Repository 'imagej2_bunwarpj_compose_elastic'
hg clone https://toolshed.g2.bx.psu.edu/repos/imgteam/imagej2_bunwarpj_compose_elastic

Changeset 1:423400b3c47f (2020-09-28)
Previous changeset 0:6840ce593a91 (2019-09-17) Next changeset 2:7121957d0bbf (2023-11-05)
Commit message:
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/image_processing/imagej2 commit 2afb24f3c81d625312186750a714d702363012b5"
modified:
imagej2_adjust_threshold_binary_jython_script.py
imagej2_analyze_particles_binary_jython_script.py
imagej2_analyze_skeleton_jython_script.py
imagej2_binary_to_edm_jython_script.py
imagej2_bunwarpj_compose_elastic.xml
imagej2_create_image_jython_script.py
imagej2_enhance_contrast_jython_script.py
imagej2_find_edges_jython_script.py
imagej2_find_maxima_jython_script.py
imagej2_macros.xml
imagej2_make_binary_jython_script.py
imagej2_math_jython_script.py
imagej2_noise_jython_script.py
imagej2_shadows_jython_script.py
imagej2_sharpen_jython_script.py
imagej2_skeletonize3d_jython_script.py
imagej2_smooth_jython_script.py
imagej2_watershed_binary_jython_script.py
test-data/analyze_particles_masks.gif
test-data/analyze_particles_nothing.tabular
test-data/analyze_particles_outlines.gif
test-data/basic.tabular
test-data/blobs_black_edm.gif
test-data/blobs_edm.gif
test-data/blobs_equalize.gif
test-data/blobs_find_edges.gif
test-data/blobs_log.gif
test-data/blobs_min.gif
test-data/blobs_multiply.gif
test-data/blobs_normalize.gif
test-data/blobs_northwest.gif
test-data/blobs_saturate.gif
test-data/blobs_segmented.gif
test-data/blobs_single_points.gif
test-data/blobs_square.gif
test-data/blobs_tolerance.gif
test-data/blobs_watershed_binary.gif
test-data/elastic_trans_registered_source1.png
test-data/largest_shortest_path_basic.tabular
test-data/raw_trans_registered_source1.png
test-data/registered_source1.png
test-data/registered_source2.png
test-data/registered_target1.png
test-data/registered_target2.png
test-data/skeletonized_blobs.gif
added:
test-data/source_elastic_transformation_out.txt
test-data/target_elastic_transformation_out.txt
removed:
imagej2_adjust_threshold_binary.py
imagej2_analyze_particles_binary.py
imagej2_analyze_skeleton.py
imagej2_base_utils.py
imagej2_binary_to_edm.py
imagej2_bunwarpj_adapt_transform.py
imagej2_bunwarpj_align.py
imagej2_bunwarpj_align_jython_script.py
imagej2_bunwarpj_compare_elastic.py
imagej2_bunwarpj_compare_elastic_raw.py
imagej2_bunwarpj_compare_raw.py
imagej2_bunwarpj_compose_elastic.py
imagej2_bunwarpj_compose_raw.py
imagej2_bunwarpj_compose_raw_elastic.py
imagej2_bunwarpj_convert_to_raw.py
imagej2_bunwarpj_elastic_transform.py
imagej2_bunwarpj_elastic_transform_jython_script.py
imagej2_bunwarpj_raw_transform.py
imagej2_bunwarpj_raw_transform_jython_script.py
imagej2_create_image.py
imagej2_enhance_contrast.py
imagej2_find_edges.py
imagej2_find_maxima.py
imagej2_make_binary.py
imagej2_math.py
imagej2_noise.py
imagej2_shadows.py
imagej2_sharpen.py
imagej2_skeletonize3d.py
imagej2_smooth.py
imagej2_watershed_binary.py
jython_utils.py
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_adjust_threshold_binary.py
--- a/imagej2_adjust_threshold_binary.py Tue Sep 17 17:08:47 2019 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
b
@@ -1,63 +0,0 @@
-#!/usr/bin/env python
-import argparse
-import os
-import shutil
-import subprocess
-import tempfile
-import imagej2_base_utils
-
-parser = argparse.ArgumentParser()
-parser.add_argument( '--input', dest='input', help='Path to the input file' )
-parser.add_argument( '--input_datatype', dest='input_datatype', help='Datatype of the input image' )
-parser.add_argument( '--threshold_min', dest='threshold_min', type=float, help='Minimum threshold value' )
-parser.add_argument( '--threshold_max', dest='threshold_max', type=float, help='Maximum threshold value' )
-parser.add_argument( '--method', dest='method', help='Threshold method' )
-parser.add_argument( '--display', dest='display', help='Display mode' )
-parser.add_argument( '--black_background', dest='black_background', help='Black background' )
-parser.add_argument( '--stack_histogram', dest='stack_histogram', help='Stack histogram' )
-parser.add_argument( '--jython_script', dest='jython_script', help='Path to the Jython script' )
-parser.add_argument( '--output', dest='output', help='Path to the output file' )
-parser.add_argument( '--output_datatype', dest='output_datatype', help='Datatype of the output image' )
-args = parser.parse_args()
-
-tmp_dir = imagej2_base_utils.get_temp_dir()
-# ImageJ expects valid image file extensions, so the Galaxy .dat extension does not
-# work for some features.  The following creates a symlink with an appropriate file
-# extension that points to the Galaxy dataset.  This symlink is used by ImageJ.
-tmp_input_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.input, args.input_datatype )
-tmp_output_path = imagej2_base_utils.get_temporary_image_path( tmp_dir, args.output_datatype )
-# Define command response buffers.
-tmp_out = tempfile.NamedTemporaryFile().name
-tmp_stdout = open( tmp_out, 'wb' )
-tmp_err = tempfile.NamedTemporaryFile().name
-tmp_stderr = open( tmp_err, 'wb' )
-# Java writes a lot of stuff to stderr, so we'll specify a file for handling actual errors.
-error_log = tempfile.NamedTemporaryFile( delete=False ).name
-# Build the command line.
-cmd = imagej2_base_utils.get_base_command_imagej2( None, jython_script=args.jython_script )
-if cmd is None:
-    imagej2_base_utils.stop_err( "ImageJ not found!" )
-cmd += ' %s' % error_log
-cmd += ' %s' % tmp_input_path
-cmd += ' %.3f' % args.threshold_min
-cmd += ' %.3f' % args.threshold_max
-cmd += ' %s' % args.method
-cmd += ' %s' % args.display
-cmd += ' %s' % args.black_background
-cmd += ' %s' % args.stack_histogram
-cmd += ' %s' % tmp_output_path
-cmd += ' %s' % args.output_datatype
-# Run the command.
-proc = subprocess.Popen( args=cmd, stderr=tmp_stderr, stdout=tmp_stdout, shell=True )
-rc = proc.wait()
-# Handle execution errors.
-if rc != 0:
-    error_message = imagej2_base_utils.get_stderr_exception( tmp_err, tmp_stderr, tmp_out, tmp_stdout )
-    imagej2_base_utils.stop_err( error_message )
-# Handle processing errors.
-if os.path.getsize( error_log ) > 0:
-    error_message = open( error_log, 'r' ).read()
-    imagej2_base_utils.stop_err( error_message )
-# Save the output image.
-shutil.move( tmp_output_path, args.output )
-imagej2_base_utils.cleanup_before_exit( tmp_dir )
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_adjust_threshold_binary_jython_script.py
--- a/imagej2_adjust_threshold_binary_jython_script.py Tue Sep 17 17:08:47 2019 -0400
+++ b/imagej2_adjust_threshold_binary_jython_script.py Mon Sep 28 16:47:44 2020 +0000
[
@@ -1,49 +1,46 @@
-import jython_utils
 import sys
+
 from ij import IJ
 
 # Fiji Jython interpreter implements Python 2.5 which does not
 # provide support for argparse.
-error_log = sys.argv[ -10 ]
-input = sys.argv[ -9 ]
-threshold_min = float( sys.argv[ -8 ] )
-threshold_max = float( sys.argv[ -7 ] )
-method = sys.argv[ -6 ]
-display = sys.argv[ -5 ]
-black_background = jython_utils.asbool( sys.argv[ -4 ] )
+error_log = sys.argv[-10]
+input_file = sys.argv[-9]
+threshold_min = float(sys.argv[-8])
+threshold_max = float(sys.argv[-7])
+method = sys.argv[-6]
+display = sys.argv[-5]
+black_background = sys.argv[-4] == "yes"
 # TODO: this is not being used.
-stack_histogram = jython_utils.asbool( sys.argv[ -3 ] )
-tmp_output_path = sys.argv[ -2 ]
-output_datatype = sys.argv[ -1 ]
+stack_histogram = sys.argv[-3] == "yes"
+output_filename = sys.argv[-2]
+output_datatype = sys.argv[-1]
 
 # Open the input image file.
-input_image_plus = IJ.openImage( input )
+input_image_plus = IJ.openImage(input_file)
 
 # Create a copy of the image.
 input_image_plus_copy = input_image_plus.duplicate()
 image_processor_copy = input_image_plus_copy.getProcessor()
 
