also compare S–MART with other data, such as RefSeq sequences
or any kind of annotation, as long as their formats are supported by S–MART
(which is usually the case). However, S–MART does not include these data,
simply because they are too many of them, and too many organisms. If you
want to known where I get my data, read Appendix B.

2 Installation and requirements

Depending on the system you are using installation can be different. However,
in both cases, you will need Python, mySQL, R and Java.

Python Python is the language used to code the algorithms. Why Python?
Well, why not?

mySQL mySQL is a database management system which is used to handle
efficiently the reads (remember that there can be several millions reads, so that
every algorithmic improvement is highly important). Normally, you should not
even see that S–MART uses some databases, since it reads flat files (like GFF
files), and outputs flat files. But, internally, it uses databases. If you want to
know how mySQL is used, you can read Section 6.3.

R R is a statistatical computing tool which can do many things, but, here, it
is only used to plot the data.

Java Java is used here simply because it contains a good graphical user inter-
face. So, it is used for the GUI in S–MART.

2.1 For Windows

Setting up your system for S–MART should not take more that 15 minutes.

Python You should have downloaded and extracted a bundle which contains
all the Python scripts files. First check that Python version 2.5 is installed. You
should get it from their Web site.

Each Python script uses many other scripts (basically, the structure of the
files is organised by classes). So, you should add to your PATH variable the

3

http://maq.sourceforge.net/
http://www.bioinformaticssolutions.com/products/zoom/index.php
http://bioinformatics.bc.edu/marthlab/Mosaik
http://www.python.org/download/releases/2.5.4/

directory where you have installed the scripts. To do so, click on My Computer,
then Control Panel, System, Advanced, Environment variables. Click on
New and add the following variables:

name: PATH, value: %PATH%;where you installed Python (probably
C:\Python25)

name: PYTHONPATH, value: where you installed S-MART

Now, download a Python extension for MySQL and install it.

mySQL You can download mySQL Server 5 via their Web site. Install it.
You might need to reboot in order to start the mySQL daemon (yes, there will
be a kind of demon in your computer. . . the kind which makes Word buggy, I
guess) and create the sockets (yup, your computer needs sockets, otherwise it
will catch a cold).

Install it, choose the Standard Configuration, then default options. At
some point, you will have to create some user accounts. Create root account
and keep the password.

Check that one user has read and write rights granted. You can do it by
starting mySQL (you should find mySQL Command Line Client in the Programs
menu) and write:

CREATE USER ’smart’@’localhost’;

GRANT ALL PRIVILEGES ON *.* TO ’smart’@’localhost’

WITH GRANT OPTION;

Create also a database that S–MART will be able to use.

CREATE DATABASE smart;

GRANT ALL ON smart.* TO ’smart’@’localhost’;

Close the window.
If you decided to choose a password for the mySQL, or a different login, you

will have to modify consequently the file called .pythonConnection.txt which
is the directory where you install S–MART. By default, the file contains:

user = smart

host = localhost

password =

database = smart

port = 3306

Write the corresponding login, password, database or port in the appropriate
field.

4

http://biohackers.net/wikiattach/Python2(2e)5/attachments/MySQL-python.exe-1.2.1_p2.win32-py2.5.exe
http://dev.mysql.com/downloads/mysql/5.1.html#downloads

R Again, download R using CRAN mirror download page.
Two packages are furthermore needed: RColorBrewer, to have a good palette

of colors (I am color blind, so it is important to me), and Hmisc, which does
Spearman correlations (among others). There are many ways to do so. The
simplest one is to start R (find it in you Programs menu), and write:

install.packages("RColorBrewer", dependencies = TRUE)

install.packages("Hmisc", dependencies = TRUE)

R will probably ask you some questions, that you could blindly answer y (yes).
It may also ask you the repository from where you can download the packages.
You can choose the closest location. Alternatively, I know that the mirror from
Toulouse, France, works well. Downloading the second package, Hmisc, takes
some time because it has a lot dependencies.

Quit with q(). Done.

Java In the very unlikely case you had not Java (it is now a standard tool
used with you Web browser), you can download it and install it afterwards.

2.2 For Linux or Mac

This has been tested on a Debian 2.22.3 and a MacOS 10.6.3.

Python You should have downloaded and extracted a bundle which contains
all the Python scripts and the Java files. First check that Python is installed. I
can guarantee that it works for version 2.5.2. Versions earlier than 2.4 will not
work. Later versions may work. Or not.

Each Python script uses many other scripts (basically, the structure of the
files is organised by classes). So, you should add to your PATH and PYTHON-
PATH variables the directory where you have installed the scripts. To do so,
supposing you use the standard Bash shell, open your .bashrc file on your root
directory and add the following line at the end of the file:

export PATH=$PATH:the_directory_where_you_installed_the_files

export PYTHONPATH=$PYTHONPATH:the_same_directory

Some nice guy has made a mySQL API for Python, which is useful for S–
MART. You could probably download it from your package repository (look for
python-mysqldb).

Alternatively, you can download the package from Sourceforge and install it
with:

python setup.py build

sudo python setup.py install

5

http://cran.r-project.org/mirrors.html
http://www.java.com/en/download/index.jsp
http://sourceforge.net/projects/mysql-python/

mySQL You can download mySQL via your usual package manager or using
their Web site. The Mac users can use the installation help page if they ex-
perience some problems. Just in case, reboot to be sure you have the daemon
started and the sockets created. Check that one user has read and write rights
granted. You can do it by starting mySQL in a console with super-user rights
(type mysql -u root -p in a console for instance) and write:

CREATE USER ’user_name ’@’localhost’;

GRANT ALL PRIVILEGES ON *.* TO ’user_name ’@’localhost’

WITH GRANT OPTION;

Create also a database that S–MART will be able to use.

CREATE DATABASE your_database ;

GRANT ALL ON your_database.* TO ’user_name ’@’localhost’;

GRANT FILE ON *.* TO ’user_name ’@’localhost’;

You can quit mySQL with Ctrl-D.
Modify in your parent directory the flat file called .pythonConnection.txt.

It should have the following content:

user = your_user_name

host = localhost (most probably)

password = (probably empty)

database = the_database_you_created

port = 3306 (most probably)

R Again, download R via your package manager or using the CRAN mirror
download page.

One package is furthermore needed: RColorBrewer, to have a good palette
of colors, and Hmisc, for the Spearman correlations. There are many ways to
do so. The simplest one is to start R (type R in a console), then write:

install.packages("RColorBrewer", dependencies = TRUE)

install.packages("Hmisc", dependencies = TRUE)

R will probably ask you some questions, that you could blindly answer y (yes).
It may also ask you the repository from where you can download the packages.
You can choose the closest location. Alternatively, I know that the mirror from
Toulouse, France, works well. Downloading the second package, Hmisc, takes
some time because it has a lot dependencies.

