Previous changeset 0:b22c453e4cf4 (2018-10-11) Next changeset 2:2173ad5e7750 (2019-10-16) |
Commit message:
Uploaded |
modified:
CorrTable/Corr.xml CorrTable/Corr_Script_samples_row.R CorrTable/Corr_wrap.r |
added:
CorrTable/README.md CorrTable/test-data/input1_tab1.tabular CorrTable/test-data/input1_tab2.txt CorrTable/test-data/input2_dataMatrix_500.txt CorrTable/test-data/output1_CT_plot.pdf CorrTable/test-data/output1_CorrTable.tabular CorrTable/test-data/output2_CorrTable.tabular |
b |
diff -r b22c453e4cf4 -r 29ec7e3afdd4 CorrTable/Corr.xml --- a/CorrTable/Corr.xml Thu Oct 11 05:35:55 2018 -0400 +++ b/CorrTable/Corr.xml Thu Aug 01 11:30:58 2019 -0400 |
[ |
b'@@ -1,4 +1,4 @@\n-<tool id="corrtable" name="Between-table Correlation" version="0.0.0">\r\n+<tool id="corrtable" name="Between-table Correlation" version="1.0.0">\r\n \t<description>Correlation table between two tables and graphic representation </description>\r\n \t <requirements>\r\n \t\t\t<requirement type="package" version="1.1_4">r-batch</requirement>\r\n@@ -33,18 +33,23 @@\n \t\t\r\n \t\treorder_var "$out_section.reorder_var"\r\n \t\t\r\n-\t\tcolor_heatmap "${out_section.heatmap_cond.color_heatmap}"\r\n-\t\t#if str($out_section.heatmap_cond.color_heatmap) == \'yes\' :\r\n-\t\t\ttype_classes "${out_section.heatmap_cond.typeclass_cond.type_classes}"\r\n-\t\t\t#if str($out_section.heatmap_cond.typeclass_cond.type_classes) == \'regular\' :\r\n-\t\t\t\treg_class_value "${out_section.heatmap_cond.typeclass_cond.reg_class_value}"\r\n-\t\t\t#elif str($out_section.heatmap_cond.typeclass_cond.type_classes) == \'irregular\' :\r\n-\t\t\t\tirreg_class_vect "${out_section.heatmap_cond.typeclass_cond.irreg_class_vect}"\r\n-\t\t\t#end if\r\n+\t\tplot_choice "$out_section.plot_cond.plot_choice"\r\n+\t\t#if str($out_section.plot_cond.plot_choice) == \'none\' :\r\n+\t\t\ttabcorr_out "$tabcorr_out"\r\n+\t\t#else:\r\n+\t\t\tcolor_heatmap "${out_section.plot_cond.heatmap_cond.color_heatmap}"\r\n+\t\t\t#if str($out_section.plot_cond.heatmap_cond.color_heatmap) == \'yes\' :\r\n+\t\t\t\ttype_classes "${out_section.plot_cond.heatmap_cond.typeclass_cond.type_classes}"\r\n+\t\t\t\t#if str($out_section.plot_cond.heatmap_cond.typeclass_cond.type_classes) == \'regular\' :\r\n+\t\t\t\t\treg_class_value "${out_section.plot_cond.heatmap_cond.typeclass_cond.reg_class_value}"\r\n+\t\t\t\t#elif str($out_section.plot_cond.heatmap_cond.typeclass_cond.type_classes) == \'irregular\' :\r\n+\t\t\t\t\tirreg_class_vect "${out_section.plot_cond.heatmap_cond.typeclass_cond.irreg_class_vect}"\r\n+\t\t\t\t#end if\r\n+\t\t\t#end if\t\r\n+\t\t\ttabcorr_out "$tabcorr_out"\r\n+\t\t\theatmap_out "$heatmap_out"\r\n \t\t#end if\t\r\n-\t\t\r\n-\t\ttabcorr_out "$tabcorr_out"\r\n-\t\theatmap_out "$heatmap_out"\r\n+\r\n \t\t\r\n \t</command>\r\n \t\r\n@@ -118,55 +123,142 @@\n \t\t\t</conditional>\t\t\r\n \t\t</section>\r\n \t\t\r\n-\t\t<section name="out_section" title="Graphical outputs" expanded="False">\r\n+\t\t<section name="out_section" title="Output options" expanded="False">\r\n \t\t\t<param name="reorder_var" label="Reorder variables (using Hierarchical Cluster Analysis)" type="select" display="radio" help="">\r\n \t\t\t\t<option value="no">No</option>\r\n \t\t\t\t<option value="yes">Yes</option>\r\n \t\t\t</param>\r\n \t\t\r\n-\t\t\t<conditional name="heatmap_cond">\r\n-\t\t\t\t<param name="color_heatmap" label="Colored correlation table strategy" type="select" display="radio" help="Standard corresponds to a scale with a smooth gradient between three colors: red, white and green (continuous case). Customized creates classes for the correlation coefficients - the scale has discrete values.">\r\n-\t\t\t\t\t<option value="no">Standard</option>\r\n-\t\t\t\t\t<option value="yes">Customized</option>\r\n+\t\t\t<conditional name="plot_cond">\r\n+\t\t\t\t<param name="plot_choice" label="PDF output" type="select" help="To determine whether a colored correlation table is plotted.">\r\n+\t\t\t\t\t<option value="auto">Default</option>\r\n+\t\t\t\t\t<option value="forced">Always plot a colored table</option>\r\n+\t\t\t\t\t<option value="none">No colored table</option>\r\n \t\t\t\t</param>\t\t\r\n \t\t\r\n-\t\t\t\t<when value="yes">\r\n-\t\t\t\t\t<conditional name="typeclass_cond">\r\n-\t\t\t\t\t\t<param name="type_classes" label="Choose the type of classes" type="select" display="radio" help="Regular means the classes have the same size. Irregular means it is possible to choose any intervals." >\r\n-\t\t\t\t\t\t\t<option value="regular">Regular classes</option>\r\n-\t\t\t\t\t\t\t<option value="irregular">Irregular classes</option>\r\n-\t\t\t\t\t\t</param>\r\n+\t\t\t\t<when value="auto">\r\n+\t\t\t\t\t<conditional name="heatmap_cond">\r\n+\t\t\t\t\t<param name="color_heatmap" label="Colored correlation table strategy" type="select" display="radio" help="Standard corresponds to a scale with a smooth gradient between three colors: red, white and green (continuous case). Customized creates classes for the correlation coefficients - the scale has discrete '..b"d on each input tables, with:\r\n+| - 1 - correlation coefficient, as distance\r\n+| - Ward as aggregation method.\r\n+| \r\n \r\n- \r\n+| **PDF output:** To determine whether a colored correlation table is plotted.\r\n+| \t- 'Default': generates a pdf file with a colored correlation table if the filtered table has no dimension above 1000 (number of lines or columns). \r\n+| \t- 'Always plot a colored table': used when you are not afraid of huge colored correlation table; to be used wisely.\r\n+| \t- 'No colored table': the module will generate the correlation table in tabular format only (no pdf file). \r\n+|\r\n+\t\r\n Colored correlation table strategy\r\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\n-\t\t| Allows to create a colored correlation table. Variables of table 1 and variables of table 2 are related using colored rectangles. \r\n-\t\t| About the colors, the negative correlations are in red, more or less intense according to their position between -1 and 0, and the positive correlations in green, more or less intense according to their position between 0 and 1. The coefficients equal to 0 are in white.\r\n-\t\t| \t- 'Standard': the graphical representation has a scale with a smooth gradient between three colors: red, white and green.\r\n-\t\t| \t- 'Customized': the colored correlation table has coefficient classes. It is possible to create regular or irregular classes. The scale is discreet.\r\n-\t\t|\r\n-\t\t\r\n+ | *Only available when* **PDF output** *is set to 'Default' or 'Always plot a colored table'.*\r\n+ | Allows to create a colored correlation table. Variables of table 1 and variables of table 2 are related using colored rectangles. \r\n+ | About the colors, the negative correlations are in red, more or less intense according to their position between -1 and 0, and the positive correlations in green, more or less intense according to their position between 0 and 1. The coefficients equal to 0 are in white.\r\n+ | \t- 'Standard': the graphical representation has a scale with a smooth gradient between three colors: red, white and green.\r\n+ | \t- 'Customized': the colored correlation table has coefficient classes. It is possible to create regular or irregular classes. The scale is discreet.