Galaxy | Tool Preview

qiime sample-classifier classify-samples-ncv (version 2019.4)

Nested cross-validated supervised learning classifier.

Predicts a categorical sample metadata column using a supervised learning classifier. Uses nested stratified k-fold cross validation for automated hyperparameter optimization and sample prediction. Outputs predicted values for each input sample, and relative importance of each feature for model accuracy.

Parameters

table : FeatureTable[Frequency]
Feature table containing all features that should be used for target prediction.
metadata : MetadataColumn[Categorical]
Categorical metadata column to use as prediction target.
cv : Int % Range(1, None), optional
Number of k-fold cross-validations to perform.
random_state : Int, optional
Seed used by random number generator.
n_estimators : Int % Range(1, None), optional
Number of trees to grow for estimation. More trees will improve predictive accuracy up to a threshold level, but will also increase time and memory requirements. This parameter only affects ensemble estimators, such as Random Forest, AdaBoost, ExtraTrees, and GradientBoosting.
estimator : Str % Choices('RandomForestClassifier', 'ExtraTreesClassifier', 'GradientBoostingClassifier', 'AdaBoostClassifier', 'KNeighborsClassifier', 'LinearSVC', 'SVC'), optional
Estimator method to use for sample prediction.
parameter_tuning : Bool, optional
Automatically tune hyperparameters using random grid search.
missing_samples : Str % Choices('error', 'ignore'), optional
How to handle missing samples in metadata. "error" will fail if missing samples are detected. "ignore" will cause the feature table and metadata to be filtered, so that only samples found in both files are retained.

Returns

predictions : SampleData[ClassifierPredictions]
Predicted target values for each input sample.
feature_importance : FeatureData[Importance]
Importance of each input feature to model accuracy.