Quit with q(). Done.
In case it does not work, you will have to download the RColorBrewer and

Hmisc packages, then install them with:

R CMD INSTALL -l where/you/dowloaded/the/packages RColorBrewer xxx.tar.gz

R CMD INSTALL -l where/you/dowloaded/the/packages Hmisc xxx.tar.gz

6

http://dev.mysql.com/downloads/
http://dev.mysql.com/doc/refman/5.0/en/mac-os-x-installation.html
http://cran.r-project.org/mirrors.html
http://cran.r-project.org/mirrors.html
http://cran.r-project.org/web/packages/RColorBrewer/index.html
http://cran.r-project.org/web/packages/Hmisc/index.html

Figure 1: The “file” panel of the GUI.

Java I guess you already have a Java somewhere, have not you?

2.3 Test the configuration

To check if everything is correctly set up double-click on the Smart.jar icon,
located where you download S–MART. On Linux, you can also open a terminal,
go to the installation directory and write java -jar Smart.jar. The first time
you start it, S–MART might ask you where the executable files for Python and
R are (for the Windows users, they might be at C:\Python25\Python.exe and
C:\Progam Files\R\R-2.10.0\bin\R.exe respectively, depending on the ver-
sions of you executables).

Is it OK? Cool! You can now start with your S–MART experience. Other-
wse, you may drop me email and I might help you with the configuration.

3 General description

The GUI I have developped a graphical user interface so that every tool can
be started easily.

On Windows, start it by double clicking on the Smart.jar file. On Linux,
type java -jar Smart.jar.

You have to set the files that you will use (together with their formats) in the
first panel. In the other panels, you will be able to start all the tools S–MART
contains.

Figure 1 shows the GUI on the “file” panel. The GUI is divided into four
regions, from top to bottom. On the top region (in the red rectangle), you
can select the type of action you want to perform by selecting the right panel.

7

mailto:matthias.zytnicki@versailles.inra.fr

Figure 2: The “Convert Transcript File” program panel of the GUI.

The second area (the green one) lets you perform the task. The third region
(the blue one) is the log area, where you can interactively read the output of
the programs, or any relevant information. The last area (the yellow one) is a
progress bar and shows you how much time the program will run to perform
the task.

On the “file” panel, you can submit the files that you are going to use,
together with their format. In the example, we enter the file test.gff3, which
is a transcript list in GFF3 format. First select the type of data: mapping data
(coming from your mapper), transcripts and other files. Then, select the right
format. As you can see, S–MART supports many formats. Finally, click on the
button Open a File to browse your hard disk and select the right file.

You can then use any tool of the toolbox by changing the panel. Figure 2
shows a conversion utility tool. Then, we select the file that we have mentionned
(test.gff3) to convert it into a BED file. We specify that the input file is in
GFF3 and that the output file is in BED format. We also specify the output
file name (do not write the extension: S–MART adds it by itself). We click on
the button, the program starts, as visible in the log area. Finally, the output
file appears. We can open it in a file browser (see Figure 3)

The command line For the real hackers, every tool can be used in command
line. All the scripts are in the Python directory and you can start them there.
They all have several parameters that you can adjust depending on what you
want to do, so a typical command would be:

python mapperAnalyzer.py -i mappedData.psl -f psl

-q rawData.fasta -o coordinates -n 1 -s 100 -m 0

-p 0 -e -x -r -b -B -g -G -u -U -2 -y -c green

8

Figure 3: The result of the tool.

-t shortReads -v 50 -l

(It should be only one line but it does not fit in the page. Do not be afraid,
commands usually are shorter.)

An important paramater is the -v number option, which gives the verbosity
level (highest is most verbose). Another general option is the -l option, which
writes a log file (usually utterly verbose, but sometimes useful). A last useful
option is -h, which displays a notice, a comment for each option and exits.
Moreover, the -y, which is sometimes available, keeps the output file in the
internal representation of S–MART (which is in a mySQL database). If you
want to know why it could be useful to use this option, read Section 6.3.

4 Which tool for your need?

This section present the scripts that you may want to use for a particular task.

4.1 Mapping conversion

Once you have used your preferred mapping tool, you may want to play a bit
with your data. Actually, it is not straightforward, since mapping formats (such
as SAM, for instance) and transcript formats (such as GFF3) are quite different.
Mapping formats generally include information about the reads (number of
mismatches, number of gaps, number of mappings, etc.) which are usually
not relevant for the transcript formats. So, first thing you can do is to convert
your data into transcript format. You may also want to select the mappings
using some criteria (you may want to exclude the reads which have mapped
several times, for instance). The following tools do that for you.

9

mapperAnalyzer.py The first program you may use is mapperAnalyzer.py.
It reads a set of mapping given by the tool you have used to map your data on
the reference genome and translate it to a set of genomic coordinates. You also
have the possibility to extract only those that you are interested in (few matches
in the genome, few errors in the mapping, etc.). You can also select those reads
which map less than a given of times in the genome. Moreover, you can output
the data in various different formats, which you can use to visualize them via
UCSC genome browser or GBrowse1. Unmatched reads can be written in an
other file, in case you would like to try to map them with another tool (may
sometimes work!).

The script can parse data given by the following programs (the corresponding
option is given in parenthesis):

• Blast (use -m 8 format for Blast and -f blast)

• Blat (-f psl)

• Exonerate2 (-f exo)

• Maq (-f maq)

• Mosaik (output in axt format for Mosaik and use -f axt)

• Nucmer (-f nucmer)

• Rmap (-f blast)

• Seqmap (-f seqmap)

• Shrimp (-f shrimp)

• Soap (-f soap)

• Soap2 (-f soap2)

• and more. . .

You can filter your data according to:

• number of errors in the mapping

• number of occurrences of the mapping in the genome

• size of the read mapped

• number of gaps in the mapping

1Look at Appendix A to know more about it.
2Exonerate can display its results in many formats. Currently, S–MART only support the

following output format:
--ryo "%S %em %V\n" --showvulgar FALSE --showalignment FALSE

Please add these parameters to your command line while using Exonerate!

10

The script needs an input file (your mapped reads) together with its format
and the read sequences file together with its format (FASTA or FASTQ). If you
want, you can also append the results of this script to another GFF3 file. This
is useful when the GFF3 file is the result of the mapping using another tool.