\r\n+ \r\n | **Choose the type of classes (only if colored correlation table strategy is 'Customized'):**\r\n+| \r\n \r\n | \t- 'Regular': classes are all (or almost) the same size. \t\r\n | To realize these intervals, we start from 1 to go to 0 by taking a step of the size chosen by the user, and we make the symmetry for -1 towards 0. If the last step does not fall on the 0 value, we create a class between this last value and 0, smaller in size than the others. It is important to specify that 0 represents a class on its own, which is assigned the color white for the heatmap.\t\r\n@@ -267,7 +364,6 @@\n | *Size of classes (if regular classes):* A value between 0 and 1.\r\n \r\n | Example: if the size is 0.4, classes are [-1;-0.6], ]-0.6;-0.2], ]-0.2;0[, 0, ]0;0.2], ]0.2;0.6] and ]0.6;1].\r\n-|\r\n \r\n | \t- 'Irregular': classes have variable lengths.\r\n | It is possible to do as many classes as you want, and of any size. There is not necessarily symmetry between -1 and 0, and 0 and 1. You can choose to have a white class with only 0, or an interval which contains the value 0.\r\n@@ -276,7 +372,7 @@\n \r\n | Example: if the vector is (-0.8,-0.5,-0.4,0,0.4,0.5,0.8), the classes are [-1;-0.8], ]-0.8;-0.5], ]-0.5;-0.4], ]-0.4;0[, 0, ]0;0.4], ]0.4;0.5], ]0.5;0.8] and ]0.8;1].\r\n |\r\n-\r\n+\t\r\n \t\r\n ------------\r\n Output files\r\n@@ -291,7 +387,7 @@\n Heatmap (colored correlation table)\r\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\n \t| Pdf output\r\n-\t| Colored representation of the correlation table. The coefficients are replaced by colors. A coefficient close to -1 is red, close to 0 white, and close to 1 in green.\r\n+\t| Colored representation of the correlation table. The coefficients are replaced by colors. A coefficient close to -1 is red, close to 0 white, and close to 1 green.\r\n \t|\r\n \t\r\n \t\r\n" |
b |
diff -r b22c453e4cf4 -r 29ec7e3afdd4 CorrTable/Corr_Script_samples_row.R --- a/CorrTable/Corr_Script_samples_row.R Thu Oct 11 05:35:55 2018 -0400 +++ b/CorrTable/Corr_Script_samples_row.R Thu Aug 01 11:30:58 2019 -0400 |
[ |
b'@@ -2,7 +2,7 @@\n # CORRELATION TABLE #\r\n # #\r\n # #\r\n- # Input : 2 tables with common samples #\r\n+ # Input : 2 tables with shared samples #\r\n # Output : Correlation table ; Heatmap (pdf) #\r\n # #\r\n # Dependencies : Libraries "ggplot2" and "reshape2" #\r\n@@ -13,11 +13,8 @@\n # Parameters (for dev)\r\n if(FALSE){\r\n \r\n- rm(list = ls())\r\n- setwd(dir = "Y:/Developpement")\r\n-\r\n- tab1.name <- "Test/Ressources/Inputs/CT2_DM.tabular"\r\n- tab2.name <- "Test/Ressources/Inputs/CT2_base_Diapason_14ClinCES_PRIN.txt"\r\n+ tab1.name <- "test/ressources/inputs/CT/CT2_DM.tabular"\r\n+ tab2.name <- "test/ressources/inputs/CT/CT2_base_Diapason_14ClinCES_PRIN.txt"\r\n param1.samples <- "column"\r\n param2.samples <- "row"\r\n corr.method <- "pearson"\r\n@@ -28,6 +25,7 @@\n filters.choice <- "filters_0_thr"\r\n threshold <- 0.2\r\n reorder.var <- "yes"\r\n+\tplot.choice <- "auto"\r\n color.heatmap <- "yes"\r\n type.classes <-"irregular"\r\n reg.value <- 1/3\r\n@@ -40,8 +38,8 @@\n \r\n \r\n correlation.tab <- function(tab1.name, tab2.name, param1.samples, param2.samples, corr.method, test.corr, alpha, \r\n- multi.name, filter, filters.choice, threshold, reorder.var, color.heatmap, type.classes, \r\n- reg.value, irreg.vect, output1, output2){\r\n+ multi.name, filter, filters.choice, threshold, reorder.var, plot.choice, color.heatmap, \r\n+ type.classes, reg.value, irreg.vect, output1, output2){\r\n \r\n # This function allows to visualize the correlation between two tables\r\n # \r\n@@ -59,6 +57,7 @@\n # and threshold filter remove variables with all their correlation coefficients in abs < threshold\r\n # - threshold (value between 0 and 1): threshold for filter threshold\r\n # - reorder.var ("yes" or "no"): reorder variables in the correlation table thanks to the HCA\r\n+\t# - plot.choice ("auto", "forced" or "none"): determine whether a heatmap is plotted\r\n # - color.heatmap ("yes" or "no"): color the heatmap with classes defined by the user\r\n # - type.classes ("regular" or "irregular"): choose to color the heatmap with regular or irregular classes\r\n # - reg.value (value between 0 and 1): value for regular classes\r\n@@ -85,7 +84,9 @@\n tab1 <- tab1[order(rownames(tab1)),]\r\n tab2 <- tab2[order(rownames(tab2)),]\r\n \r\n- \r\n+\r\n+ # Checks ---------------------------------------------------------------------------------------------\r\n+\r\n # Check if the 2 datasets match regarding samples identifiers\r\n # Adapt from functions "check.err" and "match2", RcheckLibrary.R\r\n \r\n@@ -128,8 +129,20 @@\n }\r\n \r\n \r\n+ # Check whether tab1=tab2\r\n+ \r\n+ err.msg <- NULL\r\n+ \r\n+ if((ncol(tab1)==ncol(tab2))&&(sum(tab1!=tab2,na.rm=TRUE)==0)){\r\n+ autocor <- TRUE\r\n+\terr.msg <- c(err.msg, "\\nYou chose the same table for the two dataset inputs. \\nTo allow filtering options,",\r\n+\t "we will turn the diagonal to 0 in the correlation matrix during the filtering process.\\n")\r\n+ }else{\r\n+ autocor <- FALSE\r\n+ }\r\n+ \r\n+ \r\n # Check qualitative variables in each input tables\r\n- err.msg <- NULL\r\n \r\n var1.quali <- vector()\r\n var2.quali <- vector()\r\n@@ -167,16 +180,63 @@\n }\r\n \r\n if(length(var1.quali) != 0){\r\n- tab1 <- tab1[,-var1.quali]\r\n+ tab1 <- tab1[,-var1.quali,drop=FALSE]\r\n }\r\n if(length(var2.quali) !'..b'tab2 <- tab2[,-var2.cons,drop=FALSE]\r\n+ }\r\n+ \r\n+ \r\n+ # Print info message\r\n+ \r\n if(length(err.msg) != 0){ \r\n cat("\\n- - - - - - - - -\\n",err.msg,"\\n- - - - - - - - -\\n\\n")\r\n }\r\n \r\n+ rm(err.stock,var1.quali,var2.quali,var1.cons,var2.cons,err.msg) \r\n+ \r\n+ \r\n # Correlation table ---------------------------------------------------------------------------------\r\n \r\n tab.corr <- matrix(nrow = dim(tab2)[2], ncol = dim(tab1)[2])\r\n@@ -190,7 +250,6 @@\n rownames(tab.corr) <- colnames(tab2)\r\n \r\n \r\n- \r\n # Significance of correlation test ------------------------------------------------------------------\r\n \r\n if (test.corr == "yes"){\r\n@@ -218,6 +277,11 @@\n # Filter settings ------------------------------------------------------------------------------------\r\n \r\n if (filter == "yes"){\r\n+ \r\n+ # Turn diagonal from 1 to 0 if autocorrelation\r\n+\tif(autocor){\r\n+\t for(i in 1:(ncol(tab.corr))){ tab.corr[i,i] <- 0 }\r\n+\t}\r\n \r\n # Remove variables with all their correlation coefficients = 0 :\r\n if (filters.choice == "filter_0"){\r\n@@ -232,8 +296,8 @@\n }\r\n \r\n if (length(var2.thres) != 0){\r\n- tab.corr <- tab.corr[-var2.thres,]\r\n- tab2 <- tab2[, -var2.thres]\r\n+ tab.corr <- tab.corr[-var2.thres,,drop=FALSE]\r\n+ tab2 <- tab2[, -var2.thres,drop=FALSE]\r\n }\r\n \r\n var1.thres <- vector()\r\n@@ -244,9 +308,14 @@\n }\r\n \r\n if (length(var1.thres) != 0){\r\n- tab.corr <- tab.corr[,-var1.thres]\r\n- tab1 <- tab1[,-var1.thres]\r\n+ tab.corr <- tab.corr[,-var1.thres,drop=FALSE]\r\n+ tab1 <- tab1[,-var1.thres,drop=FALSE]\r\n }\r\n+\t\r\n+\t# Turn diagonal from 0 back to 1 if autocorrelation\r\n+\tif(autocor){\r\n+\t for(i in 1:(ncol(tab.corr))){ tab.corr[i,i] <- 1 }\r\n+\t}\r\n \r\n } \r\n \r\n@@ -258,17 +327,19 @@\n dist.tab2 <- as.dist(1 - cormat.tab2)\r\n hc.tab2 <- hclust(dist.tab2, method = "ward.D2")\r\n tab.corr <- tab.corr[hc.tab2$order,]\r\n+\trm(cormat.tab2)\r\n \r\n cormat.tab1 <- cor(tab1, method = corr.method, use = "pairwise.complete.obs")\r\n dist.tab1 <- as.dist(1 - cormat.tab1)\r\n hc.tab1 <- hclust(dist.tab1, method = "ward.D2")\r\n tab.corr <- tab.corr[,hc.tab1$order]\r\n+\trm(cormat.tab1)\r\n \r\n }\r\n \r\n \r\n+ # Output 1 : Correlation table -----------------------------------------------------------------------\r\n \r\n- # Output 1 : Correlation table -----------------------------------------------------------------------\r\n \r\n # Export correlation table\r\n write.table(x = data.frame(name = rownames(tab.corr), tab.corr), file = output1, sep = "\\t", quote = FALSE, row.names = FALSE)\r\n@@ -276,7 +347,9 @@\n \r\n \r\n # Create the heatmap ---------------------------------------------------------------------------------\r\n- \r\n+\r\n+ if(plot.choice != "none"){\r\n+ \r\n # A message if no variable kept\r\n if(length(tab.corr)==0){\r\n \tpdf(output2)\r\n@@ -285,6 +358,17 @@\n \tdev.off()\r\n } else {\r\n \r\n+ # A message if more than 1000 variable in auto mode\r\n+ if((plot.choice=="auto")&&(max(dim(tab.corr))>1000)){\r\n+\tpdf(output2)\r\n+\twar.msg <- paste0("In \'default\' mode, the colored table is not provided when\\none of the tables contains more than ",\r\n+\t "a thousand\\nvariables after the filter step.