-try:
-    # Convert image to binary if necessary.
-    if not image_processor_copy.isBinary():
-        # Convert the image to binary grayscale.
-        IJ.run( input_image_plus_copy, "Make Binary","iterations=1 count=1 edm=Overwrite do=Nothing" )
-    # Set the options.
-    if black_background:
-        method_str = "%s dark" % method
-    else:
-        method_str = method
-    IJ.setAutoThreshold( input_image_plus_copy, method_str )
-    if display == "red":
-        display_mode = "Red"
-    elif display == "bw":
-        display_mode = "Black & White"
-    elif display == "over_under":
-        display_mode = "Over/Under"
-    IJ.setThreshold( input_image_plus_copy, threshold_min, threshold_max, display_mode )
-    # Run the command.
-    IJ.run( input_image_plus_copy, "threshold", "" )
-    # Save the ImagePlus object as a new image.
-    IJ.saveAs( input_image_plus_copy, output_datatype, tmp_output_path )
-except Exception, e:
-    jython_utils.handle_error( error_log, str( e ) )
+# Convert image to binary if necessary.
+if not image_processor_copy.isBinary():
+    # Convert the image to binary grayscale.
+    IJ.run(input_image_plus_copy, "Make Binary", "iterations=1 count=1 edm=Overwrite do=Nothing")
+# Set the options.
+if black_background:
+    method_str = "%s dark" % method
+else:
+    method_str = method
+IJ.setAutoThreshold(input_image_plus_copy, method_str)
+if display == "red":
+    display_mode = "Red"
+elif display == "bw":
+    display_mode = "Black & White"
+elif display == "over_under":
+    display_mode = "Over/Under"
+IJ.setThreshold(input_image_plus_copy, threshold_min, threshold_max, display_mode)
+# Run the command.
+IJ.run(input_image_plus_copy, "threshold", "")
+# Save the ImagePlus object as a new image.
+IJ.saveAs(input_image_plus_copy, output_datatype, output_filename)
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_analyze_particles_binary.py
--- a/imagej2_analyze_particles_binary.py Tue Sep 17 17:08:47 2019 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
b
@@ -1,81 +0,0 @@
-#!/usr/bin/env python
-import argparse
-import os
-import shutil
-import subprocess
-import tempfile
-import imagej2_base_utils
-
-parser = argparse.ArgumentParser()
-parser.add_argument( '--input', dest='input', help='Path to the input file' )
-parser.add_argument( '--input_datatype', dest='input_datatype', help='Datatype of the input image' )
-parser.add_argument( '--black_background', dest='black_background', help='Black background' )
-parser.add_argument( '--size', dest='size', help='Size (pixel^2)' )
-parser.add_argument( '--circularity_min', dest='circularity_min', type=float, help='Circularity minimum' )
-parser.add_argument( '--circularity_max', dest='circularity_max', type=float, help='Circularity maximum' )
-parser.add_argument( '--show', dest='show', help='Show' )
-parser.add_argument( '--display_results', dest='display_results', help='Display results' )
-parser.add_argument( '--all_results', dest='all_results', help='All results' )
-parser.add_argument( '--exclude_edges', dest='exclude_edges', help='Exclude edges' )
-parser.add_argument( '--include_holes', dest='include_holes', help='Include holes' )
-parser.add_argument( '--jython_script', dest='jython_script', help='Path to the Jython script' )
-parser.add_argument( '--results', dest='results', default=None, help='Path to the output results file' )
-parser.add_argument( '--output', dest='output', default=None, help='Path to the output image file' )
-parser.add_argument( '--output_datatype', dest='output_datatype', default='data',  help='Datatype of the output image' )
-args = parser.parse_args()
-
-tmp_dir = imagej2_base_utils.get_temp_dir()
-# ImageJ expects valid image file extensions, so the Galaxy .dat extension does not
-# work for some features.  The following creates a symlink with an appropriate file
-# extension that points to the Galaxy dataset.  This symlink is used by ImageJ.
-tmp_input_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.input, args.input_datatype )
-if args.output is None:
-    tmp_output_path = None
-else:
-    tmp_output_path = imagej2_base_utils.get_temporary_image_path( tmp_dir, args.output_datatype )
-
-# Define command response buffers.
-tmp_out = tempfile.NamedTemporaryFile().name
-tmp_stdout = open( tmp_out, 'wb' )
-tmp_err = tempfile.NamedTemporaryFile().name
-tmp_stderr = open( tmp_err, 'wb' )
-# Java writes a lot of stuff to stderr, so we'll specify a file for handling actual errors.
-error_log = tempfile.NamedTemporaryFile( delete=False ).name
-
-# Build the command line.
-cmd = imagej2_base_utils.get_base_command_imagej2( None, jython_script=args.jython_script )
-if cmd is None:
-    imagej2_base_utils.stop_err( "ImageJ not found!" )
-cmd += ' %s' % error_log
-cmd += ' %s' % tmp_input_path
-cmd += ' %s' % args.black_background
-cmd += ' %s' % args.size
-cmd += ' %.3f' % args.circularity_min
-cmd += ' %.3f' % args.circularity_max
-cmd += ' %s' % args.show
-cmd += ' %s' % args.display_results
-cmd += '%s' % imagej2_base_utils.handle_none_type( args.all_results, val_type='str' )
-cmd += ' %s' % args.exclude_edges
-cmd += ' %s' % args.include_holes
-cmd += '%s' % imagej2_base_utils.handle_none_type( tmp_output_path, val_type='str' )
-cmd += ' %s' % args.output_datatype
-cmd += '%s' % imagej2_base_utils.handle_none_type( args.results, val_type='str' )
-
-# Run the command.
-proc = subprocess.Popen( args=cmd, stderr=tmp_stderr, stdout=tmp_stdout, shell=True )
-rc = proc.wait()
-
-# Handle execution errors.
-if rc != 0:
-    error_message = imagej2_base_utils.get_stderr_exception( tmp_err, tmp_stderr, tmp_out, tmp_stdout )
-    imagej2_base_utils.stop_err( error_message )
-
-# Handle processing errors.
-if os.path.getsize( error_log ) > 0:
-    error_message = open( error_log, 'r' ).read()
-    imagej2_base_utils.stop_err( error_message )
-
-if tmp_output_path is not None:
-    # Save the output image.
-    shutil.move( tmp_output_path, args.output )
-imagej2_base_utils.cleanup_before_exit( tmp_dir )
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_analyze_particles_binary_jython_script.py
--- a/imagej2_analyze_particles_binary_jython_script.py Tue Sep 17 17:08:47 2019 -0400
+++ b/imagej2_analyze_particles_binary_jython_script.py Mon Sep 28 16:47:44 2020 +0000
[
@@ -1,72 +1,74 @@
-import jython_utils
 import sys
+
 from ij import IJ
 from ij.plugin.filter import Analyzer
 
+
+OPTIONS = ['edm=Overwrite', 'iterations=1', 'count=1']
+
 # Fiji Jython interpreter implements Python 2.5 which does not
 # provide support for argparse.
-error_log = sys.argv[ -14 ]
-input = sys.argv[ -13 ]
-black_background = jython_utils.asbool( sys.argv[ -12 ] )
-size = sys.argv[ -11 ]
-circularity_min = float( sys.argv[ -10 ] )
-circularity_max = float( sys.argv[ -9 ] )
-show = sys.argv[ -8 ]
-display_results = jython_utils.asbool( sys.argv[ -7 ] )
-all_results = jython_utils.asbool( sys.argv[ -6 ] )
-exclude_edges = jython_utils.asbool( sys.argv[ -5 ] )
-include_holes = jython_utils.asbool( sys.argv[ -4 ] )
-tmp_output_path = sys.argv[ -3 ]
-output_datatype = sys.argv[ -2 ]
-results_path = sys.argv[ -1 ]
+error_log = sys.argv[-14]
+input_file = sys.argv[-13]
+black_background = sys.argv[-12] == "yes"
+size = sys.argv[-11]
+circularity_min = float(sys.argv[-10])
+circularity_max = float(sys.argv[-9])
+show = sys.argv[-8]
+display_results = sys.argv[-7] == "yes"
+all_results = sys.argv[-6] == "yes"
+exclude_edges = sys.argv[-5] == "yes"
+include_holes = sys.argv[-4] == "yes"
+output_filename = sys.argv[-3]
+output_datatype = sys.argv[-2]
+results_path = sys.argv[-1]
 
 # Open the input image file.
-input_image_plus = IJ.openImage( input )
+input_image_plus = IJ.openImage(input_file)
 
 # Create a copy of the image.
 input_image_plus_copy = input_image_plus.duplicate()
 image_processor_copy = input_image_plus_copy.getProcessor()
-analyzer = Analyzer( input_image_plus_copy )
+analyzer = Analyzer(input_image_plus_copy)
 
-try:
-    # Set binary options.
-    options = jython_utils.get_binary_options( black_background=black_background )
-    IJ.run( input_image_plus_copy, "Options...", options )
+# Set binary options.
+options_list = OPTIONS
+if black_background:
+    options_list.append("black")
+options = " ".join(options_list)
+IJ.run(input_image_plus_copy, "Options...", options)
 
-    # Convert image to binary if necessary.
-    if not image_processor_copy.isBinary():
-        # Convert the image to binary grayscale.
-        IJ.run( input_image_plus_copy, "Make Binary", "" )
+if not image_processor_copy.isBinary():
+    # Convert the image to binary grayscale.
+    IJ.run(input_image_plus_copy, "Make Binary", "")
 
-    # Set the options.
-    options = [ 'size=%s' % size ]
-    circularity_str = '%.3f-%.3f' % ( circularity_min, circularity_max )
-    options.append( 'circularity=%s' % circularity_str )
-    if show.find( '_' ) >= 0:
-        show_str = '[%s]' % show.replace( '_', ' ' )
-    else:
-        show_str = show
-    options.append( 'show=%s' % show_str )
-    if display_results:
-        options.append( 'display' )
-        if not all_results:
-            options.append( 'summarize' )
-    if exclude_edges:
-        options.append( 'exclude' )
-    if include_holes:
-        options.append( 'include' )
-    # Always run "in_situ".
-    options.append( 'in_situ' )
+# Set the options.
+options = ['size=%s' % size]
+circularity_str = '%.3f-%.3f' % (circularity_min, circularity_max)
+options.append('circularity=%s' % circularity_str)
+if show.find('_') >= 0:
+    show_str = '[%s]' % show.replace('_', ' ')
+else:
+    show_str = show
+options.append('show=%s' % show_str)
+if display_results:
+    options.append('display')
+    if not all_results:
+        options.append('summarize')
+if exclude_edges:
+    options.append('exclude')
+if include_holes:
+    options.append('include')
+# Always run "in_situ".
+options.append('in_situ')
 
-    # Run the command.
-    IJ.run( input_image_plus_copy, "Analyze Particles...", " ".join( options ) )
+# Run the command.
+IJ.run(input_image_plus_copy, "Analyze Particles...", " ".join(options))
 