By default, any gap in the alignment to the reference sequence is treated
like an exon. You can decide to remove this feature by merging short introns
(actually, gaps).

mappingToCoordinates.py If you just want to convert your mapping data to
genomic coordinates, without any filtering, you can use mappingToCoordinates.py.
It needs a mapping file (output of your mapper) together with its format, an
output format (GFF3, BED) and prints you the corresponding file.

4.2 Data comparison

This section presents you several ways to compare to different sets of transcripts.

compareOverlapping.py This script may be the most important one. It ba-
sically compares two sets of transcripts and keeps those from the first set which
overlap with the second one. The first set is considered as the query set (ba-
sically, your data) and the second one is the reference set (RefSeq data, for
example, see Figure 4). Various modifiers are available:

• Restrict query / reference set to the first nucleotide. Useful to check if the
TSS of one set overlap with the other one.

• Extend query / reference set on the 5’ / 3’ direction. Useful to check if
one set is located upstream / downstream the other one.

• Include introns in the comparison.

• Invert selection (report those which do not overlap).

• Keep colinear / anti-sense overlapping data.

• Keep the query data even if they do not strictly overlap with the refer-
ence data, but are located not further away than n nucleotide from some
reference data.

The mechanism of shrinking and extending is also useful to make a fine
grain comparison. For example, if you want to keep those such that the TSS
is overlapping the reference set, you just shrink the query set to 1 nucleotide
(see Figure 5). Now, if you want to keep those which are overlapping you data
or located 2kb downstream of it, just extend the query data in the downstream
direction, and you will have what you want. You can also extend in the opposite
direction to get the possible transcript factor sites which are upstream.

Some option reverses the selection. Put in other words, it performs the
comparison as usual, and outputs all those query data which do not overlap.

11

reads

results

refSeq

Figure 4: Simple comparison between your reads and RefSeq data, for example,
using compareOverlapping.py.

1 2 3 4 5 876 109position

original read

shrink to 1st nt.

extend downstream by 3 nt.

extend upstream by 3 nt.

Figure 5: Shrinking and extending your data before comparison with
compareOverlapping.py.

getDifferentialExpression.py This tool compares two sets of data and find
the differential expression. One very important component of the tool is the
reference set. Actually, to use the tool, you need the two input sets of data, of
course, and the reference set. The reference set is a set of genomic coordinates
and, for each interval, it will count the number of feature on each sample and
compute the differential expression. For each reference interval, it will output
the direction of the regulation (up or down, with respect to the first input set),
and a p-value from a Fisher exact test (see figure 6).

This reference set seems boring. Why not computing the differential expres-
sion without this set? The answer is: the differential expression of what? I
cannot guess it. Actually, you might want to compare the expression of genes,
of small RNAs, of transposable elements, of anything. . . So the reference set can
be a list of genes, and in this case, you can compute the differential expression
of genes. But you can also compute many other things.

Suppose that you cluster the data of your two input samples (you can do it
with the clusterize and the mergeTranscriptLists tools). You now have a
list of all the regions which are transcribed in at least one of the input samples.
This can be your reference set. This reference set is interesting since you can
detect the differential expression of data which is outside any annotation.

Suppose now that you clusterize using a sliding window the two input sam-
ples (you can do it with the clusterizeBySlidingWindows and the mergeSlidingWindowsClusters
tools). You can now select all the regions of a given size which contain at least
one read in one of the two input samples (do it with selectByTag and the tag
nbElements). Again, this can be an other interesting reference set.

In most cases, the sizes of the two input samples will be different, so you
should probably normalize the data, which is an available option. The —rather
crude— normalization increases the number of data in the least populated sam-
ple and decreases the number of data in the most populated sample to the

12

sample 2

sample 1

region 1 region 2
reference

chromosome

here

nothing computedregulation: equal
p-value: 10−5
regulation: down

Figure 6: Differential expression computed on two reference intervals.

results

set 2

set 1

Figure 7: Finding transcription on both strands using
mergeTranscriptLists.py.

average number of data.
You can also plot the differential expression. A point (x, y) refers to a refer-

ence interval which contains x data in the first sample and y data in the second
sample. If you normalized the data, then the plot reports the normalized figures.

4.3 Merging data

This section presents you some ways to merge two sets of transcripts, or clus-
terize a set of transcript.

4.3.1 Clustering

mergeTranscriptLists.py The script is similar to compareOverlapping.py,
except that when data of two different sets overlap, they are merged. You can
use the same parameters as compareOverlapping.py and use them to look for
transcription on both strands, for example (see Figure 7).

Some option outputs all the data from the two samples, not only the data
of the first sample that overlap with the second sample.

This script can also be used with one input data set. In this case, its behavior
is similar to clusterize.py.

clusterize.py The script clusterizes the reads. Two reads are clusterized
when their genomic intervals overlap (see Figure 8). The output is a GFF3 file,
where each element is a cluster. The number of elements in the cluster is given
by the tag nbElements.

13

reads

results

Figure 8: Clustering using clusterize.py.

reads

results

Figure 9: Finding TSS using findTss.py.

Alternatively, some options may clusterize the features which are closer than
a given threshold.

By default, the tool clusterizes all features which overlap (or nearly overlap),
even if they are on different strands. If you want to clusterize the features which
are on the same strand only, you can specify it.

findTss.py This script is specially useful when you have 5’ capped reads, that
is to say, when the reads that you have mark the beginning of the transcripts.
This script find all the TSS that are found by your data (see Figure 9).

In some —most, actually— cases, there is no clear TSS, but a stretch of
possible TSSs. So you can choose the maximal distance between two reads for
them to mark the same transcription start (for example, two reads that are
distant by 20 nt. can mark 1 or 2 TSS, depending on the value of a parameter).

You can plot the distribution of the number of reads per TSS: a point (x, y)
tells you that y transcripts starts are marked by x reads. The plot has sometimes
a long tail towards the high values in the x-axis, so you can zoom to plot only
the first points on this axis by using some parameters.

4.3.2 Sliding Windows

Sliding windows are a convenient ways to clusterize data mapped on the genome.
There are two important parameters of a sliding window: the size of the window
and the size of the overlap. In Figure 10, a sliding window counts the number
of reads.

clusterizeBySlidingWindows.py By default, sliding windows count the num-
ber of reads. However, you can basically merge any information which is con-
tained in the tags (look at Section 6.2 if you want to know more about tags).
You can compute the average, sum, median, max or min of the tags for each
window. For instance, every window can contain the average cluster size, if you
merge clusters instead of reads.

14

1 2
40

window
size of the

overlap
size of the

Figure 10: Sliding windows: counting the number of reads.

