Galaxy | Tool Preview

STACKS : genotypes (version 1.0.0)
Batch ID to examine when exporting from the catalog
autocorrect options are defined below
autocorrect options
autocorrect options 0
advanced options are defined below
advanced options
advanced options 0
please see below for details

What it does

This program exports a Stacks data set either as a set of observed haplotypes at each locus in the population, or with the haplotypes encoded into genotypes. The -r option allows only loci that exist in a certain number of population individuals to be exported. In a mapping context, raising or lowering this limit is an effective way to control the quality level of markers exported as genuine markers will be found in a large number of progeny. If exporting a set of observed haplotypes in a population, the "min stack depth" option can be used to restict exported loci to those that have a minimum depth of reads.

By default, when executing the pipeline (either denovo_map or ref_map) the genotypes program will be executed last and will identify mappable markers in the population and export both a set of observed haplotypes and a set of generic genotypes with "min number of progeny" option = 1.

Making Corrections

If enabled with the "make automated corrections to the data" option, the genotypes program will make automated corrections to the data. Since loci are matched up in the population, the script can correct false-negative heterozygote alleles since it knows the existence of alleles at a particular locus in the other individuals. For example, the program will identify loci with SNPs that didn’t have high enough coverage to be identified by the SNP caller. It will also check that homozygous tags have a minimum depth of coverage, since a low-coverage polymorphic locus may appear homozygous simply because the other allele wasn’t sequenced.

Correction Thresholds

The thresholds for automatic corrections can be modified by using the "automated corrections option" and changing the default values for the "min number of reads for homozygous genotype", "homozygote minor minimum allele frequency" and "heterozygote minor minimum allele frequency" parameters to genotypes. "min number of reads for homozygous genotype" is the minimum number of reads required to consider a stack homozygous (default of 5). The "homozygote minor minimum allele frequency" and "heterozygote minor minimum allele frequency" variables represent fractions. If the ratio of the depth of the the smaller allele to the bigger allele is greater than "heterozygote minor minimum allele frequency" (default of 1/10) a stack is called a het. If the ratio is less than homozygote minor minimum allele frequency (default of 1/20) a stack is called homozygous. If the ratio is in between the two values it is unknown and a genotype will not be assigned.

Automated corrections made by the program are shown in the output file in capital letters.


Created by:

Stacks was developed by Julian Catchen with contributions from Angel Amores, Paul Hohenlohe, and Bill Cresko


Example:

Input files:

FASTQ, FASTA, zip, tar.gz

Output files:

Notes: For the tags file, each stack will start in the file with a consensus sequence for the entire stack followed by the flags for that stack. Then, each individual read that was merged into that stack will follow. The next stack will start with another consensus sequence.

Notes: If a stack has two SNPs called within it, then there will be two lines in this file listing each one.

Notes: Each line in this file records a match between a catalog locus and a locus in an individual, for a particular haplotype. The Batch ID plus the Catalog ID together represent a unique locus in the entire population, while the Sample ID and the Stack ID together represent a unique locus in an individual sample.

Instructions to add the functionality of archives management in Galaxy on the eBiogenouest HUB wiki .


Output type:


Project links:

STACKS website .

STACKS manual .

STACKS google group .


References:

-J. Catchen, P. Hohenlohe, S. Bassham, A. Amores, and W. Cresko. Stacks: an analysis tool set for population genomics. Molecular Ecology. 2013.

-J. Catchen, S. Bassham, T. Wilson, M. Currey, C. O'Brien, Q. Yeates, and W. Cresko. The population structure and recent colonization history of Oregon threespine stickleback determined using restriction-site associated DNA-sequencing. Molecular Ecology. 2013.

-J. Catchen, A. Amores, P. Hohenlohe, W. Cresko, and J. Postlethwait. Stacks: building and genotyping loci de novo from short-read sequences. G3: Genes, Genomes, Genetics, 1:171-182, 2011.

-A. Amores, J. Catchen, A. Ferrara, Q. Fontenot and J. Postlethwait. Genome evolution and meiotic maps by massively parallel DNA sequencing: Spotted gar, an outgroup for the teleost genome duplication. Genetics, 188:799'808, 2011.

-P. Hohenlohe, S. Amish, J. Catchen, F. Allendorf, G. Luikart. RAD sequencing identifies thousands of SNPs for assessing hybridization between rainbow trout and westslope cutthroat trout. Molecular Ecology Resources, 11(s1):117-122, 2011.

-K. Emerson, C. Merz, J. Catchen, P. Hohenlohe, W. Cresko, W. Bradshaw, C. Holzapfel. Resolving postglacial phylogeography using high-throughput sequencing. Proceedings of the National Academy of Science, 107(37):16196-200, 2010.


Integrated by:

Yvan Le Bras and Cyril Monjeaud

GenOuest Bio-informatics Core Facility

UMR 6074 IRISA INRIA-CNRS-UR1 Rennes (France)

support@genouest.org

If you use this tool in Galaxy, please cite :

Y. Le Bras, A. Roult, C. Monjeaud, M. Bahin, O. Quenez, C. Heriveau, A. Bretaudeau, O. Sallou, O. Collin, Towards a Life Sciences Virtual Research Environment : an e-Science initiative in Western France. JOBIM 2013.