Repository 'genomescope'
hg clone https://toolshed.g2.bx.psu.edu/repos/iuc/genomescope

Changeset 1:3169a38c2656 (2021-06-26)
Previous changeset 0:b2f674562a18 (2021-04-30) Next changeset 2:01210c4e9144 (2022-08-18)
Commit message:
"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/genomescope commit a0ba4e5bb9dd542bbf1395af64e59b9f72823fec"
modified:
genomescope.xml
test-data/genomescope-out1-2.txt
b
diff -r b2f674562a18 -r 3169a38c2656 genomescope.xml
--- a/genomescope.xml Fri Apr 30 20:21:25 2021 +0000
+++ b/genomescope.xml Sat Jun 26 14:17:47 2021 +0000
[
b'@@ -1,7 +1,8 @@\n-<tool id="genomescope" name="GenomeScope" version="@VERSION@" profile="20.01">\n-    <description>Analyze unassembled short reads</description>\n+<tool id="genomescope" name="GenomeScope" version="@VERSION@+galaxy@SUFFIX_VERSION@" profile="20.01">\n+    <description>reference-free genome profiling</description>\n     <macros>\n         <token name="@VERSION@">2.0</token>\n+        <token name="@SUFFIX_VERSION@">1</token>\n     </macros>\n     <requirements>\n         <requirement type="package" version="@VERSION@">genomescope2</requirement>\n@@ -12,7 +13,9 @@\n             --input \'$input\'\n             --output .\n             --kmer_length $kmer_length \n-            $no_unique_sequence $testing $trace_flag\n+            $output_options.no_unique_sequence \n+            $advanced_options.testing \n+            $advanced_options.trace_flag\n             #if $ploidy:\n                 --ploidy $ploidy\n             #end if\n@@ -22,44 +25,60 @@\n             #if $max_kmercov:\n                 --max_kmercov $max_kmercov\n             #end if\n-            #if $topology:\n-                --topology $topology\n+            #if $advanced_options.topology:\n+                --topology $advanced_options.topology\n             #end if\n-            #if $initial_repetitiveness:\n-                --initial_repetitiveness $initial_repetitiveness\n+            #if $advanced_options.initial_repetitiveness:\n+                --initial_repetitiveness $advanced_options.initial_repetitiveness\n             #end if\n-            #if $initial_heterozygosities:\n-                --initial_heterozygosities $initial_heterozygosities\n+            #if $advanced_options.initial_heterozygosities:\n+                --initial_heterozygosities \'${advanced_options.initial_heterozygosities}\'\n             #end if\n-            #if $transform_exp:\n-                --transform_exp $transform_exp\n+            #if $advanced_options.transform_exp:\n+                --transform_exp $advanced_options.transform_exp\n             #end if\n-            #if $true_params:\n-                --true_params $true_params\n+            #if $advanced_options.true_params:\n+                --true_params \'${advanced_options.true_params}\'\n             #end if\n-            #if $num_rounds:\n-                --num_rounds $num_rounds\n+            #if $advanced_options.num_rounds:\n+                --num_rounds $advanced_options.num_rounds\n             #end if\n         ]]>\n     </command>\n     <inputs>\n         <param argument="--input" type="data" format="tabular" label="Input histogram file" help="This file is a two column tabular file for example generated with the histo function of Jellyfish."/>\n-        <param name="model_output" type="boolean" label="Add the model parameters to your history"/>\n-        <param name="summary_output" type="boolean" label="Output a summary of the analysis"/>\n-        <param name="progress_output" type="boolean" label="Additional information for each optimization round"/>\n-        <param argument="--ploidy" type="integer" optional="true" label="Ploidy for model to use" help="Default: 2"/>\n+        <param argument="--ploidy" type="integer" min="1" max="6" optional="true" label="Ploidy for model to use" help="Default: 2"/>\n         <param argument="--kmer_length" type="integer" value="21" optional="false" label="K-mer length used to calculate k-mer spectra"/>\n-        <param argument="--lambda" type="integer" optional="true" label="Optional initial kmercov estimate for model to use"/>\n-        <param argument="--max_kmercov" type="integer" optional="true" label="Optional maximum k-mer coverage threshold" help="K-mers with coverage greater than max_kmercov are ignored by the model"/>\n-        <param argument="--no_unique_sequence" type="boolean" truevalue="--no_unique_sequence" falsevalue="" label="Turn off yellow unique sequence line in plots"/>\n-        <param argument="--topology" type="integer" optional="true" label="Flag for topology for model to