Feature volatility analysis
Identify features that are predictive of a numeric metadata column,
state_column (e.g., time), and plot their relative frequencies across
states using interactive feature volatility plots. A supervised learning
regressor is used to identify important features and assess their ability
to predict sample states. state_column will typically be a measure of time,
but any numeric metadata column can be used.
Parameters
- table : FeatureTable[Frequency]
- Feature table containing all features that should be used for target
prediction.
- metadata : Metadata
- Sample metadata file containing individual_id_column.
- state_column : Str
- Metadata containing collection time (state) values for each sample.
Must contain exclusively numeric values.
- individual_id_column : Str, optional
- Metadata column containing IDs for individual subjects.
- cv : Int % Range(1, None), optional
- Number of k-fold cross-validations to perform.
- random_state : Int, optional
- Seed used by random number generator.
- n_estimators : Int % Range(1, None), optional
- Number of trees to grow for estimation. More trees will improve
predictive accuracy up to a threshold level, but will also increase
time and memory requirements. This parameter only affects ensemble
estimators, such as Random Forest, AdaBoost, ExtraTrees, and
GradientBoosting.
- estimator : Str % Choices('RandomForestRegressor', 'ExtraTreesRegressor', 'GradientBoostingRegressor', 'AdaBoostRegressor', 'ElasticNet', 'Ridge', 'Lasso', 'KNeighborsRegressor', 'LinearSVR', 'SVR'), optional
- Estimator method to use for sample prediction.
- parameter_tuning : Bool, optional
- Automatically tune hyperparameters using random grid search.
- missing_samples : Str % Choices('error', 'ignore'), optional
- How to handle missing samples in metadata. "error" will fail if missing
samples are detected. "ignore" will cause the feature table and
metadata to be filtered, so that only samples found in both files are
retained.
Returns
- filtered_table : FeatureTable[RelativeFrequency]
- Feature table containing only important features.
- feature_importance : FeatureData[Importance]
- Importance of each input feature to model accuracy.
- volatility_plot : Visualization
- Interactive volatility plot visualization.
- accuracy_results : Visualization
- Accuracy results visualization.
- sample_estimator : SampleEstimator[Regressor]
- Trained sample regressor.