Beta diversity rarefaction
Repeatedly rarefy a feature table to compare beta diversity results within
a given rarefaction depth. For a given beta diversity metric, this
visualizer will provide: an Emperor jackknifed PCoA plot, samples clustered
by UPGMA or neighbor joining with support calculation, and a heatmap
showing the correlation between rarefaction trials of that beta diversity
metric.
Parameters
- table : FeatureTable[Frequency]
- Feature table upon which to perform beta diversity rarefaction
analyses.
- metric : Str % Choices('generalized_unifrac', 'sokalmichener', 'matching', 'yule', 'weighted_normalized_unifrac', 'dice', 'russellrao', 'rogerstanimoto', 'mahalanobis', 'wminkowski', 'kulsinski', 'aitchison', 'seuclidean', 'correlation', 'sokalsneath', 'hamming', 'jaccard', 'unweighted_unifrac', 'weighted_unifrac', 'cosine', 'canberra', 'euclidean', 'sqeuclidean', 'chebyshev', 'cityblock', 'canberra_adkins', 'braycurtis')
- The beta diversity metric to be computed.
- clustering_method : Str % Choices('upgma', 'nj')
- Samples can be clustered with neighbor joining or UPGMA. An arbitrary
rarefaction trial will be used for the tree, and the remaining trials
are used to calculate the support of the internal nodes of that tree.
- metadata : Metadata
- The sample metadata used for the Emperor jackknifed PCoA plot.
- sampling_depth : Int % Range(1, None)
- The total frequency that each sample should be rarefied to prior to
computing the diversity metric.
- iterations : Int % Range(2, None), optional
- Number of times to rarefy the feature table at a given sampling depth.
- phylogeny : Phylogeny[Rooted], optional
- Phylogenetic tree containing tip identifiers that correspond to the
feature identifiers in the table. This tree can contain tip ids that
are not present in the table, but all feature ids in the table must be
present in this tree. [required for phylogenetic metrics]
- correlation_method : Str % Choices('pearson', 'spearman'), optional
- The Mantel correlation test to be applied when computing correlation
between beta diversity distance matrices.
- color_scheme : Str % Choices('BrBG', 'BrBG_r', 'PRGn', 'PRGn_r', 'PiYG', 'PiYG_r', 'PuOr', 'PuOr_r', 'RdBu', 'RdBu_r', 'RdGy', 'RdGy_r', 'RdYlBu', 'RdYlBu_r', 'RdYlGn', 'RdYlGn_r'), optional
- The matplotlib color scheme to generate the heatmap with.
Returns
visualization : Visualization