\\n\\nOne of your table still contains ",max(dim(tab.corr))," variables.\\n",\r\n+\t\t\t\t\t "Please consider more filtering, or use the \'Always plot a\\ncolored table\' mode to obtain your colored table.")\r\n+\tplot.new()\r\n+\tlegend("center",war.msg,adj=c(0.05,0.075))\r\n+\tdev.off()\r\n+ } else {\r\n+ \r\n \r\n library(ggplot2)\r\n library(reshape2)\r\n@@ -399,7 +483,10 @@\n ggsave(output2, device = "pdf", width = 10+0.075*dim(tab.corr)[2], height = 5+0.075*dim(tab.corr)[1], limitsize = FALSE)\r\n \r\n \r\n- } # End if(length(tab.corr)==0)else\r\n+ } # End of if((plot.choice=="auto")&&(max(dim(tab.corr))>1000))else\r\n+ } # End of if(length(tab.corr)==0)else\r\n+ } # End of if(plot.choice != "auto")\r\n+ \r\n \r\n } # End of correlation.tab\r\n \r\n' |
b |
diff -r b22c453e4cf4 -r 29ec7e3afdd4 CorrTable/Corr_wrap.r --- a/CorrTable/Corr_wrap.r Thu Oct 11 05:35:55 2018 -0400 +++ b/CorrTable/Corr_wrap.r Thu Aug 01 11:30:58 2019 -0400 |
b |
@@ -4,10 +4,12 @@ # WRAPPER FOR Corr_Script_samples_row.R (CORRELATION TABLE) # # # # Author: Ophelie BARBET # +# Maintainer: Melanie PETERA # # User: Galaxy # # Original data: used with Corr_Script_samples_row.R # # Starting date: # # V-1: First version of wrapper # +# V-2: Corresponds to XML version 1.0.0 # # # # # # Input files: 2 tables with common samples file # @@ -56,6 +58,7 @@ type_classes <- NULL reg_class_value <- NULL irreg_class_vect <- NULL +if(args$plot_choice == "none"){args$color_heatmap <- "no"; args$heatmap_out <- NULL} if(args$color_heatmap == "yes"){ type_classes <- args$type_classes if(type_classes == "regular"){ @@ -67,7 +70,7 @@ correlation.tab(args$tab1_in, args$tab2_in, args$tab1_samples, args$tab2_samples, args$corr_method, args$test_corr, risk_alpha, correct_multi, args$filter, filters_choice, threshold, -args$reorder_var, args$color_heatmap, type_classes, reg_class_value, irreg_class_vect, args$tabcorr_out, args$heatmap_out) +args$reorder_var, args$plot_choice, args$color_heatmap, type_classes, reg_class_value, irreg_class_vect, args$tabcorr_out, args$heatmap_out) cat('\n--------------------------------------------------------------------', |
b |
diff -r b22c453e4cf4 -r 29ec7e3afdd4 CorrTable/README.md --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/CorrTable/README.md Thu Aug 01 11:30:58 2019 -0400 |
[ |
@@ -0,0 +1,45 @@ +Between-table Correlation +======= + +Metadata +----------- + + * **@name**: Between-table Correlation + * **@version**: 1.0.0 + * **@authors**: Original code: Ophelie Barbet (PFEM - INRA) - Maintainer: Melanie Petera (PFEM - INRA - MetaboHUB) + * **@init date**: 2018, May + * **@main usage**: This tool builds a correlation table from two seperate tables, with filtering options and graphical outputs. + + +Context +----------- + +This tool is provided as one of the [Workflow4Metabolomics](http://workflow4metabolomics.org) Galaxy instance statistical tools. +W4M is a French infrastructure providing software tools to process, analyse and annotate metabolomics data. + +User interface is based on the Galaxy platform (homepage: https://galaxyproject.org/). It is an open, web-based platform for data intensive biomedical research. +Whether on the free public server or your own instance, you can perform, reproduce, and share complete analyses. + + +Configuration +----------- + +### Requirement: + * R software: version > 3.0.0 recommended + * Specific R libraries: 'batch', 'ggplot2' and 'reshape2' + + +Technical description +----------- + +Main files: + +- Corr_Script_samples_row.R: R function (core script) +- Corr_wrap.R: R script to link the main R function to inputs +- Corr.xml: XML wrapper (interface for Galaxy) + + +Services provided +----------- + + * Help and support: support@workflow4metabolomics.org |
b |
diff -r b22c453e4cf4 -r 29ec7e3afdd4 CorrTable/test-data/input1_tab1.tabular --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/CorrTable/test-data/input1_tab1.tabular Thu Aug 01 11:30:58 2019 -0400 |
b |
b'@@ -0,0 +1,525 @@\n+sample\tIndiv1\tIndiv2\tIndiv3\tIndiv4\tIndiv5\tIndiv6\tIndiv7\tIndiv8\tIndiv9\tIndiv10\tIndiv11\tIndiv12\tIndiv13\tIndiv14\tIndiv15\tIndiv16\tIndiv17\tIndiv18\tIndiv19\tIndiv20\tIndiv21\tIndiv22\tIndiv23\tIndiv24\tIndiv25\tIndiv26\tIndiv27\tIndiv28\tIndiv29\tIndiv30\tIndiv31\tIndiv32\tIndiv33\tIndiv34\tIndiv35\tIndiv36\tIndiv37\tIndiv38\tIndiv39\tIndiv40\tIndiv41\tIndiv42\tIndiv43\tIndiv44\tIndiv45\tIndiv46\tIndiv47\tIndiv48\tIndiv49\tIndiv50\tIndiv51\tIndiv52\tIndiv53\tIndiv54\tIndiv55\tIndiv56\tIndiv57\tIndiv58\tIndiv59\tIndiv60\tIndiv61\tIndiv62\tIndiv63\tIndiv64\tIndiv65\tIndiv66\tIndiv67\tIndiv68\tIndiv69\tIndiv70\tIndiv71\tIndiv72\tIndiv73\tIndiv74\tIndiv75\tIndiv76\tIndiv77\tIndiv78\tIndiv79\tIndiv80\tIndiv81\tIndiv82\tIndiv83\tIndiv84\tIndiv85\tIndiv86\tIndiv87\tIndiv88\tIndiv89\tIndiv90\tIndiv91\tIndiv92\tIndiv93\tIndiv94\tIndiv95\tIndiv96\tIndiv97\tIndiv98\tIndiv99\tIndiv100\tIndiv101\tIndiv102\tIndiv103\tIndiv104\tIndiv105\tIndiv106\tIndiv107\tIndiv108\tIndiv109\tIndiv110\tIndiv111\tIndiv112\r\n+M204T2154\t12158.5480464108\t3948.26482331735\t13807.565819203\t6088.3660822285\t16203.6704701065\t21108.684599305\t11200.2589540357\t9621.10139341939\t9086.65369615158\t4952.84629980204\t9783.26129826107\t2444.79725547056\t5410.59561615698\t7050.91629511324\t5704.36952347691\t14302.4142268832\t5819.56747315687\t16252.2326336332\t17815.0018362962\t14026.1557570775\t12244.0714131509\t3407.97198069867\t9816.49974224777\t10374.2866447838\t8380.84749492183\t9760.91170458692\t5992.57070215078\t21703.2136099479\t16269.1565389462\t4037.99845511157\t6725.51264895372\t10518.4887926202\t18887.090069026\t10003.0805484489\t9578.65657133647\t7569.8756659492\t5505.86090989463\t6174.59667140532\t9106.40055308225\t4216.95795342718\t15707.2298865979\t5351.3719826074\t9137.81864585599\t4534.81919375675\t5970.3137676552\t5060.78974475246\t15538.0303421451\t6521.90778398682\t17468.2625186123\t4477.70221893953\t10959.7092378231\t2212.71545536701\t7409.70896113792\t4961.52497598763\t5944.70565679152\t5694.14508775443\t7804.3340290191\t6335.53203512277\t5424.6405611073\t5755.89288320948\t18041.33432198\t9206.19624538925\t8817.01466700432\t7511.40238249132\t8901.40113636213\t5793.96466428861\t6500.42596523934\t5742.53734182676\t12001.2769175176\t14390.8857144342\t7255.18527845156\t6522.82864832645\t11840.8098717264\t16443.4142353566\t12088.7072341466\t9025.40209311234\t7638.46128197049\t7400.9199058512\t5965.816575308\t12633.8811234917\t6313.81095164914\t15396.2077915275\t10200.030405004\t10212.7126478637\t10713.0087069702\t6293.41