The output file is a GFF3 file, where each element is a window. There is
a special tag for each window, whose name is nbElements if you counted the
number of transcripts per sliding window. However, if you performed a “min”
(resp. “max”, “sum”, “median”, “average”) operation on the tags value of
the transcripts, then the tag of the window will be minValue (resp. maxValue,
sumValue, medValue, avgValue).

You also have different option, which can select the n% highest regions, or
the regions with at least n features in it, or even the regions with at least n
unique features. This last option is useful when you want to cluster the reads
which have mapped only once, for instance.

mergeSlidingWindowsClusters.py Sliding windows are also useful to com-
pare two (or more!) sets of data. This can be very valuable when you want to
compare differential expression in two different conditions. When you have two
different sliding windows sets, this function merges them into one, where each
window contains the two pieces of information. You may want to plot the data
afterwards using the plot.py function.

A good motivation for this tool is given in Section 5.4. Suppose that you have
two sets of reads, for two different conditions on the same genome. What you can
do is use a sliding window for each condition using clusterizeBySlidingWindows.py.
Now, to perform any comparison, you will have to merge the two conditions into
a single file. This is were you need mergeSlidingWindowsClusters.py.

The tool needs two files given by clusterizeBySlidingWindows.py to-
gether with their format (GFF3, actually) and outputs a new file, in GFF3
format.

4.4 Data selection

This set of scripts reads a list of sequences or genomic coordinates and select
those with some given simple properties.

4.4.1 Sequences

15

restrictFromSize.py Reads a list of sequences or genomic coordinates and
outputs those which are longer and / or shorter than a given size —which you
provide.

getSequence.py Get a sequence from you FASTA or FASTQ file, given the
name of the sequence. If you provide a multi-FASTA/Q file and the name of a
sequence, this script will fetch the sequence for you.

restrictSequenceList.py This tool is somewhat similar to getSequence.py,
but it is used to fetch several sequences at once. It uses a list of sequences and
a list of sequence names (in a flat file, one name per line), and select those
sequences such that the name is in the sequence name.

4.4.2 Genomic coordinates

restrictGenomicCoordinates.py Reads a list of genomic coordinates and
outputs those which on a given chromosome and / or between two given posi-
tions.

selectByTag.py Reads a list a list of transcripts and output all the transcripts
with specific tag values. If you want to know more about tags, read Section 6.2.

The tools reads the input file (in GFF3 format) and more specifically the
tag that you specified. You can mention a lower and a upper bound for its value
and the tool will print all the transcripts such that the tags are between the
specified bounds.

A tag has to be present for each transcript. If not, you can specify a default
value which will be used if the tag is absent.

This tool can be used to select the clusters with a minimum number of
elements (the tag nbElements counts the number of elements per clusters) or to
select the reads which have mapped less than n times (the tag nbOccurrences

counts the number of mappings per read).

4.5 Data modification

These tools do the “dirty job” that is sometimes useful to do: shrink or extend
some genomic coordinates, get the first 20 nucleotides of your reads, etc.

4.5.1 Sequences

These tools are dedicated to data in FASTA or FASTQ files (usually, your
reads).

modifySequenceList.py This tool reads a list of sequences (in multi-FASTA/Q
format) that you provide and shrinks each sequence to the n first nucleotides or
the n last nucleotides.

16

trimAdaptator.py This function removes the adaptor from the 3′ end of your
reads. It can even recognize the adaptators which are partially present.

4.5.2 Genomic coordinates

These tools are dedicated to data in a transcript file format such as GFF3 or
BED (usually, your mapped reads).

modifyGenomicCoordinates.py This tool reads a list of transcripts and mod-
ifies each transcript by:

• shrinking it to the n first nucleotides or the n last nucleotides, or

• extending it to n nucleotides towards the 5’ direction (upstream) or the
3’ direction (downstream).

Note that the 5’ or 3’ direction depends on the orientation of the transcript (the
5’ end of a transcript located on the minus strand is on the right hand of this
transcript!).

The tool needs a transcript file, its format, and outputs a new transcript file.

changeTagName.py It changes the name of a tag in a transcript list (see Sec-
tion 6.2 to know more about tags). This may be useful to change the name of a
tag which have been automatically addressed, like nbElements while clustering,
to a more precise name (such as nbReadsInRoot for instance).

4.6 Data collection

getWigData.py Reads a transcript list, computes the average value of some
WIG data for each transcript and adds a tag corresponding to this average value
to the transcript.

WIG is the format used to store the kind of information which is attached to
—nearly— every nucleotide of a genome. Examples include nucleosome occu-
pancy using ChIP-Seq data. getWigData.py finds all the data which correspond
to the genomic coordinates of a transcript, average these data and store the re-
sult into a tag. Then, the transcripts are written in an output file, together
with the tag (see Figure 11).

You can then plot your data using plotTranscriptList.py.
WIG files are usually very big, so you should use wigExploder.py first to dis-

patch the content of each chromosome in a different file. Then, getWigData.py
uses indices for each chromosome to fetch the data faster. This indices can be
large, so if your are short of memory, you can remove them; S–MART will build
them on the fly.

4.7 Data visualization

This set of tools do not modify your data, but simply outputs graphs.

17

chr1 S-MART transcript 100 102 . + . Name=test

(a) A GFF line.

variableStep chrom=chr1

100 0.1

101 0.1

101 0.4
(b) A short WIG file.

chr1 S-MART transcript 100 102 . + . Name=test;value=0.4

(c) The output of getWigData.py.

Figure 11: Including WIG data with getWigData.py. The first two figures
show toy GFF3 and WIG files. The tool computes the average values for the
transcript and creates a new tag with this result.

4.7.1 Sequences

getReadDistribution.py This function analyzes your reads, count the num-
ber of times each read is sequenced and plots this distribution. A point (x, y)
means that y different sequences have been sequenced x times. Put in other
words, that you will find the word ACGUACGUACGU x times in you FASTA
file, and y − 1 other different words like this.

You can also select the n most sequenced reads (or the x% highest).

getLetterDistribution.py Gets the nucleotide distribution of the input se-
quence list. It outputs two files. The first file shows the nucleotide distribution
of the data (see Figure 12(a)). More precisely, a point (x, y) on the curve A
shows that y sequences have x% of A.

The second plot shows the average nucleotide distribution for each position
of the read (see Figure 12(b)). You can use it to detect a bias in the first
nucleotides, for instance. A point (x, y) on the curve A shows that at the
position x, there are y% of A. A point (x, y) on the curve # tells you that y%
of the sequences contain not less than x nucleotides. By definition, this latter
line is a decreasing function. It usually explains why the tail of the other curves
are sometimes erratic: there are few sequences.

