Repository 'music_construct_eset'
hg clone https://toolshed.g2.bx.psu.edu/repos/bgruening/music_construct_eset

Changeset 4:282819d09a4f (2022-05-02)
Previous changeset 3:7ffaa0968da3 (2022-02-10) Next changeset 5:ada0d6224015 (2024-10-28)
Commit message:
"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/music/ commit d007ae51743e621dc47524f681501e72ef3a2910"
modified:
construct_eset.xml
macros.xml
scripts/compare.R
added:
test-data/APOL1_Bulk.rds
test-data/Control_Bulk.rds
b
diff -r 7ffaa0968da3 -r 282819d09a4f construct_eset.xml
--- a/construct_eset.xml Thu Feb 10 12:53:22 2022 +0000
+++ b/construct_eset.xml Mon May 02 09:58:18 2022 +0000
[
@@ -1,11 +1,12 @@
 <tool id="music_construct_eset" name="Construct Expression Set Object" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@"
-      profile="20.05" license="GPL-3.0-or-later" >
+      profile="21.09" license="GPL-3.0-or-later" >
     <description>Create an ExpressionSet object from tabular and textual data</description>
     <macros>
         <import>macros.xml</import>
     </macros>
     <expand macro="requirements" />
     <command detect_errors="exit_code"><![CDATA[
+cat '$conf' >> /dev/stderr &&
 Rscript --vanilla '$conf'
 ]]></command>
     <configfiles>
@@ -103,6 +104,7 @@
                       annotation = annotation)
 
 capture.output(print(e_set), file = '$out_txt')
+print(e_set)
 saveRDS(e_set, file= '$out_rds')
 
         </configfile>
b
diff -r 7ffaa0968da3 -r 282819d09a4f macros.xml
--- a/macros.xml Thu Feb 10 12:53:22 2022 +0000
+++ b/macros.xml Mon May 02 09:58:18 2022 +0000
b
@@ -1,5 +1,5 @@
 <macros>
-    <token name="@VERSION_SUFFIX@">3</token>
+    <token name="@VERSION_SUFFIX@">4</token>
     <!-- The ESet inspector/constructor and MuSiC tool can have
          independent Galaxy versions but should reference the same
          package version always. -->
@@ -14,6 +14,7 @@
             <requirement type="package" version="@TOOL_VERSION@" >music-deconvolution</requirement>
             <requirement type="package" version="0.9.3" >r-cowplot</requirement>
             <requirement type="package" version="1.4.4" >r-reshape2</requirement>
+            <requirement type="package" version="0.1_20">r-ggdendro</requirement>
         </requirements>
     </xml>
     <xml name="validator_index_identifiers" >
b
diff -r 7ffaa0968da3 -r 282819d09a4f scripts/compare.R
--- a/scripts/compare.R Thu Feb 10 12:53:22 2022 +0000
+++ b/scripts/compare.R Mon May 02 09:58:18 2022 +0000
[
b'@@ -11,6 +11,7 @@\n method_key <- list("MuSiC" = "est_music",\n                    "NNLS" = "est_nnls")[[est_method]]\n \n+delim <- "::" ## separator bulk datasets and their samples\n \n scale_yaxes <- function(gplot, value) {\n     if (is.na(value)) {\n@@ -136,43 +137,6 @@\n     return(tab)\n }\n \n-\n-plot_grouped_heatmaps <- function(results) {\n-    pdf(out_heatmulti_pdf, width = 8, height = 8)\n-    for (sc_name in names(results)) {\n-        named_list <- sapply(\n-            names(results[[sc_name]]),\n-            function(n) {\n-                ## We transpose the data here, because\n-                ## the plotting function omits by default\n-                ## the Y-axis which are the samples.\n-                ##  Since the celltypes are the common factor\n-                ## these should be the Y-axis instead.