032862731\t5431.77112433456\t6855.06713990132\t6771.78201633809\t20585.8913817171\t6356.96938439913\t5989.97996820724\t6267.32594785837\t6064.77054071668\t6590.08422537772\t8210.10225382492\t8616.59650305326\t10240.6979218276\t13690.9147501225\t6084.88061572707\t5499.30427444054\t7138.40709127029\t5455.75267380849\t5508.90627724534\t16205.9948935278\t6764.72464624835\t16228.0613819446\t6690.91673950934\t0\t4823.05203931214\t8607.54138719506\t7715.21565134782\r\n+M585T2299\t7978.10802970514\t8918.45296914733\t10154.3589334951\t9091.89371829086\t9539.64518056097\t9147.92709983446\t8187.25586110114\t7570.68963844934\t8385.1915837259\t7898.87951480212\t7788.67164161559\t8446.7324945395\t8448.90350410469\t8744.29908583362\t9165.32382024919\t9357.42754743372\t9624.59012761071\t10454.0994975157\t9384.6303565487\t8184.98657335045\t9701.82295332971\t9126.91235938458\t9253.61812736969\t7897.03988545037\t8514.53061445021\t8851.92604546519\t6847.21057805662\t7110.35214825187\t8198.74947020271\t9048.51698668732\t6908.14749781058\t7916.29302646463\t7394.4931492299\t9170.21402423337\t7557.81667772913\t8533.28446277329\t8055.81446738342\t9934.83114781312\t6578.78816043633\t7496.81851930682\t7315.64095582113\t6712.82923439771\t6711.72150590482\t7173.6546585011\t8040.6529583636\t7595.56093342482\t8761.9516258468\t7742.66461043421\t8373.02978173495\t7337.27302155683\t6725.2038901472\t7257.51706392961\t7377.23520353943\t7634.29439115851\t7531.95074825313\t7056.38507790497\t6594.687990498\t7656.93096859931\t7631.26110163409\t8994.14791411429\t7650.23817478053\t8090.97830338437\t8143.83715137816\t8905.49308902687\t8508.42255114216\t8078.01842326391\t7646.72880399568\t8111.85426911\t8814.18228362973\t8972.1187847547'..b'10.88074758364\t1558.97252445184\t1664.05152215179\t2086.63156919493\t2206.33899830286\t2251.64128878932\t2477.13620098669\t2262.65709564594\t1771.66283357557\t2522.93074606868\t2590.61344758547\t2085.68080864049\t2391.78529588616\t2217.89777279907\t1987.09844459516\t2162.33629258401\t1811.99674254253\t2028.84859476208\t2226.10709920786\t1472.25071465914\t260.004305548371\t2248.97962606851\t1930.60535470025\t1813.94941835845\r\n+M576T2190\t1453.82124842473\t586.237743080617\t983.076798172024\t940.029892744418\t930.449371584918\t915.609702477217\t1401.77416376134\t943.046052510407\t1021.37176806923\t537.85818961017\t1126.30556788888\t252.06644368081\t1193.58792511052\t968.248617314411\t961.768070734704\t1014.46417976319\t1028.86692477889\t1157.5233433793\t964.027117761122\t1102.41420771437\t1768.24637681094\t555.229103153595\t956.919349785562\t878.959652345086\t1113.74248700665\t1039.59583859354\t828.282448857341\t744.517232176917\t1143.09916598306\t1234.42433063303\t888.072614079023\t1183.39389433753\t1307.86043695478\t1570.97199926915\t832.298889323065\t1224.9917361346\t1180.49675531303\t1040.0257215\t1328.577704807\t1097.72613697208\t1433.50718109167\t1259.6080571775\t1099.14870350968\t1040.01238030635\t918.297211820033\t1403.49641303775\t1300.85285146116\t1838.8178323853\t1174.88134808257\t1441.04470844412\t1499.45406012315\t339.967306862801\t897.541464506499\t1047.03923641302\t1509.21178445199\t978.676860153681\t1432.06991453515\t1319.53249904266\t1574.49135674188\t1411.30360544331\t1649.5444651457\t1277.43300365848\t1125.45889621046\t984.868903420733\t1089.47646164384\t1165.87270707119\t1132.28736382639\t1544.35767676501\t1165.3951417504\t1182.15699274489\t1124.18666516056\t969.679830921962\t1643.64222225179\t976.456539647717\t1291.40852165349\t1171.07404318025\t1301.17254599044\t1297.92520063266\t1221.57898468148\t1448.09812340852\t1382.7051509726\t1160.41813534195\t1126.5518858531\t924.811234913435\t1348.61481884227\t1054.07412194179\t948.877760019369\t1215.80681842566\t1314.8383753514\t938.45340836158\t1072.01333327579\t1150.713405199\t1187.80884119873\t1214.21859873359\t1468.27692586152\t1386.38361453256\t1039.95370376022\t1765.51291446778\t1297.77807691381\t1209.78462831848\t1473.5581856029\t1282.61173385607\t1205.37462264013\t1417.69465484895\t965.021407276672\t870.74030352648\t1291.22878612794\t764.216122247279\t218.683935991291\t1488.89994065121\t1176.77863876084\t970.271475801416\r\n+M454T809\t4957.67787273571\t0\t4885.51290512716\t51.6673742906229\t0\t94.9721832903342\t4634.05940862683\t0\t5290.31412731346\t53.8782914504427\t7988.05047979269\t68.2269020080072\t105.93617400312\t5200.94284715022\t6546.14900842765\t7935.42212927884\t5026.3964452256\t5935.58808468031\t10250.9155736569\t0\t5561.40488027537\t65.053286748293\t4777.83834331028\t6603.54162656939\t19.9382232056842\t313.808044276454\t5932.64086082137\t0\t46.1685100466028\t5184.24778257925\t89.6183969836256\t5242.06207966819\t0\t4644.74479340483\t0\t121.03680436721\t5584.8810253864\t5903.74931137876\t0\t5079.52447019599\t5564.06679152922\t4632.73499455875\t4594.12822383482\t4686.40496251976\t5556.87007040396\t4684.82442126298\t5166.67816191013\t68.1878649410903\t7053.72264887033\t4752.94670550414\t4944.75980360357\t0\t5476.25592474938\t5090.94250956484\t5149.03104892852\t5556.35429364872\t5529.77141128224\t5438.48697675469\t5413.51029868354\t4473.94016314064\t5181.23413673816\t5471.61745633009\t6037.76522108162\t7014.10042693463\t6896.59289577718\t5599.60305516978\t4885.76249075701\t5917.2309609654\t5353.3350020477\t5885.78266840732\t5710.58009781068\t5797.00566370548\t5247.69939380372\t5185.96619976865\t6864.99766974347\t0\t5425.50248564042\t5515.48816913844\t4672.53635456749\t5578.58552979151\t4643.07267032419\t6091.79346518871\t5661.73025232617\t5465.71445426601\t0\t7604.60442806052\t5609.01434556314\t5720.51823528963\t6591.39848056219\t5854.77215709515\t5258.17544869862\t5848.24619735011\t6126.30371048397\t6432.35305712057\t4618.98614745306\t4989.42707700074\t5391.45216225178\t5930.23960552772\t6298.87758081783\t5157.20648789665\t5977.34939635895\t6371.95283149976\t5298.63096459205\t5153.42798286731\t0\t8418.98774555655\t5328.96920493349\t5612.29518892328\t0\t7475.22497398961\t125.355907908131\t0\r\n' |
b |
diff -r b22c453e4cf4 -r 29ec7e3afdd4 CorrTable/test-data/input1_tab2.txt --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/CorrTable/test-data/input1_tab2.txt Thu Aug 01 11:30:58 2019 -0400 |
b |
b'@@ -0,0 +1,113 @@\n+NumIdiv\tMeta01\tMeta02\tMeta03\tMeta04\tMeta05\tMeta06\tMeta07\tMeta08\tMeta09\tMeta10\tMeta11\tMeta12\tMeta13\tMeta14\tMeta15\tMeta16\tMeta17\tMeta18\tMeta19\tMeta20\tMeta21\tMeta22\tMeta23\tMeta24\tMeta25\tMeta26\tMeta27\tMeta28\tMeta29\tMeta30\tMeta31\tMeta32\tMeta33\tMeta34\tMeta35\tMeta36\tMeta37\tMegameta1\tMegameta2\tMegameta3\r\n+Indiv100\t0\t2\t1\t1\t2\t2\t2\t3\t2\t2\t3\t1\t1\t1\t3\t2\t2\t2\t2\t4\t3\t3\t1\t0\t0\t1\t0\t0\t0\t1\t0\t0\t0\t1\t1\t-1\t1\t.20356184\t.2615374\t-.015685499\r\n+Indiv2\t0\t1\t1\t2\t2\t1\t1\t1\t1\t2\t3\t2\t1\t1\t1\t2\t2\t1\t1\t1\t1\t2\t0\t0\t1\t0\t0\t1\t0\t0\t0\t0\t1\t1\t1\t-1\t1\t-.69720995\t-.4864544\t-.37025937\r\n+Indiv8\t0\t3\t1\t1\t2\t2\t2\t1\t2\t2\t1\t\t1\t1\t1\t3\t2\t1\t1\t3\t3\t\t0\t1\t0\t0\t0\t0\t1\t0\t0\t0\t1\t0\t1\t0\t1\t.31425953\t-.49819028\t.1493759\r\n+Indiv86\t1\t3\t1\t1\t2\t2\t1\t2\t2\t2\t3\t2\t1\t1\t1\t3\t4\t2\t3\t1\t1\t3\t1\t0\t0\t0\t0\t0\t1\t0\t1\t0\t0\t1\t0\t1\t0\t-.21305712\t.037635665\t.062823512\r\n+Indiv101\t1\t3\t1\t1\t2\t3\t1\t1\t1\t2\t2\t1\t1\t1\t1\t3\t1\t1\t3\t2\t1\t3\t0\t1\t0\t1\t0\t0\t0\t0\t0\t0\t1\t0\t1\t0\t1\t-.10245162\t-.46590841\t.49101552\r\n+Indiv44\t1\t2\t1\t1\t2\t2\t2\t1\t1\t2\t3\t1\t2\t2\t1\t3\t4\t2\t3\t3\t1\t3\t0\t0\t1\t1\t0\t0\t0\t1\t0\t0\t0\t0\t0\t0\t0\t.21840711\t-.0039456952\t-.196908\r\n+Indiv