Fit a supervised learning classifier.
Fit a supervised learning classifier. Outputs the fit estimator (for
prediction of test samples and/or unknown samples) and the relative
importance of each feature for model accuracy. Optionally use k-fold cross-
validation for automatic recursive feature elimination and hyperparameter
tuning.
Parameters
- table : FeatureTable[Frequency]
- Feature table containing all features that should be used for target
prediction.
- metadata : MetadataColumn[Categorical]
- Numeric metadata column to use as prediction target.
- step : Float % Range(0.0, 1.0, inclusive_start=False), optional
- If optimize_feature_selection is True, step is the percentage of
features to remove at each iteration.
- cv : Int % Range(1, None), optional
- Number of k-fold cross-validations to perform.
- random_state : Int, optional
- Seed used by random number generator.
- n_estimators : Int % Range(1, None), optional
- Number of trees to grow for estimation. More trees will improve
predictive accuracy up to a threshold level, but will also increase
time and memory requirements. This parameter only affects ensemble
estimators, such as Random Forest, AdaBoost, ExtraTrees, and
GradientBoosting.
- estimator : Str % Choices('RandomForestClassifier', 'ExtraTreesClassifier', 'GradientBoostingClassifier', 'AdaBoostClassifier', 'KNeighborsClassifier', 'LinearSVC', 'SVC'), optional
- Estimator method to use for sample prediction.
- optimize_feature_selection : Bool, optional
- Automatically optimize input feature selection using recursive feature
elimination.
- parameter_tuning : Bool, optional
- Automatically tune hyperparameters using random grid search.
- missing_samples : Str % Choices('error', 'ignore'), optional
- How to handle missing samples in metadata. "error" will fail if missing
samples are detected. "ignore" will cause the feature table and
metadata to be filtered, so that only samples found in both files are
retained.
Returns
- sample_estimator : SampleEstimator[Classifier]
- Trained sample classifier.
- feature_importance : FeatureData[Importance]
- Importance of each input feature to model accuracy.