-    # Save outputs.
-    if tmp_output_path not in [ None, 'None' ]:
-        # Save the ImagePlus object as a new image.
-        IJ.saveAs( input_image_plus_copy, output_datatype, tmp_output_path )
-    if display_results and results_path not in [ None, 'None' ]:
-        results_table = analyzer.getResultsTable()
-        results_table.saveAs( results_path )
-except Exception, e:
-    jython_utils.handle_error( error_log, str( e ) )
+# Save outputs.
+if len(output_filename) > 0:
+    # Save the ImagePlus object as a new image.
+    IJ.saveAs(input_image_plus_copy, output_datatype, output_filename)
+if display_results and len(results_path) > 0:
+    results_table = analyzer.getResultsTable()
+    results_table.saveAs(results_path)
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_analyze_skeleton.py
--- a/imagej2_analyze_skeleton.py Tue Sep 17 17:08:47 2019 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
b
@@ -1,61 +0,0 @@
-#!/usr/bin/env python
-import argparse
-import os
-import shutil
-import subprocess
-import tempfile
-import imagej2_base_utils
-
-parser = argparse.ArgumentParser()
-parser.add_argument( '--input', dest='input', help='Path to the input file' )
-parser.add_argument( '--input_datatype', dest='input_datatype', help='Datatype of the input image' )
-parser.add_argument( '--black_background', dest='black_background', help='Black background' )
-parser.add_argument( '--prune_cycle_method', dest='prune_cycle_method', default='none', help='Prune cycle method' )
-parser.add_argument( '--prune_ends', dest='prune_ends', default='no', help='Prune ends' )
-parser.add_argument( '--calculate_largest_shortest_path', dest='calculate_largest_shortest_path', default='no', help='Calculate largest shortest path' )
-parser.add_argument( '--show_detailed_info', dest='show_detailed_info', default='no', help='Show detailed info' )
-parser.add_argument( '--jython_script', dest='jython_script', help='Path to the Jython script' )
-parser.add_argument( '--output', dest='output', help='Path to the output file' )
-args = parser.parse_args()
-
-tmp_dir = imagej2_base_utils.get_temp_dir()
-# ImageJ expects valid image file extensions, so the Galaxy .dat extension does not
-# work for some features.  The following creates a symlink with an appropriate file
-# extension that points to the Galaxy dataset.  This symlink is used by ImageJ.
-tmp_input_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.input, args.input_datatype )
-
-# Define command response buffers.
-tmp_out = tempfile.NamedTemporaryFile().name
-tmp_stdout = open( tmp_out, 'wb' )
-tmp_err = tempfile.NamedTemporaryFile().name
-tmp_stderr = open( tmp_err, 'wb' )
-# Java writes a lot of stuff to stderr, so we'll specify a file for handling actual errors.
-error_log = tempfile.NamedTemporaryFile( delete=False ).name
-
-# Build the command line.
-cmd = imagej2_base_utils.get_base_command_imagej2( None, jython_script=args.jython_script )
-if cmd is None:
-    imagej2_base_utils.stop_err( "ImageJ not found!" )
-cmd += ' %s' % error_log
-cmd += ' %s' % tmp_input_path
-cmd += ' %s' % args.black_background
-cmd += ' %s' % args.prune_cycle_method
-cmd += ' %s' % args.prune_ends
-cmd += ' %s' % args.calculate_largest_shortest_path
-cmd += ' %s' % args.show_detailed_info
-cmd += ' %s' % args.output
-
-# Run the command.
-proc = subprocess.Popen( args=cmd, stderr=tmp_stderr, stdout=tmp_stdout, shell=True )
-rc = proc.wait()
-
-# Handle execution errors.
-if rc != 0:
-    error_message = imagej2_base_utils.get_stderr_exception( tmp_err, tmp_stderr, tmp_out, tmp_stdout )
-    imagej2_base_utils.stop_err( error_message )
-# Handle processing errors.
-if os.path.getsize( error_log ) > 0:
-    error_message = open( error_log, 'r' ).read()
-    imagej2_base_utils.stop_err( error_message )
-
-imagej2_base_utils.cleanup_before_exit( tmp_dir )
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_analyze_skeleton_jython_script.py
--- a/imagej2_analyze_skeleton_jython_script.py Tue Sep 17 17:08:47 2019 -0400
+++ b/imagej2_analyze_skeleton_jython_script.py Mon Sep 28 16:47:44 2020 +0000
[
b"@@ -1,147 +1,148 @@\n-import jython_utils\n import math\n import sys\n+\n from ij import IJ\n from sc.fiji.analyzeSkeleton import AnalyzeSkeleton_\n \n-BASIC_NAMES = [ 'Branches', 'Junctions', 'End-point Voxels',\n-                'Junction Voxels', 'Slab Voxels', 'Average branch length',\n-                'Triple Points', 'Quadruple Points', 'Maximum Branch Length' ]\n-DETAIL_NAMES = [ 'Skeleton ID', 'Branch length', 'V1 x', 'V1 y', 'V1 z', 'V2 x',\n-                 'V2 y', 'V2 z', 'Euclidean distance' ]\n+BASIC_NAMES = ['Branches', 'Junctions', 'End-point Voxels',\n+               'Junction Voxels', 'Slab Voxels', 'Average branch length',\n+               'Triple Points', 'Quadruple Points', 'Maximum Branch Length']\n+DETAIL_NAMES = ['Skeleton ID', 'Branch length', 'V1 x', 'V1 y', 'V1 z', 'V2 x',\n+                'V2 y', 'V2 z', 'Euclidean distance']\n+OPTIONS = ['edm=Overwrite', 'iterations=1', 'count=1']\n+\n \n-def get_euclidean_distance( vertex1, vertex2 ):\n-    x1, y1, z1 = get_points( vertex1 )\n-    x2, y2, z2 = get_points( vertex2 )\n-    return math.sqrt( math.pow( ( x2 - x1 ), 2 ) +\n-                      math.pow( ( y2 - y1 ), 2 ) +\n-                      math.pow( ( z2 - z1 ), 2 ) )\n+def get_euclidean_distance(vertex1, vertex2):\n+    x1, y1, z1 = get_points(vertex1)\n+    x2, y2, z2 = get_points(vertex2)\n+    return math.sqrt(math.pow((x2 - x1), 2) + math.pow((y2 - y1), 2) + math.pow((z2 - z1), 2))\n \n-def get_graph_length( graph ):\n+\n+def get_graph_length(graph):\n     length = 0\n     for edge in graph.getEdges():\n         length = length + edge.getLength()\n     return length\n \n-def get_points( vertex ):\n+\n+def get_points(vertex):\n     # An array of Point, which has attributes x,y,z.\n-    point = vertex.getPoints()[ 0 ]\n+    point = vertex.getPoints()[0]\n     return point.x, point.y, point.z\n-    \n-def get_sorted_edge_lengths( graph ):\n+\n+\n+def get_sorted_edge_lengths(graph):\n     # Return graph edges sorted from longest to shortest.\n     edges = graph.getEdges()\n-    edges = sorted( edges, key=lambda edge: edge.getLength(), reverse=True )\n+    edges = sorted(edges, key=lambda edge: edge.getLength(), reverse=True)\n     return edges\n \n-def get_sorted_graph_lengths( result ):\n+\n+def get_sorted_graph_lengths(result):\n     # Get the separate graphs (skeletons).\n     graphs = result.getGraph()\n     # Sort graphs from longest to shortest.\n-    graphs = sorted( graphs, key=lambda g: get_graph_length( g ), reverse=True )\n+    graphs = sorted(graphs, key=lambda g: get_graph_length(g), reverse=True)\n     return graphs\n \n-def save( result, output, show_detailed_info, calculate_largest_shortest_path, sep='\\t' ):\n-    num_trees = int( result.getNumOfTrees() )\n-    outf = open( output, 'wb' )\n-    outf.write( '# %s\\n' % sep.join( BASIC_NAMES ) )\n-    for index in range( num_trees ):\n-        outf.write( '%d%s' % ( result.getBranches()[ index ], sep ) )\n-        outf.write( '%d%s' % ( result.getJunctions()[ index ], sep ) )\n-        outf.write( '%d%s' % ( result.getEndPoints()[ index ], sep ) )\n-        outf.write( '%d%s' % ( result.getJunctionVoxels()[ index ], sep ) )\n-        outf.write( '%d%s' % ( result.getSlabs()[ index ], sep ) )\n-        outf.write( '%.3f%s' % ( result.getAverageBranchLength()[ index ], sep ) )\n-        outf.write( '%d%s' % ( result.getTriples()[ index ], sep ) )\n-        outf.write( '%d%s' % ( result.getQuadruples()[ index ], sep ) )\n-        outf.write( '%.3f' % result.getMaximumBranchLength()[ index ] )\n+\n+def save(result, output, show_detailed_info, calculate_largest_shortest_path, sep='\\t'):\n+    num_trees = int(result.getNumOfTrees())\n+    outf = open(output, 'wb')\n+    outf.write('# %s\\n' % sep.join(BASIC_NAMES))\n+    for index in range(num_trees):\n+        outf.write('%d%s' % (result.getBranches()[index], sep))\n+        outf.write('%d%s' % (result.getJunctions()[index], sep))\n+        outf.write('%d%s' % (result.getEndPoints()[index], sep))\n+        outf.write('%d%s' % (result.getJunctionVoxels()[index], sep))\n+     "..b'sep, sep))\n+                    outf.write(\' %s\' % sep)\n+                    outf.write(\' %s\' % sep)\n+                    outf.write(\' \\n\')\n                 else:\n-                    outf.write( \'\\n\' )\n+                    outf.write(\'\\n\')\n     outf.close()\n \n+\n # Fiji Jython interpreter implements Python 2.5 which does not\n # provide support for argparse.\n-error_log = sys.argv[ -8 ]\n-input = sys.argv[ -7 ]\n-black_background = jython_utils.asbool( sys.argv[ -6 ] )\n-prune_cycle_method = sys.argv[ -5 ]\n-prune_ends = jython_utils.asbool( sys.argv[ -4 ] )\n-calculate_largest_shortest_path = jython_utils.asbool( sys.argv[ -3 ] )\n+error_log = sys.argv[-8]\n+input = sys.argv[-7]\n+black_background = sys.argv[-6] == "yes"\n+prune_cycle_method = sys.argv[-5]\n+prune_ends = sys.argv[-4] == "yes"\n+calculate_largest_shortest_path = sys.argv[-3] == "yes"\n if calculate_largest_shortest_path:\n-    BASIC_NAMES.extend( [ \'Longest Shortest Path\', \'spx\', \'spy\', \'spz\' ] )\n-    DETAIL_NAMES.extend( [ \' \', \' \', \' \', \' \' ] )\n-show_detailed_info = jython_utils.asbool( sys.argv[ -2 ] )\n-output = sys.argv[ -1 ]\n+    BASIC_NAMES.extend([\'Longest Shortest Path\', \'spx\', \'spy\', \'spz\'])\n+    DETAIL_NAMES.extend([\' \', \' \', \' \', \' \'])\n+show_detailed_info = sys.argv[-2] == "yes"\n+output = sys.argv[-1]\n \n # Open the input image file.\n-input_image_plus = IJ.openImage( input )\n+input_image_plus = IJ.openImage(input)\n \n # Create a copy of the image.\n input_image_plus_copy = input_image_plus.duplicate()\n image_processor_copy = input_image_plus_copy.getProcessor()\n \n-try:\n-    # Set binary options.\n-    options = jython_utils.get_binary_options( black_background=black_background )\n-    IJ.run( input_image_plus_copy, "Options...", options )\n+# Set binary options.\n+options_list = OPTIONS\n+if black_background:\n+    options_list.append("black")\n+options = " ".join(options_list)\n+IJ.run(input_image_plus_copy, "Options...", options)\n \n-    # Convert image to binary if necessary.\n-    if not image_processor_copy.isBinary():\n-        IJ.run( input_image_plus_copy, "Make Binary", "" )\n+# Convert image to binary if necessary.