4.7.2 Genomic coordinates

getDistance.py Give the distances between every data from the first input
set and the data from the second input set. It outputs the size distribution
(see Figure 13). Each point (x, y) tells you that there exists y pairs of elements
which are separated by x nucleotides.

The general algorithm is the following. For each element of the first input
set, it finds the closest element of the second set and computes the distance
between the two elements. The distance is zero if the two elements overlap.
This distance may not exist if the element of the first input set is alone on its
chromosome (or contig).

Actually, considering an element from the first input set, the algorithm will
look at the vicinity of this element (1kb by default). You can increase the size

18

(a) Nucleotide profile for the whole distribution. The x-axis is the proportion each
nucleotide and the the y-axis is the number of reads with the corresponding distribution.
There is, for instance, more that 40,000 reads with around 25% of G.

(b) Nucleotide by nucleotide. The x-axis is the index of the nucleotides (start at 0),
y-axis is the percentage of nucleotides. The # curve give the percentage of reads with
at least the given size. In this example, all reads have exactly 36 nucleotides.

Figure 12: Nucleotide distributions using getLetterDistribution.py.

19

Figure 13: Distance between some reads and RefSeq genes in Drosophila
melanogaster, using getDistance.py.

of the vicinity using the appropriate option.
As in compareOverlapping.py, you can shrink or extend your sets of ge-

nomic coordinates, so that you can get the distance between starts of reads and
starts or genes, for instance. You can also compute the distance from elements
which are on the same strand only (which is not the case by default) or on the
opposite strand only.

You have several options for the output plot. You can first choose the region
on the x-axis you want to plot. You can also display histograms instead of line
plot. In this case, the data are summed into buckets, whose sizes are given as
an option. For instance, a bucket of size s at the point (x, y) means that there
are y pairs of elements which are separated by x to x + s nucleotides.

You can also save the distances into a GFF3 output file. In this case, the
output file will the same as the first input file, except that some tags will be
added (see Section 6.2 to know more about tags): the distance from the clos-
est element in the second set, and the name of this latter element (using tags
distance and closestElement respectively). If an element from the first input
has no element from the second set in its vicinity, the tags will be set to None.

getNb.py Get the number times the reads have mapped, the number of exons
for each mapping, or the number of elements in the clusters (see Figure 14). By
default, the output is a line plot, but you can choose to have a bar plot instead.

getRepartition.py Print a density profile of the data for each chromosome,
see Figure 15. You have to provide the reference genome, to know the sizes of
the chromosomes. You can also provide the number of points (called bins) you
want per chromosome.

By default, only one curve is plotted per chromosome, but you can plot one
curve per strand and per chromosome (the minus strand will be plotted with

20

Figure 14: Number of exons per transcript of some 454 mapped reads, using
getNb.py.

Figure 15: Density profile of some reads, using getRepartition.py. x-axis
is the genomic coordinates of the chromosome 2L of Drosophila melanogaster,
release 5. y-axis is the number of reads.

21

Figure 16: Size distribution of some 454 reads, using getSizes.py. x-axis is
the size, y-axis is the number of reads.

chr1 S-MART transcript 100 200 . + . ID=region1;nbReadsRoot=1;nbReadsLeaf=1
chr1 S-MART transcript 200 300 . + . ID=region2;nbReadsRoot=5;nbReadsLeaf=3
chr1 S-MART transcript 300 400 . + . ID=region3;nbReadsRoot=3;nbReadsLeaf=2

(a) A short GFF file, with the results of sliding windows counting the number of reads in two
conditions (root and leaf).

0 1 2 3 4 5 6
0

1

2

3

(b) The corresponding plot.

Figure 17: A plot using plotTranscriptList.py.

non-positive values on the y-axis). Moreover, the density is plotted (i.e. the
ratio of the number of reads divided by the size of the bins), but you can also
plot the raw number of reads. Actually, the two results are equal (modulo a
constant multiplication factor) except for the last bin of the chromosome, which
is usually smaller than the other bins.

If you want, you can also plot a specific region, by mentionning the chromo-
some, the start and the end positions of the region.

getSizes.py Get the read size distribution, see Figure 16. A point (x, y)
means that y reads have a size of x nucleotides.

When your mapping include exon/intron structures, you can decide to count
the size of the introns, the sizes of the exons or the size of the first exons.

22

0
0

1

2

3

5

4

400300200100

leaf

root

Figure 18: A plot using the data in 17(a) and plotRepartition.py.

plotTranscriptList.py Plot the data attached as tags in a transcript list.
See Section 6.2 if you want to know more about tags. This can be used for
displaying the comparison of different sets of sliding windows (see Figure 17).

The tool reads the tags of a transcript file (actually, a GFF3 file). It considers
more specifically the tag names that you specify as parameter. If you use only
one tag name, you can display a line plot. In this case, you have to specify a
bucket size s (which is by defaut 1) and a point (x, y) tells you that there are y
transcripts with tag values x to x + s.

You can display could plots if you use two tag names. Each point represents
the values of the two tags of a transcript. If you use three variables, the third
variable will be the color of the point. You can also use a log scale and name
the axes of the plot.

Each transcript must contain the tags which are specified. If not, you should
provide a default value, which is used when the tag is not present.

If you use a cloud plot, you can compute the Spearman’s rho to quantify a
correlation between your two tag values.

plotRepartition.py Plot the data attached as tags in a transcript list along
the genome. See Section 6.2 if you want to know more about tags. This is
espacially interesting for displaying the regions where different sets of sliding
windows differ (see Figure 18).

getWigDistance.py Plots the average data contained in a set of WIG files
around the first nucleotides of a list of transcripts (see Figure 19).

The tool needs an transcript list, some WIG files, and a distance. For each
transcript, it collects all the values around its first nucleotide, the radius being
given by the distance. Then, it computes the average value for each position.
A point (x, y) means that the average value in the WIG file for a nucleotide
distant by x nucleotides from the first nucleotide of an input transcript is y.

You can possibly use a log scale for the y-axis.

4.8 Conversion tools

23

Figure 19: A plot using getWigDistance.py: the conservation given by Phast-
Cons around the TSSs of very expressed regions (TSS is at x = 0).

convertTranscriptFile.py Converts some data from one format to another
format. You should provide the input and the output file names, together with
their formats.

The input format has been previously listed. They can be transcript format
(BED, GFF) or mapping format (SAM, Blast -m 8). The output formats are:

• Excel format

• BED format,

• GFF2 format,

• GFF3 format,

• SAM format,

• the format used by GBrowse,

• the format used by UCSC genome browser,

• the intern mySQL format.