90\t1\t3\t1\t1\t2\t1\t2\t1\t2\t2\t3\t1\t2\t1\t1\t3\t1\t2\t3\t1\t3\t3\t1\t0\t0\t1\t0\t0\t0\t0\t0\t0\t1\t0\t1\t0\t1\t.019607706\t-.24096201\t.29701617\r\n+Indiv103\t0\t1\t1\t1\t2\t2\t1\t1\t2\t2\t3\t1\t2\t1\t2\t2\t4\t2\t3\t4\t3\t2\t0\t0\t1\t1\t0\t0\t0\t1\t0\t0\t0\t0\t0\t0\t0\t.13694063\t.15443344\t-.31301507\r\n+Indiv71\t1\t1\t2\t2\t2\t1\t1\t3\t2\t2\t2\t1\t1\t1\t3\t3\t3\t1\t1\t1\t1\t3\t1\t0\t0\t0\t0\t0\t1\t0\t0\t1\t0\t1\t1\t\t-1\t-.74349129\t.33503532\t.019820273\r\n+Indiv92\t0\t2\t2\t1\t2\t3\t2\t2\t3\t2\t1\t1\t2\t2\t1\t2\t4\t2\t3\t4\t2\t3\t0\t1\t0\t0\t1\t0\t0\t1\t0\t0\t0\t0\t0\t0\t0\t.78006345\t.23757593\t.30697185\r\n+Indiv1\t0\t1\t1\t1\t2\t2\t2\t2\t2\t2\t3\t2\t1\t1\t2\t3\t4\t1\t1\t4\t2\t1\t1\t0\t0\t0\t0\t0\t1\t0\t0\t1\t0\t\t\t\t\t-.13290808\t.16232739\t-.27519292\r\n+Indiv20\t0\t2\t1\t1\t2\t2\t2\t3\t2\t2\t1\t2\t1\t1\t3\t2\t1\t1\t3\t3\t1\t2\t1\t0\t0\t1\t0\t0\t0\t0\t1\t0\t0\t1\t1\t1\t\t.016005825\t.051264163\t.42777562\r\n+Indiv57\t1\t2\t1\t1\t2\t1\t1\t1\t2\t2\t3\t2\t1\t1\t2\t2\t4\t2\t2\t3\t1\t3\t1\t0\t0\t0\t0\t0\t1\t0\t0\t1\t0\t1\t1\t1\t-1\t-.17156814\t.060858212\t-.21682404\r\n+Indiv16\t1\t3\t1\t1\t1\t2\t2\t3\t2\t1\t3\t2\t1\t1\t2\t3\t1\t1\t1\t3\t1\t1\t0\t0\t1\t1\t0\t0\t0\t0\t1\t0\t0\t1\t1\t1\t1\t-.34242973\t-.16432625\t.049274303\r\n+Indiv32\t1\t2\t1\t1\t1\t3\t1\t1\t3\t2\t2\t2\t1\t1\t1\t1\t3\t2\t3\t3\t1\t3\t1\t0\t0\t0\t0\t0\t1\t0\t0\t0\t1\t0\t1\t0\t1\t-.073278673\t-.51453996\t.37050647\r\n+Indiv10\t0\t3\t1\t2\t2\t1\t1\t2\t2\t2\t2\t1\t1\t2\t2\t3\t4\t1\t3\t3\t3\t2\t1\t0\t0\t0\t0\t0\t1\t0\t0\t1\t0\t1\t0\t1\t0\t-.066033624\t.29441747\t.062487021\r\n+Indiv48\t1\t2\t1\t2\t1\t2\t1\t1\t1\t2\t3\t1\t1\t1\t1\t2\t3\t2\t3\t2\t1\t2\t0\t0\t1\t0\t0\t1\t0\t0\t0\t1\t0\t0\t1\t0\t-1\t-.30411547\t-.11404131\t-.38163781\r\n+Indiv4\t0\t2\t1\t1\t2\t3\t2\t3\t2\t2\t3\t1\t2\t1\t3\t3\t4\t2\t3\t2\t2\t3\t1\t0\t0\t0\t0\t0\t1\t0\t1\t0\t0\t1\t0\t1\t0\t.023631928\t.36028823\t.39205086\r\n+Indiv59\t1\t2\t2\t1\t2\t1\t2\t1\t3\t2\t1\t2\t1\t1\t1\t3\t4\t1\t3\t4\t3\t1\t0\t1\t0\t0\t0\t0\t1\t0\t1\t0\t0\t1\t0\t1\t0\t.17453998\t-.19773787\t.5125761\r\n+Indiv15\t1\t1\t1\t1\t2\t2\t2\t1\t1\t2\t2\t1\t1\t1\t2\t2\t4\t1\t2\t3\t2\t2\t0\t1\t0\t1\t0\t0\t0\t1\t0\t0\t0\t0\t1\t0\t-1\t.10781842\t-.15056761\t-.3309525\r\n+Indiv102\t1\t3\t1\t1\t2\t3\t2\t1\t1\t2\t3\t1\t1\t1\t1\t3\t4\t1\t1\t2\t2\t2\t0\t0\t1\t0\t1\t0\t0\t0\t0\t0\t1\t1\t1\t-1\t1\t.050359439\t-.28428966\t.044408333\r\n+Indiv5\t0\t1\t1\t1\t2\t2\t1\t3\t1\t2\t2\t2\t1\t2\t3\t2\t4\t2\t3\t2\t3\t2\t1\t0\t0\t1\t0\t0\t0\t0\t0\t1\t0\t1\t1\t1\t\t-.21293716\t.33010995\t-.017798938\r\n+Indiv29\t0\t1\t1\t1\t2\t2\t2\t1\t1\t2\t3\t1\t1\t1\t1\t1\t3\t1\t2\t3\t2\t3\t1\t0\t0\t0\t0\t0\t1\t0\t0\t0\t1\t1\t1\t-1\t1\t.071131624\t-.43133318\t-.38381341\r\n+Indiv43\t1\t2\t1\t1\t2\t1\t2\t2\t2\t2\t3\t1\t1\t1\t2\t1\t2\t2\t3\t1\t1\t3\t0\t0\t1\t1\t0\t0\t0\t0\t1\t0\t0\t0\t1\t0\t-1\t-.14812829\t-.096273489\t.055153914\r\n+Indiv70\t0\t3\t1\t1\t2\t2\t1\t3\t1\t2\t1\t1\t1\t2\t3\t3\t4\t1\t3\t3\t3\t3\t0\t1\t0\t0\t0\t0\t1\t0\t1\t0\t0\t1\t0\t\t0\t.022730019\t.13102366\t.56587332\r\n+Indiv58\t0\t1\t1\t1\t2\t1\t2\t2\t2\t2\t\t2\t1\t1\t2\t1\t1\t1\t2\t4\t3\t3\t1\t0\t0\t0\t0\t0\t1\t0\t0\t0\t1\t0\t1\t0\t\t-.0076970425\t-.18106249\t-.018259054\r\n+Indiv75\t1\t1\t1\t1\t2\t1\t2\t2\t2\t2\t1\t1\t1\t1\t3\t3\t4\t1\t3\t1\t1\t3\t1\t0\t0\t0\t0\t0\t1\t0\t0\t1\t0\t1\t1\t1\t-1\t-.41040802\t.20187925\t.13943495\r\n+Indiv62\t0\t1\t2\t2\t1\t1\t2\t2\t3\t1\t1\t1\t1\t2\t3\t3\t4\t1\t1\t4\t2\t3\t0\t0\t1\t1\t0\t0\t0\t0\t1\t0\t0\t0\t0\t0\t0\t-.32780105\t.12414011\t.13276595\r\n+Indiv31\t0\t2\t1\t2\t2\t2\t2\t3\t2\t2\t3\t1\t2\t2\t2\t2\t3\t1\t3\t3\t3\t3\t1\t0\t0\t1\t0\t0\t0\t1\t0\t0\t0\t0\t0\t0\t0\t.45081028\t.34911805\t-.12217508\r\n+Indiv18\t1\t2\t1\t1\t2\t1\t2\t2\t1\t2\t3\t1\t1\t1\t2\t2\t4\t1\t3\t1\t1\t3\t1\t0\t0\t\t\t\t\t0\t0\t1\t0\t0\t1\t0\t-1\t-.31153271\t.065308511\t-.069494948\r\n+Indiv89\t1\t1\t1\t1\t2\t2\t2\t1\t1\t1\t2\t2\t2\t2\t1\t2\t2\t1\t3\t2\t2\t3\t0\t0\t1\t0\t0\t0\t1\t0\t0\t0\t1\t1\t0\t\t0\t.13334727\t-.48514032\t-.42525363\r\n+Indiv47\t1\t3\t1\t1\t1\t2\t1\t1\t1\t2\t1\t2\t2\t1\t2\t3\t3\t2\t1\t1\t2\t1\t1\t0\t0\t0\t0\t0\t1\t0\t0\t0\t1\t1\t0\t-1\t0\t-.2595'..b'\t1\t3\t1\t1\t1\t2\t1\t2\t1\t2\t3\t2\t1\t1\t2\t2\t4\t1\t3\t1\t1\t2\t0\t0\t1\t0\t0\t1\t0\t0\t0\t1\t0\t1\t1\t1\t-1\t-.37829453\t-.030209344\t-.047004201\r\n+Indiv50\t0\t1\t1\t1\t2\t1\t1\t1\t1\t2\t3\t2\t1\t1\t1\t3\t4\t2\t1\t1\t1\t2\t1\t0\t0\t0\t0\t0\t1\t0\t0\t1\t0\t0\t0\t0\t0\t-.73145294\t-.19600208\t-.31746638\r\n+Indiv110\t1\t2\t1\t1\t2\t2\t1\t3\t1\t1\t\t1\t1\t1\t2\t3\t3\t1\t3\t3\t1\t1\t0\t0\t1\t0\t0\t1\t0\t0\t0\t1\t0\t1\t0\t1\t0\t-.34784231\t.029328186\t-.22432436\r\n+Indiv112\t0\t3\t2\t1\t2\t3\t2\t1\t2\t2\t1\t2\t1\t2\t2\t1\t3\t1\t2\t4\t3\t2\t0\t0\t1\t1\t0\t0\t0\t0\t0\t0\t1\t0\t0\t0\t0\t.58417493\t-.48542908\t.20103167\r\n+Indiv37\t1\t1\t1\t1\t2\t2\t2\t1\t1\t2\t2\t1\t1\t1\t2\t3\t4\t2\t1\t1\t2\t2\t1\t0\t0\t0\t0\t0\t1\t0\t0\t1\t0\t1\t1\t1\t-1\t-.2919586\t-.042930115\t-.24748293\r\n+Indiv79\t0\t2\t1\t1\t1\t1\t1\t2\t2\t2\t\t1\t1\t1\t3\t2\t3\t1\t1\t3\t1\t2\t1\t0\t0\t0\t0\t0\t1\t0\t0\t1\t0\t0\t0\t0\t0\t-.46174625\t.083884381\t-.31109369\r\n+Indiv64\t1\t2\t2\t2\t1\t2\t1\t2\t2\t2\t3\t2\t1\t1\t1\t3\t4\t1\t1\t1\t1\t2\t1\t0\t0\t0\t0\t0\t1\t0\t0\t1\t0\t1\t0\t1\t0\t-.57915044\t.084867962\t-.18837497\r\n+Indiv80\t1\t2\t1\t1\t1\t2\t2\t2\t2\t2\t3\t1\t2\t1\t3\t2\t3\t1\t2\t3\t1\t2\t0\t0\t1\t1\t0\t0\t0\t1\t0\t0\t0\t1\t1\t1\t1\t.097049698\t.121112\t-.40199038\r\n+Indiv52\t0\t1\t1\t1\t2\t2\t2\t3\t2\t2\t2\t1\t1\t1\t3\t3\t4\t2\t3\t3\t2\t3\t1\t0\t0\t0\t0\t0\t1\t0\t1\t0\t0\t1\t1\t1\t1\t-.094679736\t.45931104\t.2355888\r\n+Indiv54\t1\t2\t2\t2\t2\t3\t2\t2\t1\t1\t3\t2\t1\t1\t2\t2\t3\t2\t3\t1\t1\t3\t0\t0\t1\t1\t0\t0\t0\t0\t0\t1\t0\t0\t1\t0\t-1\t-.050008733\t.20330836\t-.25801647\r\n+Indiv49\t1\t3\t1\t1\t2\t2\t1\t1\t2\t2\t1\t1\t1\t1\t2\t2\t2\t2\t3\t3\t1\t3\t0\t1\t0\t1\t0\t0\t0\t0\t0\t0\t1\t0\t0\t0\t0\t.14828117\t-.40605938\t.32971853\r\n+Indiv11\t1\t1\t1\t1\t1\t1\t1\t1\t2\t2\t3\t2\t1\t1\t1\t3\t4\t1\t1\t2\t1\t1\t0\t0\t1\t0\t0\t0\t1\t0\t0\t1\t0\t0\t1\t0\t-1\t-.67027336\t-.18775737\t-.27995554\r\n+Indiv13\t0\t2\t1\t1\t2\t3\t1\t1\t2\t2\t2\t1\t1\t1\t1\t2\t4\t2\t3\t3\t2\t2\t0\t0\t1\t1\t0\t0\t0\t1\t0\t0\t0\t1\t1\t1\t-1\t.10596408\t-.11488666\t.0030090506\r\n+Indiv66\t0\t2\t1\t2\t2\t1\t2\t3\t3\t2\t2\t2\t2\t1\t2\t3\t1\t1\t3\t3\t1\t3\t1\t0\t0\t0\t0\t0\t1\t0\t1\t0\t0\t1\t1\t\t1\t-.11125749\t.38521281\t.38540199\r\n+Indiv107\t0\t2\t2\t2\t2\t1\t2\t2\t2\t2\t3\t1\t1\t1\t2\t2\t4\t2\t2\t1\t2\t2\t0\t1\t0\t0\t1\t0\t0\t1\t0\t0\t0\t0\t1\t0\t1\t.071288042\t.4106892\t-.17563856\r\n+Indiv67\t0\t1\t2\t1\t2\t1\t1\t1\t3\t2\t3\t2\t1\t2\t2\t3\t1\t2\t3\t2\t3\t2\t0\t0\t1\t0\t0\t0\t1\t0\t1\t0\t0\t1\t1\t1\t-1\t-.17993326\t-.0042272937\t.19899566\r\n+Indiv83\t1\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t1\t1\t\t\t\t\t\r\n+Indiv53\t1\t1\t1\t1\t2\t1\t1\t2\t2\t2\t2\t1\t1\t1\t3\t3\t1\t2\t3\t3\t1\t2\t0\t0\t1\t0\t0\t1\t0\t0\t0\t1\t0\t0\t1\t0\t-1\t-.44295341\t.21886687\t.092666276\r\n+Indiv99\t1\t2\t2\t1\t2\t1\t1\t1\t3\t2\t3\t1\t1\t2\t3\t3\t3\t1\t1\t4\t2\t1\t1\t0\t0\t0\t0\t1\t0\t0\t0\t1\t0\t1\t0\t1\t0\t-.21148896\t.11159937\t-.022634892\r\n+Indiv27\t1\t1\t1\t1\t2\t2\t2\t2\t2\t2\t2\t2\t1\t1\t2\t3\t4\t2\t3\t1\t1\t3\t1\t0\t0\t0\t0\t0\t1\t0\t0\t1\t0\t1\t0\t1\t0\t-.26252216\t.090251923\t.022597667\r\n+Indiv82\t1\t2\t1\t1\t2\t2\t2\t2\t2\t2\t3\t2\t2\t2\t2\t3\t1\t1\t3\t3\t3\t2\t0\t1\t0\t1\t0\t0\t0\t1\t0\t0\t0\t0\t0\t0\t0\t.44408026\t.076124944\t-.0063784737\r\n+Indiv39\t0\t3\t1\t1\t2\t2\t1\t2\t1\t2\t2\t1\t1\t1\t3\t3\t4\t2\t2\t1\t2\t1\t1\t0\t0\t0\t1\t0\t0\t0\t0\t1\t0\t0\t0\t0\t0\t-.31744525\t.15867433\t.10442914\r\n+Indiv98\t1\t2\t1\t1