\n+if not image_processor_copy.isBinary():\n+    IJ.run(input_image_plus_copy, "Make Binary", "")\n \n-    # Run AnalyzeSkeleton\n-    analyze_skeleton = AnalyzeSkeleton_()\n-    analyze_skeleton.setup( "", input_image_plus_copy )\n-    if prune_cycle_method == \'none\':\n-        prune_index  = analyze_skeleton.NONE\n-    elif prune_cycle_method == \'shortest_branch\':\n-        prune_index  = analyze_skeleton.SHORTEST_BRANCH\n-    elif prune_cycle_method == \'lowest_intensity_voxel\':\n-        prune_index  = analyze_skeleton.LOWEST_INTENSITY_VOXEL\n-    elif prune_cycle_method == \'lowest_intensity_branch\':\n-        prune_index  = analyze_skeleton.LOWEST_INTENSITY_BRANCH\n-    result = analyze_skeleton.run( prune_index,\n-                                   prune_ends,\n-                                   calculate_largest_shortest_path,\n-                                   input_image_plus_copy,\n-                                   True,\n-                                   True )\n-    # Save the results.\n-    save( result, output, show_detailed_info, calculate_largest_shortest_path )\n-except Exception, e:\n-    jython_utils.handle_error( error_log, str( e ) )\n+# Run AnalyzeSkeleton\n+analyze_skeleton = AnalyzeSkeleton_()\n+analyze_skeleton.setup("", input_image_plus_copy)\n+if prune_cycle_method == \'none\':\n+    prune_index = analyze_skeleton.NONE\n+elif prune_cycle_method == \'shortest_branch\':\n+    prune_index = analyze_skeleton.SHORTEST_BRANCH\n+elif prune_cycle_method == \'lowest_intensity_voxel\':\n+    prune_index = analyze_skeleton.LOWEST_INTENSITY_VOXEL\n+elif prune_cycle_method == \'lowest_intensity_branch\':\n+    prune_index = analyze_skeleton.LOWEST_INTENSITY_BRANCH\n+result = analyze_skeleton.run(prune_index, prune_ends, calculate_largest_shortest_path, input_image_plus_copy, True, True)\n+# Save the results.\n+save(result, output, show_detailed_info, calculate_largest_shortest_path)\n'
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_base_utils.py
--- a/imagej2_base_utils.py Tue Sep 17 17:08:47 2019 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
[
@@ -1,169 +0,0 @@
-import os
-import shutil
-import sys
-import tempfile
-
-BUFF_SIZE = 1048576
-
-
-def cleanup_before_exit(tmp_dir):
-    """
-    Remove temporary files and directories prior to tool exit.
-    """
-    if tmp_dir and os.path.exists(tmp_dir):
-        shutil.rmtree(tmp_dir)
-
-
-def get_base_cmd_bunwarpj(jvm_memory):
-    if jvm_memory in [None, 'None']:
-        jvm_memory_str = ''
-    else:
-        jvm_memory_str = '-Xmx%s' % jvm_memory
-    # The following bunwarpj_base_cmd string will look something like this:
-    # "java %s -cp $JAR_DIR/ij-1.49k.jar:$PLUGINS_DIR/bUnwarpJ_-2.6.1.jar \
-    # bunwarpj.bUnwarpJ_" % (jvm_memory_str)
-    # See the bunwarpj.sh script for the fiji 20151222
-    # bioconda recipe in github.
-    bunwarpj_base_cmd = "bunwarpj %s" % jvm_memory_str
-    return bunwarpj_base_cmd
-
-
-def get_base_command_imagej2(memory_size=None, macro=None, jython_script=None):
-    imagej2_executable = get_imagej2_executable()
-    if imagej2_executable is None:
-        return None
-    cmd = '%s --ij2 --headless --debug' % imagej2_executable
-    if memory_size is not None:
-        memory_size_cmd = ' -DXms=%s -DXmx=%s' % (memory_size, memory_size)
-        cmd += memory_size_cmd
-    if macro is not None:
-        cmd += ' --macro %s' % os.path.abspath(macro)
-    if jython_script is not None:
-        cmd += ' --jython %s' % os.path.abspath(jython_script)
-    return cmd
-
-
-def get_file_extension(image_format):
-    """
-    Return a valid bioformats file extension based on the received
-    value of image_format(e.g., "gif" is returned as ".gif".
-    """
-    return '.%s' % image_format
-
-
-def get_file_name_without_extension(file_path):
-    """
-    Eliminate the .ext from the received file name, assuming that
-    the file name consists of only a single '.'.
-    """
-    if os.path.exists(file_path):
-        path, name = os.path.split(file_path)
-        name_items = name.split('.')
-        return name_items[0]
-    return None
-
-
-def get_imagej2_executable():
-    """
-    Fiji names the ImageJ executable different names for different
-    architectures, but our bioconda recipe allows us to do this.
-    """
-    return 'ImageJ'
-
-
-def get_input_image_path(tmp_dir, input_file, image_format):
-    """
-    Bioformats uses file extensions (e.g., .job, .gif, etc)
-    when reading and writing image files, so the Galaxy dataset
-    naming convention of setting all file extensions as .dat
-    must be handled.
-    """
-    image_path = get_temporary_image_path(tmp_dir, image_format)
-    # Remove the file so we can create a symlink.
-    os.remove(image_path)
-    os.symlink(input_file, image_path)
-    return image_path
-
-
-def get_platform_info_dict():
-    '''Return a dict with information about the current platform.'''
-    platform_dict = {}
-    sysname, nodename, release, version, machine = os.uname()
-    platform_dict['os'] = sysname.lower()
-    platform_dict['architecture'] = machine.lower()
-    return platform_dict
-
-
-def get_stderr_exception(tmp_err, tmp_stderr, tmp_out, tmp_stdout, include_stdout=False):
-    tmp_stderr.close()
-    """
-    Return a stderr string of reasonable size.
-    """
-    # Get stderr, allowing for case where it's very large.
-    tmp_stderr = open(tmp_err, 'rb')
-    stderr_str = ''
-    buffsize = BUFF_SIZE
-    try:
-        while True:
-            stderr_str += tmp_stderr.read(buffsize)
-            if not stderr_str or len(stderr_str) % buffsize != 0:
-                break
-    except OverflowError:
-        pass
-    tmp_stderr.close()
-    if include_stdout:
-        tmp_stdout = open(tmp_out, 'rb')
-        stdout_str = ''
-        buffsize = BUFF_SIZE
-        try:
-            while True:
-                stdout_str += tmp_stdout.read(buffsize)
-                if not stdout_str or len(stdout_str) % buffsize != 0:
-                    break
-        except OverflowError:
-            pass
-    tmp_stdout.close()
-    if include_stdout:
-        return 'STDOUT\n%s\n\nSTDERR\n%s\n' % (stdout_str, stderr_str)
-    return stderr_str
-
-
-def get_temp_dir(prefix='tmp-imagej-', dir=None):
-    """
-    Return a temporary directory.
-    """
-    return tempfile.mkdtemp(prefix=prefix, dir=dir)
-
-
-def get_tempfilename(dir=None, suffix=None):
-    """
-    Return a temporary file name.
-    """
-    fd, name = tempfile.mkstemp(suffix=suffix, dir=dir)
-    os.close(fd)
-    return name
-
-
-def get_temporary_image_path(tmp_dir, image_format):
-    """
-    Return the path to a temporary file with a valid image format
-    file extension that can be used with bioformats.
-    """
-    file_extension = get_file_extension(image_format)
-    return get_tempfilename(tmp_dir, file_extension)
-
-
-def handle_none_type(val, val_type='float'):
-    if val is None:
-        return ' None'
-    else:
-        if val_type == 'float':
-            return ' %.3f' % val
-        elif val_type == 'int':
-            return ' %d' % val
-    return ' %s' % val
-
-
-def stop_err(msg):
-    sys.stderr.write(msg)
-    sys.exit(1)
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_binary_to_edm.py
--- a/imagej2_binary_to_edm.py Tue Sep 17 17:08:47 2019 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
b
@@ -1,65 +0,0 @@
-#!/usr/bin/env python
-import argparse
-import os
-import shutil
-import subprocess
-import tempfile
-import imagej2_base_utils
-
-parser = argparse.ArgumentParser()
-parser.add_argument( '--input', dest='input', help='Path to the input file' )
-parser.add_argument( '--input_datatype', dest='input_datatype', help='Datatype of the input image' )
-parser.add_argument( '--iterations', dest='iterations', type=int, help='Iterations' )
-parser.add_argument( '--count', dest='count', type=int, help='Count' )
-parser.add_argument( '--black_background', dest='black_background', help='Black background' )
-parser.add_argument( '--pad_edges_when_eroding', dest='pad_edges_when_eroding', help='Pad edges when eroding' )
-parser.add_argument( '--jython_script', dest='jython_script', help='Path to the Jython script' )
-parser.add_argument( '--output', dest='output', help='Path to the output file' )
-parser.add_argument( '--output_datatype', dest='output_datatype', help='Datatype of the output image' )
-args = parser.parse_args()
-
-tmp_dir = imagej2_base_utils.get_temp_dir()
-# ImageJ expects valid image file extensions, so the Galaxy .dat extension does not
-# work for some features.  The following creates a symlink with an appropriate file
-# extension that points to the Galaxy dataset.  This symlink is used by ImageJ.
-tmp_input_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.input, args.input_datatype )
-tmp_output_path = imagej2_base_utils.get_temporary_image_path( tmp_dir, args.output_datatype )
-
-# Define command response buffers.
-tmp_out = tempfile.NamedTemporaryFile().name
-tmp_stdout = open( tmp_out, 'wb' )
-tmp_err = tempfile.NamedTemporaryFile().name
-tmp_stderr = open( tmp_err, 'wb' )
-# Java writes a lot of stuff to stderr, so we'll specify a file for handling actual errors.
-error_log = tempfile.NamedTemporaryFile( delete=False ).name
-
-# Build the command line.
-cmd = imagej2_base_utils.get_base_command_imagej2( None, jython_script=args.jython_script )
-if cmd is None:
-    imagej2_base_utils.stop_err( "ImageJ not found!" )
-cmd += ' %s' % error_log
-cmd += ' %s' % tmp_input_path
-cmd += ' %d' % args.iterations
-cmd += ' %d' % args.count
-cmd += ' %s' % args.black_background
-cmd += ' %s' % args.pad_edges_when_eroding
-cmd += ' %s' % tmp_output_path
-cmd += ' %s' % args.output_datatype
-
-# Run the command.
-proc = subprocess.Popen( args=cmd, stderr=tmp_stderr, stdout=tmp_stdout, shell=True )
-rc = proc.wait()
-
-# Handle execution errors.
-if rc != 0:
-    error_message = imagej2_base_utils.get_stderr_exception( tmp_err, tmp_stderr, tmp_out, tmp_stdout )
-    imagej2_base_utils.stop_err( error_message )
-
-# Handle processing errors.
-if os.path.getsize( error_log ) > 0:
-    error_message = open( error_log, 'r' ).read()
-    imagej2_base_utils.stop_err( error_message )
-
-# Save the output image.
-shutil.move( tmp_output_path, args.output )
-imagej2_base_utils.cleanup_before_exit( tmp_dir )
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_binary_to_edm_jython_script.py
--- a/imagej2_binary_to_edm_jython_script.py Tue Sep 17 17:08:47 2019 -0400
+++ b/imagej2_binary_to_edm_jython_script.py Mon Sep 28 16:47:44 2020 +0000
[
@@ -1,44 +1,40 @@
-import jython_utils
 import sys
+
 from ij import IJ
-from ij import ImagePlus
-from ij.plugin.filter import Analyzer
-from ij.plugin.filter import EDM
 