use"/>\n-        <param arg'..b'tion>\n+            <section name="output_options">\n+                <param name="output_files" value="summary_output"/>\n+            </section>\n+            <output name="linear_plot" ftype="png">\n+                <assert_contents>\n+                    <has_size value="213366" delta="300"/>\n+                </assert_contents>\n+            </output>\n+            <output name="log_plot" ftype="png">\n+                <assert_contents>\n+                    <has_size value="218425" delta="300"/>\n+                </assert_contents>\n+            </output>\n+            <output name="transformed_linear_plot" ftype="png">\n+                <assert_contents>\n+                    <has_size value="217280" delta="300"/>\n+                </assert_contents>\n+            </output>\n+            <output name="transformed_log_plot" ftype="png">\n+                <assert_contents>\n+                    <has_size value="229021" delta="300"/>\n+                </assert_contents>\n+            </output>\n+            <output name="summary" ftype="txt" lines_diff="2">\n+                <assert_contents>\n+                    <has_line line="initial heterozygosities = 0.04,0.01"/>\n+                    <has_text text="Homozygous (aaa)              6.03606%          100%"/>\n+                </assert_contents>\n+            </output>\n         </test>\n     </tests>\n     <help><![CDATA[\n@@ -102,18 +198,25 @@\n GenomeScope 2.0: Reference-free profiling of polyploid genomes\n ==============================================================\n \n-GenomeScope 2.0 applies classical insights from combinatorial theory to establish\n-a detailed mathematical model of how k-mer frequencies will be distributed in\n-heterozygous and polyploid genomes. GenomeScope 2.0 employs a polyploid-aware\n-mixture model that, within seconds, accurately infers genome properties from\n-unassembled sequencing data. GenomeScope 2.0 uses the k-mer count distribution,\n-e.g. from KMC or Jellyfish, and produces a report and several informative plots\n-describing the genome properties. We validate the approach on simulated polyploid\n-data created using a generative model with parameters for genome size, heterozygosity,\n-repetitiveness, ploidy, and sequencing coverage, and find GenomeScope 2.0 retains\n-accuracy across a broad range of realistic and extreme parameter values. We also\n-validate GenomeScope 2.0 by analyzing genuine sequence data from 11 diverse\n-polyploid genomes with known genome characteristics.\n+GenomeScope 2.0 applies classical insights from combinatorial theory to establish a detailed mathematical model of how k-mer frequencies will be distributed in heterozygous and polyploid genomes.It employs a polyploid-aware mixture model that, within seconds, accurately infers genome properties from\n+unassembled sequencing data. \n+\n+GenomeScope 2.0 uses the k-mer count distribution, e.g. from KMC or Jellyfish, and produces a report and several informative plots describing the genome properties. We validate the approach on simulated polyploid data created using a generative model with parameters for genome size, heterozygosity, repetitiveness, ploidy, and sequencing coverage, and find GenomeScope 2.0 retains accuracy across a broad range of realistic and extreme parameter values.\n+\n+-----\n+\n+.. class:: infomark\n+\n+**Topological relationships**\n+\n+In the field of phylogenetics, the evolutionary relationships between species are often depicted in a branching diagram known as a phylogenetic tree. In this setting, the topology of the tree refers to the branching structure of the tree. We may also depict the similarities between homologous chromosomes in a branching diagram. In this case, a topology refers to the similarities between distinct homologues.\n+\n+For ploidies of 4 and greater, there are multiple possible topologies. For example, the two tetraploid topologies are:\n+\n+        ::\n+\n+            AAAA \xe2\x86\x92 AAAB \xe2\x86\x92 AABC \xe2\x86\x92 ABCD\n+            AAAA \xe2\x86\x92 AABB \xe2\x86\x92 AABC \xe2\x86\x92 ABCD\n \n ]]></help>\n     <citations>\n'
b
diff -r b2f674562a18 -r 3169a38c2656 test-data/genomescope-out1-2.txt
--- a/test-data/genomescope-out1-2.txt Fri Apr 30 20:21:25 2021 +0000
+++ b/test-data/genomescope-out1-2.txt Sat Jun 26 14:17:47 2021 +0000
b
@@ -1,5 +1,5 @@
 GenomeScope version 2.0
-input file = /tmp/tmp32yh4464/files/1/e/2/dataset_1e2ac011-2bc8-45cf-971a-75abc3cda6d6.dat
+input file = /tmp/tmpiqlcd57_/files/3/b/b/dataset_3bb1f7de-024a-4b3c-aa68-e735f06791c1.dat
 output directory = .
 p = 2
 k = 21