\t2\t2\t2\t1\t1\t2\t3\t2\t1\t1\t2\t1\t2\t1\t2\t1\t2\t3\t1\t0\t0\t0\t0\t0\t1\t0\t0\t0\t1\t0\t0\t0\t0\t.021150613\t-.36514902\t-.21029302\r\n+Indiv69\t0\t2\t1\t1\t2\t1\t1\t2\t2\t2\t2\t1\t1\t2\t3\t1\t4\t1\t3\t4\t2\t2\t1\t0\t0\t1\t0\t0\t0\t0\t1\t0\t0\t\t\t\t\t-.12566172\t.064987049\t.091384649\r\n+Indiv24\t1\t1\t1\t1\t2\t2\t2\t1\t2\t1\t2\t1\t1\t2\t1\t3\t2\t1\t2\t3\t1\t3\t1\t0\t0\t1\t0\t0\t0\t0\t0\t0\t1\t1\t1\t-1\t1\t-.018354375\t-.44592831\t-.3375209\r\n+Indiv81\t1\t2\t2\t1\t2\t3\t1\t3\t3\t2\t3\t1\t1\t1\t2\t2\t4\t1\t3\t1\t1\t3\t1\t0\t0\t0\t0\t1\t0\t0\t1\t0\t0\t0\t0\t0\t0\t-.20217612\t.32317787\t.32766822\r\n+Indiv55\t1\t1\t1\t2\t1\t1\t1\t1\t2\t2\t\t1\t2\t1\t3\t3\t4\t1\t3\t4\t3\t2\t0\t0\t1\t0\t0\t1\t0\t0\t0\t1\t0\t1\t0\t1\t0\t-.41572592\t.2040074\t-.015792402\r\n+Indiv84\t1\t1\t1\t1\t2\t2\t1\t3\t2\t2\t3\t1\t2\t2\t2\t3\t3\t1\t3\t2\t1\t2\t1\t0\t0\t1\t0\t0\t0\t0\t0\t1\t0\t0\t0\t0\t0\t-.15993424\t.26069486\t-.24265057\r\n+Indiv93\t1\t2\t1\t1\t2\t2\t1\t2\t2\t2\t2\t1\t1\t2\t1\t1\t4\t2\t3\t2\t3\t3\t0\t0\t1\t1\t0\t0\t0\t1\t0\t0\t0\t1\t1\t1\t1\t.20958795\t-.12002528\t.10930088\r\n+Indiv12\t1\t1\t1\t2\t2\t3\t1\t3\t2\t2\t3\t2\t2\t2\t3\t3\t4\t2\t1\t4\t1\t2\t0\t0\t1\t1\t0\t0\t0\t0\t0\t1\t0\t0\t0\t0\t0\t-.23098187\t.509408\t-.19362696\r\n+Indiv28\t1\t1\t1\t1\t2\t2\t2\t1\t1\t2\t3\t1\t1\t1\t1\t1\t2\t2\t3\t3\t1\t2\t1\t0\t0\t0\t0\t0\t1\t1\t0\t0\t0\t0\t0\t0\t0\t-.047365781\t-.32588756\t-.3625938\r\n+Indiv96\t0\t2\t2\t1\t2\t2\t1\t2\t2\t2\t3\t1\t1\t2\t1\t2\t4\t1\t2\t3\t1\t2\t0\t0\t1\t0\t0\t0\t1\t1\t0\t0\t0\t0\t0\t0\t0\t.091803826\t.10267216\t-.42265528\r\n+Indiv111\t0\t1\t1\t2\t2\t1\t1\t2\t2\t2\t2\t1\t1\t2\t3\t3\t4\t2\t3\t2\t3\t3\t0\t0\t1\t0\t0\t0\t1\t0\t0\t1\t0\t1\t0\t1\t0\t-.28756618\t.40579945\t.14156452\r\n+Indiv42\t0\t3\t1\t1\t2\t3\t2\t2\t2\t2\t\t1\t1\t1\t2\t3\t2\t2\t3\t2\t3\t3\t1\t0\t0\t0\t0\t0\t1\t1\t0\t0\t0\t0\t1\t0\t1\t.33878753\t.042908456\t.26750669\r\n+Indiv40\t0\t2\t1\t1\t1\t2\t1\t3\t1\t2\t1\t2\t1\t1\t3\t3\t4\t2\t3\t3\t2\t2\t1\t0\t0\t0\t0\t0\t1\t0\t1\t0\t0\t1\t1\t-1\t1\t-.34855837\t.32292134\t.21993519\r\n' |
b |
diff -r b22c453e4cf4 -r 29ec7e3afdd4 CorrTable/test-data/input2_dataMatrix_500.txt --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/CorrTable/test-data/input2_dataMatrix_500.txt Thu Aug 01 11:30:58 2019 -0400 |
b |
b'@@ -0,0 +1,499 @@\n+ions\tIndiv01\tIndiv02\tIndiv03\tIndiv04\tIndiv05\tIndiv06\tIndiv07\tIndiv08\tIndiv09\tIndiv10\tIndiv11\tIndiv12\tIndiv13\tIndiv14\tIndiv15\tIndiv16\tIndiv17\tIndiv18\tIndiv19\tIndiv20\tIndiv21\tIndiv22\tIndiv23\tIndiv24\tIndiv25\tIndiv26\tIndiv27\tIndiv28\tIndiv29\tIndiv30\tIndiv31\tIndiv32\tIndiv33\tIndiv34\tIndiv35\tIndiv36\tIndiv37\tIndiv38\tIndiv39\tIndiv40\tIndiv41\tIndiv42\tIndiv43\tIndiv44\tIndiv45\tIndiv46\tIndiv47\tIndiv48\tIndiv49\tIndiv50\tIndiv51\tIndiv52\tIndiv53\tIndiv54\tIndiv55\tIndiv56\tIndiv57\tIndiv58\tIndiv59\tIndiv60\tIndiv61\tIndiv62\tIndiv63\tIndiv64\tIndiv65\tIndiv66\tIndiv67\tIndiv68\tIndiv69\tIndiv70\tIndiv71\tIndiv72\tIndiv73\tIndiv74\tIndiv75\tIndiv76\tIndiv77\tIndiv78\tIndiv79\tIndiv80\tIndiv81\tIndiv82\tIndiv83\tIndiv84\tIndiv85\tIndiv86\tIndiv87\tIndiv88\tIndiv89\tIndiv90\tIndiv91\tIndiv92\tIndiv93\tIndiv94\tIndiv95\tIndiv96\tIndiv97\tIndiv98\tIndiv99\tIndiv100\tIndiv101\tIndiv102\tIndiv103\tIndiv104\tIndiv105\tIndiv106\tIndiv107\tIndiv108\tIndiv109\tIndiv110\tIndiv111\tIndiv112\tIndiv113\tIndiv114\tIndiv115\tIndiv116\tIndiv117\tIndiv118\tIndiv119\tIndiv120\tIndiv121\tIndiv122\tIndiv123\tIndiv124\tIndiv125\tIndiv126\tIndiv127\tIndiv128\tIndiv129\tIndiv130\tIndiv131\tIndiv132\tIndiv133\tIndiv134\tIndiv135\tIndiv136\tIndiv137\tIndiv138\tIndiv139\tIndiv140\tIndiv141\tIndiv142\tIndiv143\tIndiv144\tIndiv145\tIndiv146\tIndiv147\tIndiv148\tIndiv149\tIndiv150\tIndiv151\tIndiv152\tIndiv153\tIndiv154\tIndiv155\tIndiv156\tIndiv157\tIndiv158\tIndiv159\tIndiv160\r\n+p156.079T4.8\t184662.846509566\t145562.789899522\t183544.706288243\t250062.743070006\t166069.78163202\t151730.891678824\t165979.568650934\t178217.082579688\t138606.085181812\t161268.246968896\t197145.657730211\t139030.314227298\t131071.197514212\t198220.84608538\t186038.521803657\t126448.751155372\t173308.115823428\t147949.224623956\t163090.242439384\t164627.171360367\t192161.15670369\t138146.332012601\t153722.22150551\t147137.365343943\t182252.848583827\t154458.229693059\t192220.892325447\t133661.999550649\t153209.006065666\t160995.830824989\t177034.98072447\t153097.132887227\t156554.132566946\t140648.648303115\t139209.879792808\t153801.290042423\t127719.992501222\t178850.887636013\t144995.75166976\t138369.236332182\t139611.366842916\t171477.841429338\t152535.440027285\t148582.629024536\t154784.056668145\t171527.728906086\t220953.035100362\t193959.245829573\t209656.024558278\t259868.854534062\t191339.60997775\t221617.100280708\t271832.298657799\t156506.879542565\t198202.155124537\t203704.383014347\t174412.840638864\t239089.617878771\t166946.367188145\t164861.312573048\t193082.568126742\t183892.353615834\t175516.06150231\t200922.857530804\t154925.711926212\t204462.746272402\t214357.649507447\t209821.408236561\t224335.661505084\t209255.254050689\t180415.868027398\t183697.154363771\t193207.737442039\t204633.672414306\t164762.883483433\t240031.305447036\t197588.960940792\t194066.258030581\t169467.164091811\t219690.754802605\t204753.745710444\t207558.402778625\t200535.485112294\t227899.165038417\t240044.543389346\t204293.590098429\t226876.544318408\t277249.057759484\t250122.464672049\t220005.854248242\t216429.606447467\t242643.599402188\t198434.173930833\t164318.801369558\t214825.346746971\t177285.329924746\t240451.655987873\t232009.485228873\t312446.82902374\t246549.706850036\t249399.69726756\t236182.048104234\t259476.034321304\t200740.348677715\t187003.334477199\t216246.342742707\t221385.757307061\t197559.653937674\t256466.944885848\t249368.946027074\t167072.785565449\t170258.268581275\t221646.077228884\t139798.103182118\t183081.053581445\t285657.599043937\t188242.01197667\t204429.3166247\t208198.053375132\t170975.129427583\t131473.597975208\t54353.8745887559\t262408.912048765\t178294.843531153\t209456.959246163\t144932.489691123\t142186.751209921\t191584.36590742\t152508.916904634\t192933.420203219\t160339.604341439\t148471.558043604\t150057.148541893\t135970.823520844\t176556.233406948\t174624.801277026\t156223.942638336\t141080.857360462\t144196.087661937\t170887.620751031\t180047.916253033\t162824.204223226\t151016.725979045\t165639.211795351\t199283.388947914\t174539.151296482\t202592.094741067\t206115.672034948\t627695.508668036\t211743.360814072\t232987.151273206\t191805.188193368\t267611.718710244\t241655.515547455\t207024.92710771'..b'0371\t6077.99992190187\t5216.27836256319\t3502.54040779041\t2040.85423893617\t2526.80782068979\t2538.62081383517\t6063.32928619252\t13921.3529980959\t869.662845951084\t2975.91054943169\t59155.5641870933\t8653.01810122878\t1714.6242001399\t47220.4949225921\t4718.92218889186\t3251.3466400054\t12474.4836512078\t7423.72220187156\t3028.21144929386\t12012.9072102141\t6611.51196600512\t10692.1191478893\t3414.7222572731\t17775.7538629723\t1481.4065237614\t22759.7386512183\t1702.21054395252\t9493.85288697519\t4812.67871500868\t24011.4648405897\t6860.60928347008\t14886.9740093638\t3414.49402929585\t1863.79123920285\t12108.3735788506\t3685.22565661424\t2834.78896582455\t18277.9558678054\t22474.4056671709\t13401.7989911102\t22400.3193325037\t12427.7808447253\t12112.5989983472\t3994.66665347913\t4454.3019718489\t19105.3926358835\t15737.8797305553\t11112.8045991705\t16649.7486549206\t18767.8578195662\t6651.36535879215\t3002