 # Fiji Jython interpreter implements Python 2.5 which does not
 # provide support for argparse.
-error_log = sys.argv[ -8 ]
-input = sys.argv[ -7 ]
-iterations = int( sys.argv[ -6 ] )
-count = int( sys.argv[ -5 ] )
-black_background = jython_utils.asbool( sys.argv[ -4 ] )
-pad_edges_when_eroding = jython_utils.asbool( sys.argv[ -3 ] )
-tmp_output_path = sys.argv[ -2 ]
-output_datatype = sys.argv[ -1 ]
+error_log = sys.argv[-8]
+input_file = sys.argv[-7]
+iterations = int(sys.argv[-6])
+count = int(sys.argv[-5])
+black_background = sys.argv[-4] == "yes"
+pad_edges_when_eroding = sys.argv[-3] == "yes"
+output_filename = sys.argv[-2]
+output_datatype = sys.argv[-1]
 
 # Open the input image file.
-input_image_plus = IJ.openImage( input )
+input_image_plus = IJ.openImage(input_file)
 
 # Create a copy of the image.
 input_image_plus_copy = input_image_plus.duplicate()
 image_processor_copy = input_image_plus_copy.getProcessor()
 
-try:
-    # Set binary options.
-    options = jython_utils.get_binary_options( black_background=black_background,
-                                               iterations=iterations,
-                                               count=count,
-                                               pad_edges_when_eroding=pad_edges_when_eroding )
-    IJ.run( input_image_plus_copy, "Options...", options )
+# Set binary options.
+options_list = ['edm=Overwrite', 'iterations=%d' % iterations, 'count=%d' % count]
+if black_background:
+    options_list.append("black")
+if pad_edges_when_eroding:
+    options_list.append("pad")
+options = " ".join(options_list)
+IJ.run(input_image_plus_copy, "Options...", options)
 
-    # Convert image to binary if necessary.
-    if not image_processor_copy.isBinary():
-        # Convert the image to binary grayscale.
-        IJ.run( input_image_plus_copy, "Make Binary", "" )
+# Convert image to binary if necessary.
+if not image_processor_copy.isBinary():
+    # Convert the image to binary grayscale.
+    IJ.run(input_image_plus_copy, "Make Binary", "")
 