Note that the Excel format mentionned here is not precisely the XLS nor the
XLSX format. It is the CSV format, which is simple enough to be understood
by Excel (or OpenOffice). If you use OpenOffice, it will ask you some question
about the separator of the fields and the lines. Simply say “OK”

coordinatesToSequence.py Provide a list of genomic coordinates, a refer-
ence genome, and it will output the sequence corresponding to the genomic
coordinates, in a multi-FASTA file.

24

qualToFastQ.py Converts a QUAL file (together with the corresponding FASTA
file) to a FASTQ file, that S–MART can use.

For some reasons (the first one being I am lazy), I have not implemented
any QUAL parser. So, if you want to use them, you should convert them to
FASTQ files, using this tool. It supposes that the base names of the files are
the same in your QUAL file and your FASTA file (for instance foo.qual and
foo.fasta).

4.9 Other tasks

cleanGff.py This tool tries to “clean” a GFF by removing all the unrelevant
lines and possibly altering others. This is specially useful when you download a
genome wide annotation file from NCBI, for instance. Look at Appendix D to
see the kind of problems it can solve.

wigExploder.py Dispatches the content of a big WIG files into several files,
one for each chromosome.

WIG files are very big and S–MART uses an index to parse them quickly.
But for that, it should have one data per chromosome in a proper directory.
This is what wigExploder.py does.

getRandomRegions.py Generates a set of random regions in a reference genome.
Useful to compare your data with random data.

You have to provide a reference genome (otherwise, the tool does not know
the number of chromosomes nor their sizes). You can choose the sizes of the
regions (which will all be the same) and the number of them.

removeAllTmpTables.py The toolbox may generate some mySQL that you
may want to drop. Use this script to do so.

Notice that if you interrupt the execution of a program while it is running,
the tables and the temporary files which are currently used cannot be removed
and you have to do it by yourself using this tool.

5 Possible pipe-lines

I will describe here a couple of “pipe-lines” that I have found useful.

5.1 Use two mappers

Up to now, there is no clear consensus about which mapper gives best results
(there is probably none, though). So I used two of them. In this example, I
mapped with Blat and Exonerate.

python mapperAnalyzer.py -i blatOutput.psl -f psl

-q reference.fasta -o mappingWithBlat

25

python mapperAnalyzer.py -i exonerateOutput.exo -f exo

-q reference.fasta -a mappingWithBlat -r

-o mappingWithBlatAndExo

5.2 Find piRNA clusters

Some papers show an interesting way to find potential clusters of piRNAs. They:

• sequence the transcriptome with RNA-Seq,

• map the data,

• keep the data which sizes between 25 and 31 nucleotides,

• exclude everything which overlaps with RefSeq data,

• merge the mappings into clusters (20 kb),

• keep those clusters which have at least ten elements,

• convert the output to Excel format.

Here is how it can been done.

python restrictFromSize.py -i mappedData.gff3 -f gff

-m 25 -M 31 -o goodSize

python compareOverlapping.py -i goodSize.gff3 -f gff

-j refSeqGenes.bed -g bed -c -x -o noGene

python clusterize.py -i noGene.gff3 -f gff

-d 20000 -o clustered

python selectByTag.py -i clustered.gff3 -f gff

-g nbElements -m 10 -o bigClusters

python convertTranscriptFile.py -i bigClusters.gff3 -f gff

-o bigClusters -g excel

5.3 Get the letter distribution of the beginning of the data

It might be interesting to see if you have a bias in the distribution of the nu-
cleotides at the beginning of the data that you have selected. For example,
piRNA usually start with U, RefSeq data, with ATT, and so on. To visualize it,
you can:

• select the first 30 nucleotides of your data,

• get back the sequences from your genomic coordinates,

• get the nucleotide distribution.

It can be done this way.

26

region 1 region 2 region 3

(a) Example of two sets of reads (one blue, one
red), clustered by sliding windows into three re-
gions.

0
0

1 2 3 4

1

2

3

4 (region 3)

red reads

(region 2)

(region 1)

blue reads

(b) The corresponding plot. For
each dot, the corresponding region
is given in parenthesis.

1

0

2

4

3

reads

chromosome

(c) The compared distribution
on the genome.

Figure 20: Comparing two sets of reads with sliding windows.

python modifyGenomicCoordinates.py -i data.gff3 -f gff -s 30

-o cutData

python coordinatesToSequence.py -i cutData.gff3 -f gff

-s reference.fasta -o sequences.fasta

python getLetterDistribution.py -i sequences.fasta

-o nucleotideDistribution

5.4 Compare two sets of reads with sliding windows

Suppose you have two sets of reads (for instance, from two conditions) and you
want to have a broad picture of a possible correlation between the two sets.
What you can do is to use a sliding window to cluster the two sets of reads (see
Figure 20(a)). Then, you can plot the results, where each point (x, y) comes
from a sliding window which contains x reads from the first set and y reads from
the second set (see Figure 20(b)).

Here are the steps you have to perform to do so:

• Use a sliding window to cluster each set (here the size of the window is
1kb, and the overlap is 500 nt.). You may or you may not consider that
two reads on opposite strands can be in the same window. Use option -2

to consider the strands independantly. You now have two GFF3 files, and
the tag nbElements counts the number of reads for each window.

27

• Change the name of the tags nbElements to two different names (here:
set1 and set2). You will have some problems otherwise in the next step.

• Merge the two files.

• Plot the distribution. Here, we will use log bases for x and y-axes (-l
option). We also have to specify the default values for missing data with
the -X and -Y options. We can specify a label for the axes with the -m

and -n options.

Supposing that the reads are in the files set1.gff3 and set2.gff3, you can
use the following commands to perform the steps:

python clusterizeBySlidingWindows.py -i set1.gff3 -f gff

-s 1000 -e 500 -o set1Clustered -2

python clusterizeBySlidingWindows.py -i set2.gff3 -f gff

-s 1000 -e 500 -o set2Clustered -2

python changeTagName.py -i set1Clustered -f gff -t nbElements

-n set1 -o set1ClusteredGoodTag

python changeTagName.py -i set2Clustered -f gff -t nbElements

-n set2 -o set2ClusteredGoodTag

python mergeSlidingWindowsClusters.py -i set1ClusteredGoodTag.gff3

-f gff -j set2ClusteredGoodTag.gff3 -g gff -o set12Clustered

python plotTranscriptList.py -i set12Clustered.gff3 -f gff -x set1

-y set2 -X 0 -Y 0 -l xy -n set1 -m set2 -s points

-o set12ClusteredPlot

And, yes, you get the Spearman rho!
Moreover, if you want to see the distribution of the two sets of reads on the

chromosome (see Figure 20(c)), you can do it with:

python plotRepartition.py -i set12Clustered.gff3 -n set1,set2

-c blue,red -r -o set12ClusteredGenome

5.5 Compare RNA-Seq with tiling arrays using sliding
windows

Let us suppose that you have some tiling array you want to compare with your
sequencing. Let us also suppose you have analyzed your array data and you
now have some p-value, t-value or anything which is a proxy to gene intensity.
You may want to use sliding windows to compare with your reads. Of course,
for a fair comparison, you want to compare the regions where you have at least
1 chip (you may have not covered the whole genome).

