Next changeset 1:700ae37e5c69 (2023-07-06) |
Commit message:
planemo upload for repository https://github.com/BMCV/galaxy-image-analysis/tools/superdsm/ commit 4d66ff6e8a2a842e44e8d0d7102dfb3ac78dca7e |
added:
run-superdsm.py superdsm.xml test-data/BBBC033_C2_z28.png test-data/overlay.png |
b |
diff -r 000000000000 -r 1b0fc671187f run-superdsm.py --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/run-superdsm.py Sun Jun 25 21:48:40 2023 +0000 |
[ |
@@ -0,0 +1,63 @@ +""" +Copyright 2023 Leonid Kostrykin, Biomedical Computer Vision Group, Heidelberg University. + +Distributed under the MIT license. +See file LICENSE for detail or copy at https://opensource.org/licenses/MIT + +""" + +import argparse +import imghdr +import os +import pathlib +import shutil +import tempfile + +import ray +import superdsm.automation +import superdsm.io +import superdsm.render + + +if __name__ == "__main__": + parser = argparse.ArgumentParser(description='Segmentation of cell nuclei in 2-D fluorescence microscopy images') + parser.add_argument('image', help='Path to the input image') + parser.add_argument('cfg', help='Path to the file containing the configuration') + parser.add_argument('masks', help='Path to the file containing the segmentation masks') + parser.add_argument('overlay', help='Path to the file containing the overlay of the segmentation results') + parser.add_argument('seg_border', type=int) + parser.add_argument('slots', type=int) + args = parser.parse_args() + + if args.slots >= 2: + num_threads_per_process = 2 + num_processes = args.slots // num_threads_per_process + else: + num_threads_per_process = 1 + num_processes = 1 + + os.environ['MKL_NUM_THREADS'] = str(num_threads_per_process) + os.environ['OPENBLAS_NUM_THREADS'] = str(num_threads_per_process) + os.environ['MKL_DEBUG_CPU_TYPE'] = '5' + + ray.init(num_cpus=num_processes, log_to_driver=True) + + with tempfile.TemporaryDirectory() as tmpdirname: + tmpdir = pathlib.Path(tmpdirname) + img_ext = imghdr.what(args.image) + img_filepath = tmpdir / f'input.{img_ext}' + shutil.copy(str(args.image), img_filepath) + + pipeline = superdsm.pipeline.create_default_pipeline() + cfg = superdsm.config.Config() + img = superdsm.io.imread(img_filepath) + data, cfg, _ = superdsm.automation.process_image(pipeline, cfg, img) + + with open(args.cfg, 'w') as fp: + cfg.dump_json(fp) + + overlay = superdsm.render.render_result_over_image(data, border_width=args.seg_border, normalize_img=False) + superdsm.io.imwrite(args.overlay, overlay) + + masks = superdsm.render.rasterize_labels(data) + superdsm.io.imwrite(args.masks, masks) |
b |
diff -r 000000000000 -r 1b0fc671187f superdsm.xml --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/superdsm.xml Sun Jun 25 21:48:40 2023 +0000 |
[ |
@@ -0,0 +1,48 @@ +<tool id="ip_superdsm" name="SuperDSM" version="0.1.2-1" profile="20.05"> + <description>globally optimal segmentation method based on superadditivity and deformable shape models for cell nuclei in fluorescence microscopy images</description> + <requirements> + <requirement type="package" version="0.1.2">superdsm</requirement> + <requirement type="package" version="1.6.0">ray-core</requirement> + <requirement type="package" version="0.18.1">scikit-image</requirement> + </requirements> + <command detect_errors="aggressive"> + <![CDATA[ + python '$__tool_directory__/run-superdsm.py' + '${dataset}' + 'cfg.json' + 'masks.png' + 'overlay.png' + $seg_border + \${GALAXY_SLOTS:-4} + > stdout.txt + ]]> + </command> + <inputs> + <param name="dataset" type="data" format="tiff,png" label="Dataset" /> + <param name="seg_border" type="integer" min="1" value="8" label="Width of the outlines (in pixels) of the segmentation results (overlays)" /> + <!-- + <section name="config" title="Hyperparameters" expanded="false"> + </section> + --> + </inputs> + <outputs> + <data format="txt" name="stdout" from_work_dir="stdout.txt" label="${tool.name} on ${on_string}: stdout" /> + <data format="json" name="cfg" from_work_dir="cfg.json" label="${tool.name} on ${on_string}: cfg" /> + <data format="png" name="masks" from_work_dir="masks.png" label="${tool.name} on ${on_string}: masks" /> + <data format="png" name="overlay" from_work_dir="overlay.png" label="${tool.name} on ${on_string}: overlay" /> + </outputs> + <tests> + <test> + <param name="dataset" value="BBBC033_C2_z28.png" /> + <output name="overlay" value="overlay.png" ftype="png" compare="sim_size" /> + </test> + </tests> + <help> + This tool permits the segmentation of cell nuclei in 2-D fluorescence microscopy images. + + You can either use an individual input image (PNG, TIF) or a collection of such images. + </help> + <citations> + <citation type="doi">10.1109/TPAMI.2022.3185583</citation> + </citations> +</tool> |
b |
diff -r 000000000000 -r 1b0fc671187f test-data/BBBC033_C2_z28.png |
b |
Binary file test-data/BBBC033_C2_z28.png has changed |
b |
diff -r 000000000000 -r 1b0fc671187f test-data/overlay.png |
b |
Binary file test-data/overlay.png has changed |