-    # Run the command.
-    IJ.run( input_image_plus_copy, "Distance Map", "" )
-    # Save the ImagePlus object as a new image.
-    IJ.saveAs( input_image_plus_copy, output_datatype, tmp_output_path )
-except Exception, e:
-    jython_utils.handle_error( error_log, str( e ) )
+# Run the command.
+IJ.run(input_image_plus_copy, "Distance Map", "")
+# Save the ImagePlus object as a new image.
+IJ.saveAs(input_image_plus_copy, output_datatype, output_filename)
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_bunwarpj_adapt_transform.py
--- a/imagej2_bunwarpj_adapt_transform.py Tue Sep 17 17:08:47 2019 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
b
@@ -1,65 +0,0 @@
-#!/usr/bin/env python
-import argparse
-import subprocess
-import tempfile
-import imagej2_base_utils
-
-# Parse Command Line.
-parser = argparse.ArgumentParser()
-parser.add_argument( '--source_image', dest='source_image', help='Source image' )
-parser.add_argument( '--source_image_format', dest='source_image_format', help='Source image format' )
-parser.add_argument( '--target_image', dest='target_image', help='Target image' )
-parser.add_argument( '--target_image_format', dest='target_image_format', help='Target image format' )
-parser.add_argument( '--input_elastic_transformation', dest='input_elastic_transformation', help='Input elastic transformation matrix' )
-parser.add_argument( '--image_size_factor', dest='image_size_factor', type=float, help='Image size factor' )
-parser.add_argument( '--output', dest='output', help='Warping index' )
-
-args = parser.parse_args()
-
-tmp_dir = imagej2_base_utils.get_temp_dir()
-source_image_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.source_image, args.source_image_format )
-target_image_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.target_image, args.target_image_format )
-input_elastic_transformation_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.input_elastic_transformation, 'txt' )
-
-# Define command response buffers.
-tmp_out = tempfile.NamedTemporaryFile().name
-tmp_stdout = open( tmp_out, 'wb' )
-tmp_err = tempfile.NamedTemporaryFile().name
-tmp_stderr = open( tmp_err, 'wb' )
-
-def is_power2( val ):
-    if val < 0:
-        return False
-    if val < 1:
-        val = 1.0 / val
-    val = int( val )
-    return ( ( val & ( val - 1 ) ) == 0 )
-
-# Build the command line to adapt the transformation.
-cmd = imagej2_base_utils.get_base_cmd_bunwarpj( None )
-if cmd is None:
-    imagej2_base_utils.stop_err( "bUnwarpJ not found!" )
-cmd += ' -adapt_transform'
-
-# Make sure the value of image_size_factor is a power of 2 (positive or negative).
-if is_power2( args.image_size_factor ):
-    image_size_factor = args.image_size_factor
-else:
-    msg = "Image size factor must be a positive or negative power of 2 (0.25, 0.5, 2, 4, 8, etc)."
-    imagej2_base_utils.stop_err( msg )
-
-# Target is sent before source.
-cmd += ' %s' % target_image_path
-cmd += ' %s' % source_image_path
-cmd += ' %s' % input_elastic_transformation_path
-cmd += ' %s' % args.output
-cmd += ' %2.f' % image_size_factor
-
-# Adapt the transformation based on the image size factor using bUnwarpJ.
-proc = subprocess.Popen( args=cmd, stderr=subprocess.PIPE, stdout=subprocess.PIPE, shell=True )
-rc = proc.wait()
-if rc != 0:
-    error_message = imagej2_base_utils.get_stderr_exception( tmp_err, tmp_stderr, tmp_out, tmp_stdout )
-    imagej2_base_utils.stop_err( error_message )
-
-imagej2_base_utils.cleanup_before_exit( tmp_dir )
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_bunwarpj_align.py
--- a/imagej2_bunwarpj_align.py Tue Sep 17 17:08:47 2019 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
b
b"@@ -1,178 +0,0 @@\n-#!/usr/bin/env python\n-import argparse\n-import os\n-import shutil\n-import subprocess\n-import tempfile\n-import imagej2_base_utils\n-\n-# Parse Command Line.\n-parser = argparse.ArgumentParser()\n-parser.add_argument( '--source_image', dest='source_image', help='Source image' )\n-parser.add_argument( '--source_image_format', dest='source_image_format', help='Source image format' )\n-parser.add_argument( '--source_mask', dest='source_mask', default=None, help='Source mask' )\n-parser.add_argument( '--source_mask_format', dest='source_mask_format', default=None, help='Source mask image format' )\n-parser.add_argument( '--target_image', dest='target_image', help='Target image' )\n-parser.add_argument( '--target_image_format', dest='target_image_format', help='Target image format' )\n-parser.add_argument( '--target_mask', dest='target_mask', default=None, help='Target mask' )\n-parser.add_argument( '--target_mask_format', dest='target_mask_format', default=None, help='Target mask image format' )\n-parser.add_argument( '--min_scale_def', dest='min_scale_def', type=int, help='Initial deformation' )\n-parser.add_argument( '--max_scale_def', dest='max_scale_def', type=int, help='Final deformation' )\n-parser.add_argument( '--max_subsamp_fact', dest='max_subsamp_fact', type=int, help='Image sub-sample factor' )\n-parser.add_argument( '--divergence_weight', dest='divergence_weight', type=float, help='Divergence weight' )\n-parser.add_argument( '--curl_weight', dest='curl_weight', type=float, help='Curl weight' )\n-parser.add_argument( '--image_weight', dest='image_weight', type=float, help='Image weight' )\n-parser.add_argument( '--consistency_weight', dest='consistency_weight', type=float, help='Consistency weight' )\n-parser.add_argument( '--landmarks_weight', dest='landmarks_weight', type=float, help='Landmarks weight' )\n-parser.add_argument( '--landmarks_file', dest='landmarks_file', default=None, help='Landmarks file' )\n-parser.add_argument( '--source_affine_file', dest='source_affine_file', default=None, help='Initial source affine matrix transformation' )\n-parser.add_argument( '--target_affine_file', dest='target_affine_file', default=None, help='Initial target affine matrix transformation' )\n-parser.add_argument( '--mono', dest='mono', default=False, help='Unidirectional registration (source to target)' )\n-parser.add_argument( '--source_trans_out', dest='source_trans_out', default=None, help='Direct source transformation matrix' )\n-parser.add_argument( '--target_trans_out', dest='target_trans_out', default=None, help='Inverse target transformation matrix' )\n-parser.add_argument( '--source_out', help='Output source image' )\n-parser.add_argument( '--source_out_datatype', help='Output registered source image format' )\n-parser.add_argument( '--target_out', default=None, help='Output target image' )\n-parser.add_argument( '--target_out_datatype', default=None, help='Output registered target image format' )\n-parser.add_argument( '--jython_script', dest='jython_script', help='Path to the Jython script' )\n-\n-args = parser.parse_args()\n-\n-if args.source_trans_out is not None and args.target_trans_out is not None:\n-    save_transformation = True\n-else:\n-    save_transformation = False\n-\n-tmp_dir = imagej2_base_utils.get_temp_dir()\n-source_image_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.source_image, args.source_image_format )\n-tmp_source_out_tiff_path = imagej2_base_utils.get_temporary_image_path( tmp_dir, 'tiff' )\n-tmp_source_out_path = imagej2_base_utils.get_temporary_image_path( tmp_dir, args.source_out_datatype )\n-target_image_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.target_image, args.target_image_format )\n-if not args.mono:\n-    tmp_target_out_tiff_path = imagej2_base_utils.get_temporary_image_path( tmp_dir, 'tiff' )\n-    tmp_target_out_path = imagej2_base_utils.get_temporary_image_path( tmp_dir, args.target_out_datatype )\n-if args.source_mask is not None and args.target_mask is not None:\n-    t"..b'max_scale_def\n-cmd += \' %d\' % args.max_subsamp_fact\n-cmd += \' %.1f\' % args.divergence_weight\n-cmd += \' %.1f\' % args.curl_weight\n-cmd += \' %.1f\' % args.image_weight\n-cmd += \' %.1f\' % args.consistency_weight\n-# Source is produced before target.\n-cmd += \' %s\' % tmp_source_out_tiff_path\n-if not args.mono:\n-    cmd += \' %s\' % tmp_target_out_tiff_path\n-if args.landmarks_file is not None:\n-    # We have to create a temporary file with a .txt extension here so that\n-    # bUnwarpJ will not ignore the Galaxy "dataset.dat" file.\n-    tmp_landmarks_file_path = imagej2_base_utils.get_input_image_path( tmp_dir,\n-                                                                       args.landmarks_file,\n-                                                                       \'txt\' )\n-    cmd += \' -landmarks\'\n-    cmd += \' %.1f\' % args.landmarks_weight\n-    cmd += \' %s\' % tmp_landmarks_file_path\n-if args.source_affine_file is not None and args.target_affine_file is not None:\n-    # Target is sent before source.\n-    cmd += \' -affine\'\n-    cmd += \' %s\' % args.target_affine_file\n-    cmd += \' %s\' % args.source_affine_file\n-if args.mono:\n-    cmd += \' -mono\'\n-if save_transformation:\n-    cmd += \' -save_transformation\'\n-\n-# Align the two images using bUnwarpJ.\n-proc = subprocess.Popen( args=cmd, stderr=tmp_stderr, stdout=tmp_stdout, shell=True )\n-rc = proc.wait()\n-if rc != 0:\n-    error_message = imagej2_base_utils.get_stderr_exception( tmp_err, tmp_stderr, tmp_out, tmp_stdout )\n-    imagej2_base_utils.stop_err( error_message )\n-\n-# bUnwarpJ produces tiff image stacks consisting of 3 slices which can be viewed in ImageJ.\n-# The 3 slices are:: 1) the registered image, 2) the target image and 3) the black/white\n-# warp image.  Galaxy supports only single-layered images, so we\'ll convert the images so they\n-# can be viewed in Galaxy.\n-\n-# Define command response buffers.\n-tmp_out = tempfile.NamedTemporaryFile().name\n-tmp_stdout = open( tmp_out, \'wb\' )\n-tmp_err = tempfile.NamedTemporaryFile().name\n-tmp_stderr = open( tmp_err, \'wb\' )\n-\n-# Build the command line to handle the multi-slice tiff images.\n-cmd = imagej2_base_utils.get_base_command_imagej2( None, jython_script=args.jython_script )\n-if cmd is None:\n-    imagej2_base_utils.stop_err( "ImageJ not found!" )\n-if args.mono:\n-    # bUnwarpJ will produce only a registered source image.\n-    cmd += \' %s %s %s %s\' % ( tmp_source_out_tiff_path,\n-                              args.source_out_datatype,\n-                              tmp_source_out_path,\n-                              args.mono )\n-else:\n-    # bUnwarpJ will produce registered source and target images.\n-    cmd += \' %s %s %s %s %s %s %s\' % ( tmp_source_out_tiff_path,\n-                                       args.source_out_datatype,\n-                                       tmp_source_out_path,\n-                                       tmp_target_out_tiff_path,\n-                                       args.target_out_datatype,\n-                                       tmp_target_out_path,\n-                                       args.mono )\n-\n-# Merge the multi-slice tiff layers into an image that can be viewed in Galaxy.\n-proc = subprocess.Popen( args=cmd, stderr=tmp_stderr, stdout=tmp_stdout, shell=True )\n-rc = proc.wait()\n-if rc != 0:\n-    error_message = imagej2_base_utils.get_stderr_exception( tmp_err, tmp_stderr, tmp_out, tmp_stdout )\n-    imagej2_base_utils.stop_err( error_message )\n-\n-# Save the Registered Source Image to the output dataset.\n-shutil.move( tmp_source_out_path, args.source_out )\n-if not args.mono:\n-    # Move the Registered Target Image to the output dataset.\n-    shutil.move( tmp_target_out_path, args.target_out )\n-\n-# If requested, save matrix transformations as additional datasets.\n-if save_transformation:\n-    shutil.move( tmp_source_out_transf_path, args.source_trans_out )\n-    if not args.mono:\n-        shutil.move( tmp_target_out_transf_path, args.target_trans_out )\n-\n-imagej2_base_utils.cleanup_before_exit( tmp_dir )\n'
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_bunwarpj_align_jython_script.py
--- a/imagej2_bunwarpj_align_jython_script.py Tue Sep 17 17:08:47 2019 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
[
@@ -1,37 +0,0 @@
-import sys
-import jython_utils
-from ij import IJ
-
-# Fiji Jython interpreter implements Python 2.5 which does not
-# provide support for argparse.
-
-if sys.argv[ -1 ].lower() in [ 'true' ]:
-    mono = True
-else:
-    mono = False
-
-if mono:
-    # bUnwarpJ has been called with the -mono param.
-    source_tiff_path = sys.argv[ -4 ]
-    source_datatype = sys.argv[ -3 ]
-    source_path = sys.argv[ -2 ]
-else:
-    source_tiff_path = sys.argv[ -7 ]
-    source_datatype = sys.argv[ -6 ]
-    source_path = sys.argv[ -5 ]
-    target_tiff_path = sys.argv[ -4 ]
-    target_datatype = sys.argv[ -3 ]
-    target_path = sys.argv[ -2 ]
-
-# Save the Registered Source Image.
-registered_source_image = IJ.openImage( source_tiff_path )
-if source_datatype == 'tiff':
-    registered_source_image = jython_utils.convert_before_saving_as_tiff( registered_source_image )
-IJ.saveAs( registered_source_image, source_datatype, source_path )
-
-if not mono:
-    # Save the Registered Target Image.
-    registered_target_image = IJ.openImage( target_tiff_path )
-    if target_datatype == 'tiff':
-        registered_target_image = jython_utils.convert_before_saving_as_tiff( registered_target_image )
-    IJ.saveAs( registered_target_image, target_datatype, target_path )
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_bunwarpj_compare_elastic.py
--- a/imagej2_bunwarpj_compare_elastic.py Tue Sep 17 17:08:47 2019 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
[
@@ -1,65 +0,0 @@
-#!/usr/bin/env python
-import argparse
-import subprocess
-import tempfile
-import imagej2_base_utils
-
-# Parse Command Line.
-parser = argparse.ArgumentParser()
-parser.add_argument( '--source_image', dest='source_image', help='Source image' )
-parser.add_argument( '--source_image_format', dest='source_image_format', help='Source image format' )
-parser.add_argument( '--target_image', dest='target_image', help='Target image' )
-parser.add_argument( '--target_image_format', dest='target_image_format', help='Target image format' )
-parser.add_argument( '--source_transformation', dest='source_transformation', help='Direct source transformation matrix' )
-parser.add_argument( '--target_transformation', dest='target_transformation', help='Inverse target transformation matrix' )
-parser.add_argument( '--output', dest='output', help='Warping index' )
-
-args = parser.parse_args()
-
-tmp_dir = imagej2_base_utils.get_temp_dir()
-source_image_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.source_image, args.source_image_format )
-target_image_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.target_image, args.target_image_format )