The steps are the following:

• Cluster the array data into sliding windows, with a window size of 1kb,
and an overlap of 500 nt., just to count the number of chips per window.

28

• Cluster the array data into sliding windows by using the average intensity
value in the window (but we can use min, max or median value). Here we
will suppose you have a GFF3 file with a intensity tag.

• Merge the two previous files.

• Keep the regions where you have at least 1 chip.

• Cluster the reads as done in section 5.4.

• Merge the array file and the reads file.

• Plot the distribution with log base on y-axis (for the reads).

python clusterizeBySlidingWindows.py -i array.gff3 -f gff

-s 1000 -e 500 -o arrayNb -2

python clusterizeBySlidingWindows.py -i array.gff3 -f gff

-s 1000 -e 500 -o arrayIntensity -g intensity -r avg -2

python mergeSlidingWindowsClusters.py -i arrayNb.gff3

-f gff -j arrayIntensity.gff3 -g gff -o arrayNbIntensity

python selectByTag.py -i arrayNbIntensity.gff3 -f gff

-g nbElements -m 1 -o arrayNbIntensity1chip

python clusterizeBySlidingWindows.py -i reads.gff3 -f gff

-s 1000 -e 500 -o readsClustered -2

python changeTagName.py -i readsClustered -f gff -t nbElements

-n nbReads -o readsClusteredGoodTag

python mergeSlidingWindowsClusters.py

-i arrayNbIntensity1chip.gff3 -f gff

-j readsClusteredGoodTag.gff3 -g gff -o arrayReadsClustered

python plotTranscriptList.py -i arrayReadsClustered.gff3 -f gff

-x avgIntensity -y nbReads -Y 0 -l y -n array -m reads

-s points -o arrayReadsPlot

5.6 Compute differential expression

Suppose you have two sets of reads, from two different conditions and you want
to compare them. The main difficulty here is to decide where you are going
to compare. You could decide to slice the genome into sliding windows and
perform the comparison on the sliding windows, but that is probably not the
best thing to do (although you can do it with S–MART). What you should do
is to find the clusters of reads and compare the clusters.

For instance, look at figure 21, which represents two sets of reads mapped
on a genome. Obviously, we have two clusters, altough the red reads are not
present in the second cluster (which is a particularly good case of differential
expression). Basically, we have to find these two regions from the two sets of
data. Notice that in the first region, there is a small gap which is not covered

29

region 2

sample 2

sample 1

region 1

short gap
regions

chromosome

Figure 21: Finding the regions where to compare the two clusters.

by any read. So, we have to accept some small gaps to merge the reads into
clusters.

Then, it could be nice to keep the regions where there is a clear differential
expression and see where they are on the genome.

From the previous reasoning, we can conclude that we have to follow the
following steps:

• Cluster the reads from sample 1 with some gap allowed (here, 10 nt.).
Only cluster the reads which are on the same strand (-c option).

• Do the same for the sample 2.

• Merge the two sets of clusters. Again, the clusters on different strands
should not be merged.

• Compute the differential expression from sample 1 and sample 2 using the
regions previously found. We now have a set of regions with a p-value
associated to differential expression.

• Select the regions with a very low p-value (here, 10−100).

• Plot these regions onto the genome (you will need the reference genome
genome.fasta for that).

Expressed in the S–MART language, this becomes:

python clusterize.py -i sample1.gff3 -f gff -c -d 10

-o sample1clustered

python clusterize.py -i sample2.gff3 -f gff -c -d 10

-o sample2clustered

python mergeTranscriptLists.py -i sample1clustered.gff3

-f gff -j sample2clustered -k -c -o sample12clustered

python getDifferentialExpression.py -i sample1.gff3 -f gff

-j sample2.gff3 -g gff -k sample12clustered -l gff

-o sample12differential

python selectByTag.py -i sample12differential -f gff

30

chr1 S-MART transcript 100 400 . + . ID=read1;nbMismatches=2

chr1 S-MART exon 100 200 . + . ID=read1-1;Parent=read1

chr1 S-MART exon 300 400 . + . ID=read1-2;Parent=read1

Figure 22: A short GFF3 file, containing a transcript with two exons. The tags
are in the last field of each line.

-g pValue -M 10e-100 -o sample12differentialLowPValue

python getRepartition.py -i sample12differentialLowPValue

-f gff -r genome.fasta -2 -o sample12differentialLowPValuePlot

6 More about S–MART

I will give you here some details about the internal representations of the data
in S–MART. Just in case you would like to know how it works. . .

6.1 Data structures

S–MART mainly use a data structure that models a transcript. A transcript
can be decomposed as a set of exons, which basically are genomic intervals. So,
a transcript is a set of genomic intervals. So is a mapped read; short reads
usually have only one exon, but longer ones often have several.

A cluster is modeled the same way. While clusterizing, S–MART merges the
exons of the transcripts one by one (if they overlap), thus forming a new set of
new exons.

6.2 Tags

S–MART for each “transcript”, S–MART attaches some information, called
tags. The information might be the number of mismatches of a mapped read,
or the number of elements in a cluster.

S–MART automatically load the tags from a GFF3 file (see Figure 22 for
an example of a GFF3 file with tags). It updates the tags while mapping the
reads and clusterizing them.

6.3 How mySQL is used?

S–MART stores all the data in a mySQL table. That is to say, S–MART (see
Figure 23):

1. reads your data,

2. stores them in a database,

31

1 and 2

3

4

input mySQL table output

Figure 23: Use of mySQL tables in S–MART, in 4 steps.

3. processes them (it basically uses an B-tree on nested bins to compute the
overlaps faster) and

4. outputs them into an output file.

So, in some cases, you can skip the steps 1 and 2. Suppose that you
use the tool compareOverlapping.py to keep only those reads which over-
lap with RefSeq data, then clusterize.py to merge them into clusters. In
compareOverlapping.py, you can use the -y option to keep into the database
the data. Then, if you mention that the input format of clusterize.py is -f

sql, S–MART directly uses the data which is available in your mySQL database.
So, you can skip the steps 1 and 2, and save some time! Be aware, however,
that it takes some place on your hard disk.