.43560649953\t6525.3632810517\t10924.3947278106\t4101.27891395395\t4943.49755132962\t10772.922604809\t18392.5846908668\t4620.85491964542\t5395.92858696186\t6384.33470362042\t1761.8923104926\t4025.05221708969\t4225.44015697515\t3990.28432504946\t2167.64439976716\t12195.6099815073\t5311.80926744456\t5480.84470507418\t6690.11893499309\t1369.542454367\t6864.92449086584\t11217.2718460515\t16775.4536485902\t2332.04563988187\t3230.98266664986\r\n+p516.079T9.0\t8890.06190361457\t7296.63146659032\t9243.75064179256\t7682.46629453864\t9078.34661260319\t7044.841097961\t8396.2640126997\t9870.01886512056\t9207.23895645353\t9095.48275715434\t8623.19997364288\t9972.56726854219\t9138.46284065421\t7406.96079349719\t5819.14523604888\t8347.70415902661\t9319.6387594738\t7010.18576837734\t9626.66582430718\t9086.11399728932\t9141.98482854679\t8746.0751565853\t9525.64695290576\t9407.16589764947\t8150.93658063779\t7759.93788420132\t8869.11882833986\t8695.76068110518\t8755.82236048289\t8857.2749896841\t8826.22132453625\t9096.81133852089\t8190.27563015536\t8562.21804603934\t8916.57957921366\t9014.25034923013\t6836.16156653958\t8777.14469532982\t9138.86611240446\t8462.13409417\t8557.14204312151\t4952.74229570971\t7521.28126303996\t8620.39713198522\t7607.84810326641\t8770.49306138195\t9078.05181603529\t8294.2199432074\t6152.83150708356\t6379.3703203908\t9179.06776158309\t10264.6815830216\t10304.3056755082\t10070.937593031\t10076.8733539441\t11380.2432138562\t11093.771130517\t10088.7106187541\t9892.6335219444\t9147.49168150389\t6851.16187273304\t10671.0852001849\t6422.31413572728\t8528.46571467219\t10079.8769444605\t9116.85696180618\t8819.43242391038\t9099.01863947359\t7490.70032757816\t8888.69497493091\t9879.70257819794\t8571.13775479855\t7957.85119951339\t9568.65604824383\t8905.09991186093\t8058.36167254743\t9248.39151664653\t6164.42293631225\t9045.6298091223\t8896.53013080151\t8756.69477154777\t8158.02929459239\t8619.91648716581\t7583.36913136875\t8292.08140283757\t7942.81941248544\t8983.57220536733\t8550.40872313948\t7918.27856493818\t7001.61551763467\t7507.89757824014\t9597.27881194144\t7748.10596545227\t8376.1632608339\t7574.9308320358\t7271.99063944993\t8584.98905680324\t9302.43428948323\t9782.83339784269\t8733.37053730493\t8260.73491928792\t9116.66352713288\t7777.82995921844\t7566.29801269377\t9957.6628880517\t9884.27134991013\t11448.8324551907\t8423.12856133899\t9213.51594056914\t11661.3482358324\t9394.95785327018\t11832.8681394417\t10511.350119235\t7536.98902056123\t10476.3787167997\t9423.92610529697\t9205.1781910461\t5937.61521525504\t6729.33408397649\t6760.76775358011\t8646.66512998798\t7268.02525828669\t5272.41019490913\t7882.04657895846\t7392.00064493605\t8522.14204032498\t10220.0860793583\t10747.9803819249\t5164.67985281636\t9262.56580227424\t9777.95996894982\t8378.70151158157\t9443.42546998182\t7033.99890867134\t7810.98632553925\t6393.01675556033\t7710.12193576957\t8494.62061348935\t9654.16295930709\t6477.44464636626\t9093.50566668303\t8741.59391602981\t8267.44659361241\t8846.98663475681\t8501.42708341177\t6982.42104084288\t3587.1201998316\t6335.4687057566\t7461.56326223351\t7769.80800952723\t8702.26340231578\t9752.04199427146\t8318.78483544966\t9087.26346354563\t9191.3043653673\t6945.29625193166\t6140.70036645914\t6816.43430201636\t4488.34366930764\t5849.1742572647\r\n' |
b |
diff -r b22c453e4cf4 -r 29ec7e3afdd4 CorrTable/test-data/output1_CT_plot.pdf |
b |
Binary file CorrTable/test-data/output1_CT_plot.pdf has changed |
b |
diff -r b22c453e4cf4 -r 29ec7e3afdd4 CorrTable/test-data/output1_CorrTable.tabular --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/CorrTable/test-data/output1_CorrTable.tabular Thu Aug 01 11:30:58 2019 -0400 |
b |
@@ -0,0 +1,6 @@ +name M200T2618 M108T2759 M253T1601 M562T393 M140T2817 M317T2417 M498T712 M897T2828 M879T105 M413T2867 M782T2391 M835T963 M324T1666 M79T1303 M567T390 M207T2257 M232T997 M997T2834 M295T842 M958T481 M150T423 M964T1077 M510T148 M454T809 +Meta01 -0.0381099621034071 -0.0308771792251864 0.335303270663461 0.340984721652527 -0.392239536011236 0.308531863601226 -0.38276470907866 0.192781243616334 0.316953616678778 0.153455904743321 -0.145045084107932 -0.364896936594001 0.320967727079532 -0.377104415194285 0.373071418741227 0.352800416562518 0.319463412900551 0.324078173113261 0.306620047017588 0.326582168629611 0.0172092079575711 0.304807387613331 0.316450509570112 0.376440463645976 +Meta09 -0.0767546658101883 -0.129626792377785 0.101928911670895 0.115483290871375 -0.0234245956756988 0.0904474725214124 -0.024461194882052 -0.121320087678368 0.130125017347287 0.308155645217747 0.0831122451923826 0.0506561387912013 0.117292511090864 -0.0123538963682085 0.0267655184532761 -0.0161389675179283 0.0993591777883074 0.107454649875267 0.136562668239795 0.10755851274508 0.254034021197444 0.130672738299945 0.11062439577984 0.0687702584250841 +Meta15 0.0272019471781163 0.0310419371165683 -0.136260855677388 -0.0630013735941506 -0.0545937867718303 -0.135844925260746 -0.00952598537394389 -0.0207933370871036 -0.0524941400856259 -0.0369194221976208 0.354806184152381 -0.0056322067135378 -0.108772516379943 -0.0277111328940591 -0.171696474385562 -0.158841609776784 -0.0384562204512248 -0.0881771505485084 -0.0210940775418372 -0.060166862529553 -0.00276367086310437 -0.0471787341544353 -0.0764277784424161 -0.0977299103436893 +Meta22 0.120785153157455 0.0749336584503277 -0.0270536732280649 -0.0536052973820058 -0.150016784385942 -0.0632347476656861 -0.132863877612795 0.303035673758439 -0.133995542749929 0.000998502460650215 -0.139343133878119 -0.116656852987757 -0.0993268136599691 -0.128198216041191 -0.0553520708094436 0.0371066253540359 -0.0465298462059366 -0.05907858722759 -0.0866948285493421 -0.0495558714805468 0.203647127547309 -0.0528204949117596 -0.071940864021075 0.0345675482658712 +Meta23 0.326485225265319 0.304169001191892 0.00115369881122672 0.0301042258910735 -0.103162606015147 0.0537101596905055 -0.0783558303219841 0.0274704272882075 0.114237409683009 -0.0967931551436498 0.0975083134993656 -0.102156817498172 0.00470481879378514 -0.116990014334093 -0.0211850133509491 -0.0299843961961325 -0.103705033450308 0.0145444087397323 0.0736370908927353 -0.0767582436873565 0.32405558752902 0.0067286262747507 -0.0126106752475632 -0.0716433234564737 |
b |
diff -r b22c453e4cf4 -r 29ec7e3afdd4 CorrTable/test-data/output2_CorrTable.tabular --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/CorrTable/test-data/output2_CorrTable.tabular Thu Aug 01 11:30:58 2019 -0400 |
b |