-source_transformation_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.source_transformation, 'txt' )
-target_transformation_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.target_transformation, 'txt' )
-# bUnwarpJ produces several lines of output that we need to discard, so
-# we'll use a temporary output file from which we'll read only the last line.
-tmp_output_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.output, 'txt' )
-
-# Define command response buffers.
-tmp_out = tempfile.NamedTemporaryFile().name
-tmp_stdout = open( tmp_out, 'wb' )
-tmp_err = tempfile.NamedTemporaryFile().name
-tmp_stderr = open( tmp_err, 'wb' )
-
-# Build the command line to calculate the warping index.
-cmd = imagej2_base_utils.get_base_cmd_bunwarpj( None )
-if cmd is None:
-    imagej2_base_utils.stop_err( "bUnwarpJ not found!" )
-cmd += ' -compare_elastic'
-# Target is sent before source.
-cmd += ' %s' % target_image_path
-cmd += ' %s' % source_image_path
-cmd += ' %s' % target_transformation_path
-cmd += ' %s' % source_transformation_path
-cmd += ' > %s' % tmp_output_path
-
-# Calculate the warping index of two elastic transformations using bUnwarpJ.
-proc = subprocess.Popen( args=cmd, stderr=subprocess.PIPE, stdout=subprocess.PIPE, shell=True )
-rc = proc.wait()
-if rc != 0:
-    error_message = imagej2_base_utils.get_stderr_exception( tmp_err, tmp_stderr, tmp_out, tmp_stdout )
-    imagej2_base_utils.stop_err( error_message )
-
-# Example contents of tmp_output_path:
-# ['Target image : ~/tmpKAYF1P.jpg\n',
-#  'Source image : ~/tmpgQX0dy.gif\n',
-#  'Target Transformation file : ~/tmpZJC_4B.txt\n',
-#  'Source Transformation file : ~/tmphsSojl.txt\n',
-#  ' Warping index = 14.87777347388348\n']
-results = open( tmp_output_path, 'r' ).readlines()
-warp_index = results[ -1 ].split( ' ' )[ -1 ]
-outf = open( args.output, 'wb' )
-outf.write( '%s' % warp_index )
-outf.close()
-
-imagej2_base_utils.cleanup_before_exit( tmp_dir )
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_bunwarpj_compare_elastic_raw.py
--- a/imagej2_bunwarpj_compare_elastic_raw.py Tue Sep 17 17:08:47 2019 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
[
@@ -1,64 +0,0 @@
-#!/usr/bin/env python
-import argparse
-import subprocess
-import tempfile
-import imagej2_base_utils
-
-# Parse Command Line.
-parser = argparse.ArgumentParser()
-parser.add_argument( '--source_image', dest='source_image', help='Source image' )
-parser.add_argument( '--source_image_format', dest='source_image_format', help='Source image format' )
-parser.add_argument( '--target_image', dest='target_image', help='Target image' )
-parser.add_argument( '--target_image_format', dest='target_image_format', help='Target image format' )
-parser.add_argument( '--target_elastic_transformation', dest='target_elastic_transformation', help='Target elastic transformation matrix' )
-parser.add_argument( '--source_raw_transformation', dest='source_raw_transformation', help='Source raw transformation matrix' )
-parser.add_argument( '--output', dest='output', help='Warping index' )
-
-args = parser.parse_args()
-
-tmp_dir = imagej2_base_utils.get_temp_dir()
-source_image_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.source_image, args.source_image_format )
-target_image_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.target_image, args.target_image_format )
-target_elastic_transformation_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.target_elastic_transformation, 'txt' )
-source_raw_transformation_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.source_raw_transformation, 'txt' )
-# bUnwarpJ produces several lines of output that we need to discard, so
-# we'll use a temporary output file from which we'll read only the last line.
-tmp_output_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.output, 'txt' )
-
-# Define command response buffers.
-tmp_out = tempfile.NamedTemporaryFile().name
-tmp_stdout = open( tmp_out, 'wb' )
-tmp_err = tempfile.NamedTemporaryFile().name
-tmp_stderr = open( tmp_err, 'wb' )
-
-# Build the command line to calculate the warping index.
-cmd = imagej2_base_utils.get_base_cmd_bunwarpj( None )
-if cmd is None:
-    imagej2_base_utils.stop_err( "bUnwarpJ not found!" )
-cmd += ' -compare_elastic_raw'
-cmd += ' %s' % target_image_path
-cmd += ' %s' % source_image_path
-cmd += ' %s' % target_elastic_transformation_path
-cmd += ' %s' % source_raw_transformation_path
-cmd += ' > %s' % tmp_output_path
-
-# Calculate the warping index of elastic and raw transformations using bUnwarpJ.
-proc = subprocess.Popen( args=cmd, stderr=subprocess.PIPE, stdout=subprocess.PIPE, shell=True )
-rc = proc.wait()
-if rc != 0:
-    error_message = imagej2_base_utils.get_stderr_exception( tmp_err, tmp_stderr, tmp_out, tmp_stdout )
-    imagej2_base_utils.stop_err( error_message )
-
-# Example contents of tmp_output_path:
-# ['Target image : ~/tmpHdt9Cs.jpg\n',
-#  'Source image : ~/tmpu6kyfc.gif\n',
-#  'Elastic Transformation file   : ~/tmp4vZurG.txt\n',
-#  'Raw Transformation file : ~/tmp2PNQcT.txt\n',
-#  ' Warping index = 25.007467512204983\n']
-results = open( tmp_output_path, 'r' ).readlines()
-warp_index = results[ -1 ].split( ' ' )[ -1 ]
-outf = open( args.output, 'wb' )
-outf.write( '%s' % warp_index )
-outf.close()
-
-imagej2_base_utils.cleanup_before_exit( tmp_dir )
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_bunwarpj_compare_raw.py
--- a/imagej2_bunwarpj_compare_raw.py Tue Sep 17 17:08:47 2019 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
[
@@ -1,64 +0,0 @@
-#!/usr/bin/env python
-import argparse
-import subprocess
-import tempfile
-import imagej2_base_utils
-
-# Parse Command Line.
-parser = argparse.ArgumentParser()
-parser.add_argument( '--source_image', dest='source_image', help='Source image' )
-parser.add_argument( '--source_image_format', dest='source_image_format', help='Source image format' )
-parser.add_argument( '--target_image', dest='target_image', help='Target image' )
-parser.add_argument( '--target_image_format', dest='target_image_format', help='Target image format' )
-parser.add_argument( '--target_raw_transformation', dest='target_raw_transformation', help='First raw transformation matrix' )
-parser.add_argument( '--source_raw_transformation', dest='source_raw_transformation', help='Second raw transformation matrix' )
-parser.add_argument( '--output', dest='output', help='Warping index' )
-
-args = parser.parse_args()
-
-tmp_dir = imagej2_base_utils.get_temp_dir()
-source_image_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.source_image, args.source_image_format )
-target_image_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.target_image, args.target_image_format )
-target_raw_transformation_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.target_raw_transformation, 'txt' )
-source_raw_transformation_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.source_raw_transformation, 'txt' )
-# bUnwarpJ produces several lines of output that we need to discard, so
-# we'll use a temporary output file from which we'll read only the last line.
-tmp_output_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.output, 'txt' )
-
-# Define command response buffers.
-tmp_out = tempfile.NamedTemporaryFile().name
-tmp_stdout = open( tmp_out, 'wb' )
-tmp_err = tempfile.NamedTemporaryFile().name
-tmp_stderr = open( tmp_err, 'wb' )
-
-# Build the command line to calculate the warping index.
-cmd = imagej2_base_utils.get_base_cmd_bunwarpj( None )
-if cmd is None:
-    imagej2_base_utils.stop_err( "bUnwarpJ not found!" )
-cmd += ' -compare_raw'
-cmd += ' %s' % target_image_path
-cmd += ' %s' % source_image_path
-cmd += ' %s' % target_raw_transformation_path
-cmd += ' %s' % source_raw_transformation_path
-cmd += ' > %s' % tmp_output_path
-
-# Calculate the warping index of two raw transformations using bUnwarpJ.
-proc = subprocess.Popen( args=cmd, stderr=subprocess.PIPE, stdout=subprocess.PIPE, shell=True )
-rc = proc.wait()
-if rc != 0:
-    error_message = imagej2_base_utils.get_stderr_exception( tmp_err, tmp_stderr, tmp_out, tmp_stdout )
-    imagej2_base_utils.stop_err( error_message )
-
-# Example contents of tmp_output_path:
-# ['Target image : ~/tmp5WmDku.jpg\n',
-#  'Source image : ~/tmps74U40.gif\n',
-#  'Target Transformation file : ~/tmpXofC1x.txt\n',
-#  'Source Transformation file : ~/tmpFqNYe4.txt\n',
-#  ' Warping index = 24.111209027033937\n']
-results = open( tmp_output_path, 'r' ).readlines()
-warp_index = results[ -1 ].split( ' ' )[ -1 ]
-outf = open( args.output, 'wb' )
-outf.write( '%s' % warp_index )
-outf.close()
-
-imagej2_base_utils.cleanup_before_exit( tmp_dir )
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_bunwarpj_compose_elastic.py
--- a/imagej2_bunwarpj_compose_elastic.py Tue Sep 17 17:08:47 2019 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
b
@@ -1,50 +0,0 @@
-#!/usr/bin/env python
-import argparse
-import subprocess
-import tempfile
-import imagej2_base_utils
-
-# Parse Command Line.
-parser = argparse.ArgumentParser()
-parser.add_argument( '--source_image', dest='source_image', help='Source image' )
-parser.add_argument( '--source_image_format', dest='source_image_format', help='Source image format' )
-parser.add_argument( '--target_image', dest='target_image', help='Target image' )
-parser.add_argument( '--target_image_format', dest='target_image_format', help='Target image format' )
-parser.add_argument( '--source_elastic_transformation', dest='source_elastic_transformation', help='Direct source transformation matrix' )
-parser.add_argument( '--target_elastic_transformation', dest='target_elastic_transformation', help='Inverse target transformation matrix' )
-parser.add_argument( '--output', dest='output', help='Warping index' )
-
-args = parser.parse_args()
-
-tmp_dir = imagej2_base_utils.get_temp_dir()
-source_image_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.source_image, args.source_image_format )
-target_image_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.target_image, args.target_image_format )
-source_elastic_transformation_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.source_elastic_transformation, 'txt' )
-target_elastic_transformation_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.target_elastic_transformation, 'txt' )
-
-# Define command response buffers.
-tmp_out = tempfile.NamedTemporaryFile().name
-tmp_stdout = open( tmp_out, 'wb' )
-tmp_err = tempfile.NamedTemporaryFile().name
-tmp_stderr = open( tmp_err, 'wb' )
-
-# Build the command line to compose the transformations.
-cmd = imagej2_base_utils.get_base_cmd_bunwarpj( None )
-if cmd is None:
-    imagej2_base_utils.stop_err( "bUnwarpJ not found!" )
-cmd += ' -compose_elastic'
-# Target is sent before source.
-cmd += ' %s' % target_image_path
-cmd += ' %s' % source_image_path
-cmd += ' %s' % target_elastic_transformation_path
-cmd += ' %s' % source_elastic_transformation_path
-cmd += ' %s' % args.output
-
-# Compose the two elastic transformations into a raw transformation using bUnwarpJ.
-proc = subprocess.Popen( args=cmd, stderr=subprocess.PIPE, stdout=subprocess.PIPE, shell=True )
-rc = proc.wait()
-if rc != 0:
-    error_message = imagej2_base_utils.get_stderr_exception( tmp_err, tmp_stderr, tmp_out, tmp_stdout )
-    imagej2_base_utils.stop_err( error_message )
-
-imagej2_base_utils.cleanup_before_exit( tmp_dir )
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_bunwarpj_compose_elastic.xml
--- a/imagej2_bunwarpj_compose_elastic.xml Tue Sep 17 17:08:47 2019 -0400
+++ b/imagej2_bunwarpj_compose_elastic.xml Mon Sep 28 16:47:44 2020 +0000
[
@@ -1,37 +1,43 @@
-<?xml version='1.0' encoding='UTF-8'?>
 <tool id="imagej2_bunwarpj_compose_elastic" name="Compose two elastic transformations" version="@WRAPPER_VERSION@.0">
     <description>into a raw transformation with bUnwarpJ</description>
     <macros>
         <import>imagej2_macros.xml</import>
     </macros>
-    <expand macro="fiji_requirements" />
-    <command>
-<![CDATA[
-    python $__tool_directory__/imagej2_bunwarpj_compose_elastic.py
-    --target_image "$target_image"
-    --target_image_format $target_image.ext
-    --source_image "$source_image"
-    --source_image_format $source_image.ext
-    --target_elastic_transformation "$target_elastic_transformation"
-    --source_elastic_transformation "$source_elastic_transformation"
-    --output "$output"
-]]>
-    </command>
+    <expand macro="fiji_requirements"/>
+    <command detect_errors="exit_code"><![CDATA[
+#import os
+#set output_log = 'output_log.txt'
+#set source_sans_ext = $os.path.splitext($os.path.basename($source_image.file_name))[0]
+#set source_with_ext = '.'.join([source_sans_ext, $source_image.ext])
+ln -s '$source_image.file_name' '$source_with_ext' &&
+#set target_sans_ext = $os.path.splitext($os.path.basename($target_image.file_name))[0]
+#set target_with_ext = '.'.join([target_sans_ext, $target_image.ext])
+ln -s '$target_image.file_name' '$target_with_ext' &&
+bunwarpj -compose_elastic
+'$target_with_ext'
+'$source_with_ext'
+'$target_elastic_transformation'
+'$source_elastic_transformation'
+'$output'
+&>'$output_log';
+if [[ $? -ne 0 ]]; then
+    cat '$output_log' >&2;
+fi
+]]></command>
     <inputs>
-        <param format="bmp,eps,gif,jpg,pcx,pgm,png,psd,tiff" name="target_image" type="data" label="Target image"/>
-        <param format="bmp,eps,gif,jpg,pcx,pgm,png,psd,tiff" name="source_image" type="data" label="Source image"/>
+        <expand macro="param_target_image"/>
+        <expand macro="param_source_image"/>
         <param format="txt" name="target_elastic_transformation" type="data" label="Target inverse transformation"/>
         <param format="txt" name="source_elastic_transformation" type="data" label="Source direct transformation"/>
     </inputs>
     <outputs>
-        <data name="output" format="txt" label="${tool.name} on ${on_string}" />
+        <data name="output" format="txt"/>
     </outputs>
     <tests>
         <test>
-            <param name="target_image" value="dotblot.jpg" />
-            <param name="source_image" value="blobs.gif" />
-            <param name="target_elastic_transformation" value="target_elastic_transformation.txt" />
-            <param name="source_elastic_transformation" value="source_elastic_transformation.txt" />
+            <expand macro="test_target_source_images"/>
+            <param name="target_elastic_transformation" value="target_elastic_transformation.txt"/>
+            <param name="source_elastic_transformation" value="source_elastic_transformation.txt"/>
             <output name="output" file="raw_transformation.txt" compare="contains"/>
         </test>
     </tests>
@@ -47,5 +53,5 @@
 ]]>
 
