Galaxy | Tool Preview

qiime longitudinal feature-volatility (version 2019.4)
--m-metadata-file [required]s
--m-metadata-file [required] 0

Feature volatility analysis

Identify features that are predictive of a numeric metadata column, state_column (e.g., time), and plot their relative frequencies across states using interactive feature volatility plots. A supervised learning regressor is used to identify important features and assess their ability to predict sample states. state_column will typically be a measure of time, but any numeric metadata column can be used.

Parameters

table : FeatureTable[Frequency]
Feature table containing all features that should be used for target prediction.
metadata : Metadata
Sample metadata file containing individual_id_column.
state_column : Str
Metadata containing collection time (state) values for each sample. Must contain exclusively numeric values.
individual_id_column : Str, optional
Metadata column containing IDs for individual subjects.
cv : Int % Range(1, None), optional
Number of k-fold cross-validations to perform.
random_state : Int, optional
Seed used by random number generator.
n_estimators : Int % Range(1, None), optional
Number of trees to grow for estimation. More trees will improve predictive accuracy up to a threshold level, but will also increase time and memory requirements. This parameter only affects ensemble estimators, such as Random Forest, AdaBoost, ExtraTrees, and GradientBoosting.
estimator : Str % Choices('RandomForestRegressor', 'ExtraTreesRegressor', 'GradientBoostingRegressor', 'AdaBoostRegressor', 'ElasticNet', 'Ridge', 'Lasso', 'KNeighborsRegressor', 'LinearSVR', 'SVR'), optional
Estimator method to use for sample prediction.
parameter_tuning : Bool, optional
Automatically tune hyperparameters using random grid search.
missing_samples : Str % Choices('error', 'ignore'), optional
How to handle missing samples in metadata. "error" will fail if missing samples are detected. "ignore" will cause the feature table and metadata to be filtered, so that only samples found in both files are retained.

Returns

filtered_table : FeatureTable[RelativeFrequency]
Feature table containing only important features.
feature_importance : FeatureData[Importance]
Importance of each input feature to model accuracy.
volatility_plot : Visualization
Interactive volatility plot visualization.
accuracy_results : Visualization
Accuracy results visualization.
sample_estimator : SampleEstimator[Regressor]
Trained sample regressor.