6.4 Contribute to S–MART!

If you want to add your own tool to S–MART, please do not hesitate. You
can develop it using the API I have made. Look at the format I have used to
generate the help from my Python scripts (using OptionParser) in the Python

directory and add your own Python file in the same directory. That is it! It will
be automatically included in the GUI and you will be able to start your own
tool from there.

7 Contact

For any comment, suggestion, remark, do not hesitate to contact me.

A Load data on your genome browser

UCSC genome browser Go to the UCSC genome browser. Select your
species (if available). Click on the add custom track button. Upload your data
in a “.ucsc” or “.bed” file.

32

mailto:matthias.zytnicki@versailles.inra.fr
http://genome.ucsc.edu/cgi-bin/hgGateway

GBrowse Go to your favorite GBrowse, for example the fly GBrowse. Go
down, to the Add your own tracks section. Select your data in a “.gb” file after
clicking on the Browse... button. Now watch amazed your reads.

B Get other data

UCSC As long as your organism is covered by UCSC (including Mammals,
other Vertebrates, Insects, Nematodes and a few other species), this may be the
right place to get your data. Go to their database to retrieve the annotation.
Select the right organism, select the group, track and table where your data are
(it may take some time to find the right combination), select BED as the output
format, and mention an output file. This is it!

RefSeq NCBI provides a list of RefSeq sequences on their public FTP. You
can browse it with your normal browser. Choose the right organism, then you
should download the data chromosome by chromosome (which is pain, I reckon).
Be sure that you get the GFF files. Afterwards, you should concatenate the files.

FlyBase If you work on an insect, you can go to the FlyBase Web site to
download your annotation. Select your organism, then the release (latest is
best), then the GFF folder. You can then download the whole annotation in a
file whose name contains the word all. Be careful, you will download the whole
annotation of your insect! It may not exactly be what you need!

Other data Many Web site are dedicated to a specific organism or some
specific data (miRNAs, transcription factor binding sites, etc.). I cannot cover
them all, but you can probably find there the data that you need. It is a matter
of patience. Just make sure that the data is available in the usual formats (GFF
or BED, for instance).

C Caveats

Never modify your data with Word (or a similar text processor)
I reckon Word is a very good tool, but is it not made to view and alter flat

files. Word converts a flat file to its own format, which is very hard to read
(change a .doc extension to a .txt extension and try to open the file. . . you
might be surprised). Every file that we S–MART uses should be viewed with
NotePad or the like. Except images, of course.

D Troubleshooting

My GFF file is not parsed! A problem with a GFF file may have different
causes.

33

http://flybase.org/cgi-bin/gbrowse/dmel/
http://genome.ucsc.edu/cgi-bin/hgTables?command=start
ftp://ftp.ncbi.nih.gov/genomes/
ftp://ftp.flybase.net/genomes/

First, it seems that there is no gold standard for GFF files. Current files
are usually produced in GFF3 format, which includes an ID and possibly a
Parent fields. However, this convention is sometimes not followed. If they are
not present, it is hard for S–MART to link a line which contains a transcript
annotation to the lines which contains the annotations of its exons.

Second, please make sure that your files contains only the data you are in-
terested in. For instance, when you download some genome wide annotation,
you have information of the size of the chromosomes, annotation of the start
and stop codon, of the 5’ and 3’ UTR. This is usually something you are not
interested in and S–MART can be confused. Basically, you just want the anno-
tation of the transcripts and their exons (see Figure 22 for an exemple of a very
simple GFF3 file).

Third, different sources may name the chromosomes differently. Compare
chr I with Chr1 (or even worse: gi|157069709|gb|AABX02000103.1|). S–
MART cannot see they actually are the same chromosome (actually, UN-S–
MART could have been a better name). So you have to change the names of
the chromosomes accordingly.

In all cases, you can use the tool “Clean GFF” (see Section 4.9), which tries
to produce a GFF3 file which can be understood by S–MART. But please check
the output file to make sure the output is correct!

My WIG file is not parsed! S–MART needs to have a specific directory
which contains one WIG file per chromosome. The reason for that is that WIG
files usually are large files, and S–MART uses indices to parse them quickly. So,
if in your transcript list file, you have chromosomes like chr1, chr2, etc., you
must have files like chr1.wig, chr2.wig, etc.

S–MART creates the indices for the WIG files only once, so the first time
you use these WIG files, S–MART might be slow. But it like become much
faster afterwards.

34

Index

changeTagName.py, 17
cleanGff.py, 24
clusterize.py, 13
clusterizeBySlidingWindows.py, 14
compareOverlapping.py, 11
convertTranscriptFile.py, 24
coordinatesToSequence.py, 24

findTss.py, 14

getDifferentialExpression.py, 12
getDistance.py, 18
getLetterDistribution.py, 18
getNb.py, 20
getRandomRegions.py, 25
getReadDistribution.py, 18
getRepartition.py, 20
getSequence.py, 15
getDistance.py, 21
getWigData.py, 17
getWigDistance.py, 23

mapperAnalyzer.py, 9
mappingToCoordinates.py, 11
mergeSlidingWindowsClusters.py, 15
mergeTranscriptLists.py, 13
modifyGenomicCoordinates.py, 17
modifySequenceList.py, 16

plotRepartition.py, 23
plotTranscriptList.py, 21

qualToFastQ.py, 24

removeAllTmpTables.py, 25
restrictFromSize.py, 15
restrictGenomicCoordinates.py, 16
restrictSequenceList.py, 16

selectByTag.py, 16

trimAdaptator.py, 16

wigExploder.py, 25

35

	Introduction
	Installation and requirements
	For Windows
	For Linux or Mac
	Test the configuration

	General description
	Which tool for your need?
	Mapping conversion
	Data comparison
	Merging data
	Clustering
	Sliding Windows

	Data selection
	Sequences
	Genomic coordinates

	Data modification
	Sequences
	Genomic coordinates

	Data collection
	Data visualization
	Sequences
	Genomic coordinates

	Conversion tools
	Other tasks

	Possible pipe-lines
	Use two mappers
	Find piRNA clusters
	Get the letter distribution of the beginning of the data
	Compare two sets of reads with sliding windows
	Compare RNA-Seq with tiling arrays using sliding windows
	Compute differential expression

	More about S–MART
	Data structures
	Tags
	How mySQL is used?
	Contribute to S–MART!

	Contact
	Load data on your genome browser
	Get other data
	Caveats
	Troubleshooting