\n-                t(data.matrix(results[[sc_name]][[n]][[method_key]]))\n-            }, simplify = F, USE.NAMES = T)\n-        named_methods <- names(results[[sc_name]])\n-        ##\n-        plot_hmap <- Prop_heat_Est(\n-            named_list,\n-            method.name = named_methods) +\n-            ggtitle(paste0("[", est_method, "] Cell type ",\n-                           "proportions of ",\n-                           "Bulk Datasets based on ",\n-                           sc_name, " (scRNA)")) +\n-            xlab("Samples (Bulk)") +\n-            ylab("Cell Types (scRNA)") +\n-            theme(axis.text.x = element_text(angle = -90),\n-                  axis.text.y = element_text(size = 6))\n-        print(plot_hmap)\n-    }\n-    dev.off()\n-}\n-\n-## Desired plots\n-## 1. Pie chart:\n-##  - Per Bulk dataset (using just normalised proportions)\n-##  - Per Bulk dataset (multiplying proportions by nreads)\n-\n unlist_names <- function(results, method, prepend_bkname=FALSE) {\n     unique(sort(\n         unlist(lapply(names(results), function(scname) {\n@@ -181,7 +145,7 @@\n                 if (prepend_bkname) {\n                     ## We *do not* assume unique bulk sample names\n                     ## across different bulk datasets.\n-                    res <- paste0(bkname, "::", res)\n+                    res <- paste0(bkname, delim, res)\n                 }\n                 return(res)\n             })\n@@ -201,7 +165,7 @@\n     ddff_scale <- data.frame()\n     for (cell in all_celltypes) {\n         for (sample in all_samples) {\n-            group_sname <- unlist(strsplit(sample, split = "::"))\n+            group_sname <- unlist(strsplit(sample, split = delim))\n             bulk <- group_sname[1]\n             id_sample <- group_sname[2]\n             for (scgroup in names(results)) {\n@@ -231,7 +195,7 @@\n     for (scgroup in names(results)) {\n         for (bulkgroup in names(results[[scgroup]])) {\n             dat <- results[[scgroup]][[bulkgroup]]$plot_groups\n-            dat$Samples <- paste0(bulkgroup, "::", dat$Samples) #nolint\n+            dat$Samples <- paste0(bulkgroup, delim, dat$Samples) #nolint\n             res <- rbind(res, dat)\n         }\n     }\n@@ -247,7 +211,7 @@\n     bd_spread_scale <- list()\n     bd_spread_prop <- list()\n     for (bname in bulk_names) {\n-        subs <- mat_names[startsWith(mat_names, paste0(bname, "::"))]\n+        subs <- mat_names[startsWith(mat_names, paste0(bname, delim))]\n         ## -\n         bd[[bname]] <- rowSums(summat$prop[, subs])\n         bd_scale[[bname]] <- rowSums(summat$scaled[, subs])\n@@ -260,8 +224,75 @@\n                               prop = bd_spread_prop)))\n }\n \n-summarize_heatmaps <- function(grudat_spread_melt, do_factors) {\n-    ## -\n+do_cluster <- function(grudat_spread_melt, xaxis, yaxis, value_name,\n+                       xlabs="", ylabs="", titled="",\n+                       order_col=T, order_row=T, size=11) {\n+\n+    data_m <- grudat_spread_melt\n+    data_matrix <- {\n+        tmp <- dcast(data_m, formula(paste0(yaxis, " ~ ", xaxis)), value.var = value_name)\n+        rownames(tmp) <- tmp[[yaxis]]\n+        tmp[[yaxis]] <- NULL\n+        tmp\n+    }\n+    dist_method <- "euclidean"\n+    clust_me'..b'                     name = element_blank()) +\n+                   theme(axis.text.x = element_text(\n+                             angle = -90, hjust = 0, size = size)) +\n+                   ggtitle(label = title) + xlab(xlabs) + ylab(ylabs))\n+        } else {\n+            return(do_cluster(grudat_spread_melt, xaxis, yaxis, fillval,\n+                              xlabs, ylabs, title,\n+                              (cluster %in% c("Cols", "Both")),\n+                              (cluster %in% c("Rows", "Both"))))\n+        }\n     }\n \n     do_gridplot <- function(title, xvar, plot="both", ncol=2, size = 11) {\n@@ -303,16 +342,16 @@\n         return(plot_grid(ggdraw() + draw_label(title, fontface = "bold"),\n                          plot_grid(plotlist = plist, ncol = ncol),\n                          ncol = 1, rel_heights = c(0.05, 0.95)))\n+    }\n \n-    }\n-    p1 <- do_gridplot("Cell Types vs Bulk Datasets", "Bulk", "both", )\n-    p2a <- do_gridplot("Cell Types vs Samples", "Sample", "normal", 1,\n-                       size = 8)\n-    p2b <- do_gridplot("Cell Types vs Samples (log10+1)", "Sample", "log", 1,\n-                       size = 8)\n+    p1 <- do_gridplot("Cell Types vs Bulk Datasets", "Bulk", "both")\n+    p2a <- do_gridplot("Cell Types vs Samples", "Sample", "normal",\n+                       ncol = 1, size = 8)\n+    p2b <- do_gridplot("Cell Types vs Samples (log10+1)", "Sample", "log",\n+                       ncol = 1, size = 8)\n     p3 <- ggplot + theme_void()\n     if (do_factors) {\n-        p3 <- do_gridplot("Cell Types against Factors", "Factors", "both")\n+        p3 <- do_gridplot("Cell Types vs Factors", "Factors", "both")\n     }\n     return(list(bulk = p1,\n                 samples = list(log = p2b, normal = p2a),\n@@ -346,8 +385,8 @@\n             ylab("Bulk Dataset")\n     }\n \n-    title_a <- "Cell Types against Bulk"\n-    title_b <- "Bulk Datasets against Cells"\n+    title_a <- "Cell Types vs Bulk Datasets"\n+    title_b <- "Bulk Datasets vs Cell Types"\n     if (do_factors) {\n         title_a <- paste0(title_a, " and Factors")\n         title_b <- paste0(title_b, " and Factors")\n@@ -380,31 +419,28 @@\n     return(grudat_filt)\n }\n \n+writable2 <- function(obj, prefix, title) {\n+    write.table(obj,\n+                file = paste0("report_data/", prefix, "_",\n+                              title, ".tabular"),\n+                quote = F, sep = "\\t", col.names = NA)\n+}\n+\n \n results <- music_on_all(files)\n-\n-if (heat_grouped_p) {\n-    plot_grouped_heatmaps(results)\n-} else {\n-    plot_all_individual_heatmaps(results)\n-}\n-\n-save.image("/tmp/sesh.rds")\n-\n summat <- summarized_matrix(results)\n grudat <- group_by_dataset(summat)\n grudat_spread_melt <- merge_factors_spread(grudat$spread,\n                                            flatten_factor_list(results))\n+grudat_spread_melt_filt <- filter_output(grudat_spread_melt, out_filt)\n \n-\n+plot_all_individual_heatmaps(results)\n \n ## The output filters ONLY apply to boxplots, since these take\n do_factors <- (length(unique(grudat_spread_melt[["Factors"]])) > 1)\n-\n-grudat_spread_melt_filt <- filter_output(grudat_spread_melt, out_filt)\n-\n-heat_maps <- summarize_heatmaps(grudat_spread_melt_filt, do_factors)\n box_plots <- summarize_boxplots(grudat_spread_melt_filt, do_factors)\n+heat_maps <- summarize_heatmaps(grudat_spread_melt_filt, do_factors,\n+                                dendro_setting)\n \n pdf(out_heatsumm_pdf, width = 14, height = 14)\n print(heat_maps)\n@@ -417,12 +453,6 @@\n stats_scale <- lapply(grudat$spread$scale, function(x) {\n     t(apply(x, 1, summary))})\n \n-writable2 <- function(obj, prefix, title) {\n-    write.table(obj,\n-                file = paste0("report_data/", prefix, "_",\n-                              title, ".tabular"),\n-                quote = F, sep = "\\t", col.names = NA)\n-}\n ## Make the value table printable\n grudat_spread_melt$value.scale <- as.integer(grudat_spread_melt$value.scale) # nolint\n colnames(grudat_spread_melt) <- c("Sample", "Cell", "Bulk", "Factors",\n'
b
diff -r 7ffaa0968da3 -r 282819d09a4f test-data/APOL1_Bulk.rds
b
Binary file test-data/APOL1_Bulk.rds has changed
b
diff -r 7ffaa0968da3 -r 282819d09a4f test-data/Control_Bulk.rds
b
Binary file test-data/Control_Bulk.rds has changed