b'@@ -0,0 +1,344 @@\n+name\tp156.079T4.8\tp830.106T10.1\tp723.593T11.7\tp700.548T18.3\tp820.752T16.1\tp530.243T24.2\tp522.830T9.2\tp1021.72T21.3\tp917.579T13.5\tp1004.50T14.4\tp1014.19T14.3\tp479.759T23.4\tp836.499T11.5\tp731.206T20.6\tp924.191T17.0\tp1006.44T16.9\tp610.686T9.4\tp682.356T19.4\tp497.397T18.6\tp592.756T18.2\tp325.277T16.5\tp849.200T10.3\tp529.079T20.8\tp689.640T17.3\tp389.879T22.0\tp513.701T18.4\tp599.242T18.3\tp910.336T13.7\tp415.602T11.5\tp306.270T18.0\tp629.970T9.9\tp544.711T21.3\tp423.308T13.8\tp241.766T8.2\tp983.754T19.8\tp534.263T18.4\tp793.296T20.2\tp815.259T16.1\tp377.184T15.7\tp326.603T13.6\tp275.450T18.6\tp460.420T23.4\tp310.185T18.5\tp295.505T19.5\tp558.743T23.8\tp588.742T19.3\tp802.484T19.4\tp605.858T16.1\tp326.196T11.0\tp585.154T22.3\tp985.514T10.6\tp386.553T26.3\tp711.338T13.8\tp1013.05T19.8\tp914.534T14.8\tp301.823T2.7\tp648.986T12.5\tp209.261T15.6\tp1066.67T14.3\tp1052.39T12.3\tp356.436T23.0\tp219.721T1.9\tp307.263T1.2\tp371.665T16.8\tp587.285T9.2\tp191.609T13.2\tp930.850T11.5\tp670.905T16.5\tp807.718T16.7\tp766.273T14.6\tp557.404T24.9\tp286.296T12.6\tp1039.93T19.5\tp1041.98T18.8\tp342.252T24.3\tp1011.53T15.5\tp527.519T21.2\tp592.821T15.1\tp360.645T16.0\tp1063.27T21.1\tp1039.76T17.9\tp721.501T20.2\tp370.615T25.4\tp655.572T19.0\tp318.827T18.1\tp587.025T23.3\tp878.633T17.4\tp863.952T16.6\tp144.690T6.3\tp994.431T12.0\tp824.808T11.0\tp288.732T19.2\tp481.099T17.9\tp954.749T13.2\tp397.393T13.0\tp628.320T25.5\tp343.125T19.2\tp581.538T16.4\tp727.446T19.7\tp296.250T17.7\tp497.093T25.7\tp288.703T19.0\tp715.902T19.4\tp636.248T26.5\tp861.055T11.2\tp164.954T8.0\tp228.782T9.8\tp600.048T11.4\tp1022.47T20.9\tp864.022T13.3\tp691.388T14.8\tp937.474T11.5\tp374.269T15.3\tp947.228T17.5\tp416.047T13.8\tp1033.01T16.8\tp963.768T15.7\tp651.700T16.8\tp999.112T19.8\tp408.537T18.2\tp307.354T14.1\tp621.179T23.3\tp891.151T14.8\tp263.844T17.9\tp737.340T19.1\tp643.167T20.6\tp356.345T22.0\tp885.335T16.5\tp545.669T24.0\tp738.617T21.0\tp677.806T19.6\tp993.453T18.0\tp624.790T20.6\tp387.339T16.7\tp291.501T17.5\tp979.863T12.8\tp192.442T0.9\tp526.837T29.6\tp529.248T23.5\tp775.452T15.1\tp640.989T23.9\tp296.395T18.4\tp166.299T21.1\tp686.356T15.5\tp995.471T16.7\tp591.068T16.5\tp640.669T26.5\tp632.599T23.0\tp376.173T16.7\tp387.337T14.3\tp706.230T25.3\tp580.480T14.6\tp260.604T16.9\tp340.313T19.5\tp336.696T20.3\tp300.346T20.6\tp180.485T11.9\tp562.287T19.0\tp605.767T24.4\tp1065.14T13.2\tp917.737T13.1\tp98.4318T0.9\tp453.257T18.3\tp329.032T15.2\tp883.164T20.1\tp148.168T11.2\tp693.291T16.0\tp632.400T17.0\tp983.783T19.8\tp601.681T21.1\tp625.815T18.5\tp160.998T1.8\tp201.895T5.7\tp521.704T12.3\tp688.150T17.0\tp136.122T9.2\tp850.526T14.9\tp745.769T12.0\tp881.841T16.5\tp227.190T10.2\tp670.599T17.0\tp354.013T17.3\tp975.370T12.8\tp677.321T17.1\tp144.263T8.4\tp273.446T12.7\tp616.846T13.4\tp344.793T9.5\tp733.667T16.6\tp544.371T20.3\tp866.803T21.1\tp990.796T15.4\tp977.615T16.3\tp446.259T14.3\tp856.431T16.5\tp374.057T19.5\tp793.879T19.5\tp943.318T20.9\tp568.168T11.0\tp889.798T17.6\tp905.607T15.8\tp615.066T23.1\tp315.285T20.2\tp1051.78T14.5\tp639.305T19.0\tp357.250T10.8\tp994.457T12.6\tp702.056T19.3\tp965.140T16.3\tp561.003T13.1\tp736.462T11.0\tp429.664T21.4\tp711.363T8.1\tp532.243T14.5\tp335.689T19.4\tp868.518T13.2\tp887.907T10.7\tp302.743T9.7\tp144.352T3.9\tp592.883T12.1\tp682.262T18.4\tp264.625T15.1\tp91.2616T11.3\tp770.702T16.6\tp699.482T11.6\tp680.602T20.7\tp682.943T16.4\tp989.558T21.2\tp743.191T15.1\tp535.161T13.1\tp473.625T15.0\tp512.755T21.1\tp494.065T28.8\tp653.672T20.8\tp723.050T5.5\tp641.696T21.6\tp634.231T14.3\tp585.154T17.9\tp1025.08T17.0\tp270.981T14.8\tp685.324T16.4\tp353.179T26.5\tp1040.26T17.5\tp203.753T18.2\tp552.138T19.2\tp1064.48T12.5\tp727.720T14.4\tp201.935T17.2\tp904.856T10.2\tp1025.15T16.5\tp710.406T11.7\tp693.656T12.2\tp707.743T12.3\tp287.438T10.0\tp543.505T20.0\tp362.157T20.3\tp206.524T15.9\tp742.343T14.6\tp197.212T6.8\tp498.636T16.0\tp927.969T17.2\tp1065.60T16.3\tp771.784T15.2\tp323.047T16.8\tp276.411T16.1\tp331.582T24.9\tp582.941T18.5\tp295.808T23.9\tp1075.65T19.9\tp308.117T15.5\tp808.473T18.2\tp833.288T10.2\tp469.708T15.5\tp1052.85T16.3\tp968.524T14.2\tp1019.11T11.7\tp937.201T16.9\tp293.183T7.4\tp991.049T12.8\tp398.183T23.3\tp516.118T20.0\tp400.783T14.9\tp1038.17T13.9\tp826.230T14.9\tp539.105T23.0\tp168.549T8'..b'735345\t0.0712549588163313\t0.113451934656963\t0.0689139622281608\t0.108689953958712\t-0.0714910454625855\t-0.023940183924679\t0.0266939698129486\t-0.213017791573578\t-0.213099079749635\t-0.382110303897076\t0.977776277508313\t0.962305053562793\t0.142644884748894\t-0.0201922540975135\t0.0658188469044305\t-0.134974773675939\t0.00898972507219314\t-0.381528386762763\t0.0908635198591418\t0.0392787800969549\t-0.394091179620052\t0.143882541378143\t-0.0591836517756248\t-0.0235808611346452\t-0.0842678588654411\t0.057647618622851\t-0.170092729303255\t0.0206489742542137\t0.0561713392080551\t-0.0206290232320246\t-0.146201939592778\t-0.391764014231326\t0.125881458281216\t-0.0769111957448963\t0.984865712655018\t-0.196194531956761\t0.0752589718539618\t-0.173893607010596\t0.10191584554657\t-0.0247286056187748\t0.00248300207497247\t0.126466124133809\t0.109421417730549\t0.00124941351161873\t0.0465034353244592\t0.948346865513353\t-0.0962761984357881\t-0.00736411891527669\t0.0157579096573274\t-0.0206458923336196\t0.125387091773917\t0.948069339141004\t-0.0813666807588288\t-0.397883789028895\t0.00270746885481236\t-0.0650049327280885\t0.970995578181396\t0.102259295103886\t0.0680876104289247\t0.0537845273617249\t0.0637825662942068\t-0.0730207320326005\t0.774701117263232\t0.143250357855822\t0.145570869144814\t0.0504297968413347\t-0.0839602205601543\t0.0375364830740552\t0.0909162582621858\t0.154718966040914\t0.0969693419872003\t0.075191875423734\t0.979772724868521\t0.237252871643776\t-0.0168673377856891\t0.982086037171997\t0.0779084029627812\t-0.16407357670789\t-0.221271929425569\t-0.389830635690166\t-0.0349460793612874\t0.0761468534068529\t-0.407543773279183\t0.0427505038146191\t0.137511449941939\t-0.387386451068765\t-0.0755491277796355\t-0.00611914788519164\t0.94854660569036\t-0.263966503641708\t-0.361358023783816\t0.976055090917847\t0.0954589997026725\t0.0786151266334656\t-0.114634658509578\t0.0613542350901641\t0.95639772954471\t0.0386501066134228\t-0.0408078703704657\t0.0674738811548926\t-0.0140732921524716\t0.0563079719855238\t-0.0286395064454287\t0.0772224613010572\t-0.0113548940123571\t-0.0041060067625021\t0.112789830889578\t-0.382802448875085\t0.976278801694959\t0.110996654554373\t0.0532207905632526\t0.0856389282546113\t0.0982390387184531\t0.0893520734761749\t-0.0746528309105477\t-0.0327606326999675\t0.0387209942073469\t0.0842968656652712\t0.191883946088094\t0.974056015381141\t0.970536385052995\t-0.0138328530122089\t-0.00867112192168448\t-0.0180107229653134\t0.0591120313587514\t0.980235761061055\t-0.263427018539801\t-0.202312831861571\t-0.0896470252155958\t0.0934024770526733\t0.00753201231998164\t0.168226412010844\t-0.0128214565103999\t0.127096184269412\t-0.0572412243593418\t0.103815465408326\t0.0416204532492822\t-0.0146624487823657\t-0.0391894553722596\t-0.0739818478992469\t0.0990141713587819\t-0.113597493575928\t0.132012595933154\t0.0993377221161583\t0.0416980798163542\t-0.0256417190419296\t0.00777851607558417\t0.169141452105696\t0.0703510753877992\t-0.396028289171293\t0.096623127612863\t0.0463250552417397\t0.00107461031408984\t-0.0579578387127301\t0.974016995678885\t0.0866607185633306\t0.0605169153555918\t0.0217619711987366\t-0.190247270615952\t0.0296689902496678\t0.0660022459292106\t0.150384239932277\t-0.00615339138625473\t-0.168170576342136\t0.0530135384732448\t0.0588233492105722\t0.0557295749733618\t-0.0703170494097726\t-0.12166978066693\t-0.0204734293216955\t-0.341902973781123\t-0.125014997791197\t0.0409751304826794\t0.0345802834153728\t-0.218353646804978\t0.0917312992707194\t0.199276406182528\t-0.0502392191221257\t0.159058110700942\t-0.390520710852679\t-0.389482587801548\t0.969226195214219\t-0.162038632844446\t0.155625317946174\t0.00627765210208861\t-0.038020905151606\t-0.0306322658033264\t0.0201268217791247\t0.0323574802940882\t-0.0319024110767261\t0.960943120134763\t0.127299530063702\t-0.386818240449465\t-0.0620928043444932\t-0.172443084072515\t-0.0564937945370614\t0.0327737388332275\t0.959666619829416\t-0.401343167872829\t0.171993338047661\t-0.0164362748403256\t0.98106376316426\t-0.0867426852843022\t0.0444805626540933\t-0.169334029223865\t0.0563064166805418\t0.0514400764261885\t-0.417245674914248\t0.0354451000478197\t0.0168519528771422\t1\n' |