     </help>
-    <expand macro="bunwarpj_citations" />
+    <expand macro="bunwarpj_citations"/>
 </tool>
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_bunwarpj_compose_raw.py
--- a/imagej2_bunwarpj_compose_raw.py Tue Sep 17 17:08:47 2019 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
b
@@ -1,50 +0,0 @@
-#!/usr/bin/env python
-import argparse
-import subprocess
-import tempfile
-import imagej2_base_utils
-
-# Parse Command Line.
-parser = argparse.ArgumentParser()
-parser.add_argument( '--source_image', dest='source_image', help='Source image' )
-parser.add_argument( '--source_image_format', dest='source_image_format', help='Source image format' )
-parser.add_argument( '--target_image', dest='target_image', help='Target image' )
-parser.add_argument( '--target_image_format', dest='target_image_format', help='Target image format' )
-parser.add_argument( '--source_raw_transformation', dest='source_raw_transformation', help='Direct source transformation matrix' )
-parser.add_argument( '--target_raw_transformation', dest='target_raw_transformation', help='Inverse target transformation matrix' )
-parser.add_argument( '--output', dest='output', help='Warping index' )
-
-args = parser.parse_args()
-
-tmp_dir = imagej2_base_utils.get_temp_dir()
-source_image_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.source_image, args.source_image_format )
-target_image_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.target_image, args.target_image_format )
-source_raw_transformation_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.source_raw_transformation, 'txt' )
-target_raw_transformation_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.target_raw_transformation, 'txt' )
-
-# Define command response buffers.
-tmp_out = tempfile.NamedTemporaryFile().name
-tmp_stdout = open( tmp_out, 'wb' )
-tmp_err = tempfile.NamedTemporaryFile().name
-tmp_stderr = open( tmp_err, 'wb' )
-
-# Build the command line to compose the two raw transformations.
-cmd = imagej2_base_utils.get_base_cmd_bunwarpj( None )
-if cmd is None:
-    imagej2_base_utils.stop_err( "bUnwarpJ not found!" )
-cmd += ' -compose_raw'
-# Target is sent before source.
-cmd += ' %s' % target_image_path
-cmd += ' %s' % source_image_path
-cmd += ' %s' % target_raw_transformation_path
-cmd += ' %s' % source_raw_transformation_path
-cmd += ' %s' % args.output
-
-# Compose the two raw transformations into another raw transformation using bUnwarpJ.
-proc = subprocess.Popen( args=cmd, stderr=subprocess.PIPE, stdout=subprocess.PIPE, shell=True )
-rc = proc.wait()
-if rc != 0:
-    error_message = imagej2_base_utils.get_stderr_exception( tmp_err, tmp_stderr, tmp_out, tmp_stdout )
-    imagej2_base_utils.stop_err( error_message )
-
-imagej2_base_utils.cleanup_before_exit( tmp_dir )
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_bunwarpj_compose_raw_elastic.py
--- a/imagej2_bunwarpj_compose_raw_elastic.py Tue Sep 17 17:08:47 2019 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
b
@@ -1,50 +0,0 @@
-#!/usr/bin/env python
-import argparse
-import subprocess
-import tempfile
-import imagej2_base_utils
-
-# Parse Command Line.
-parser = argparse.ArgumentParser()
-parser.add_argument( '--source_image', dest='source_image', help='Source image' )
-parser.add_argument( '--source_image_format', dest='source_image_format', help='Source image format' )
-parser.add_argument( '--target_image', dest='target_image', help='Target image' )
-parser.add_argument( '--target_image_format', dest='target_image_format', help='Target image format' )
-parser.add_argument( '--source_elastic_transformation', dest='source_elastic_transformation', help='Direct source transformation matrix' )
-parser.add_argument( '--target_raw_transformation', dest='target_raw_transformation', help='Inverse target transformation matrix' )
-parser.add_argument( '--output', dest='output', help='Warping index' )
-
-args = parser.parse_args()
-
-tmp_dir = imagej2_base_utils.get_temp_dir()
-source_image_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.source_image, args.source_image_format )
-target_image_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.target_image, args.target_image_format )
-source_elastic_transformation_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.source_elastic_transformation, 'txt' )
-target_raw_transformation_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.target_raw_transformation, 'txt' )
-
-# Define command response buffers.
-tmp_out = tempfile.NamedTemporaryFile().name
-tmp_stdout = open( tmp_out, 'wb' )
-tmp_err = tempfile.NamedTemporaryFile().name
-tmp_stderr = open( tmp_err, 'wb' )
-
-# Build the command line to compose the raw and elastic transformations.
-cmd = imagej2_base_utils.get_base_cmd_bunwarpj( None )
-if cmd is None:
-    imagej2_base_utils.stop_err( "bUnwarpJ not found!" )
-cmd += ' -compose_raw_elastic'
-# Target is sent before source.
-cmd += ' %s' % target_image_path
-cmd += ' %s' % source_image_path
-cmd += ' %s' % target_raw_transformation_path
-cmd += ' %s' % source_elastic_transformation_path
-cmd += ' %s' % args.output
-
-# Compose the raw and elastic transformations into another raw transformation using bUnwarpJ.
-proc = subprocess.Popen( args=cmd, stderr=subprocess.PIPE, stdout=subprocess.PIPE, shell=True )
-rc = proc.wait()
-if rc != 0:
-    error_message = imagej2_base_utils.get_stderr_exception( tmp_err, tmp_stderr, tmp_out, tmp_stdout )
-    imagej2_base_utils.stop_err( error_message )
-
-imagej2_base_utils.cleanup_before_exit( tmp_dir )
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_bunwarpj_convert_to_raw.py
--- a/imagej2_bunwarpj_convert_to_raw.py Tue Sep 17 17:08:47 2019 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
b
@@ -1,47 +0,0 @@
-#!/usr/bin/env python
-import argparse
-import subprocess
-import tempfile
-import imagej2_base_utils
-
-# Parse Command Line.
-parser = argparse.ArgumentParser()
-parser.add_argument( '--source_image', dest='source_image', help='Source image' )
-parser.add_argument( '--source_image_format', dest='source_image_format', help='Source image format' )
-parser.add_argument( '--target_image', dest='target_image', help='Target image' )
-parser.add_argument( '--target_image_format', dest='target_image_format', help='Target image format' )
-parser.add_argument( '--elastic_transformation', dest='elastic_transformation', help='Elastic transformation as saved by bUnwarpJ in elastic format' )
-parser.add_argument( '--raw_transformation', dest='raw_transformation', help='Raw transformation' )
-
-args = parser.parse_args()
-
-tmp_dir = imagej2_base_utils.get_temp_dir()
-source_image_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.source_image, args.source_image_format )
-target_image_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.target_image, args.target_image_format )
-elastic_transformation_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.elastic_transformation, 'txt' )
-
-# Define command response buffers.
-tmp_out = tempfile.NamedTemporaryFile().name
-tmp_stdout = open( tmp_out, 'wb' )
-tmp_err = tempfile.NamedTemporaryFile().name
-tmp_stderr = open( tmp_err, 'wb' )
-
-# Build the command line to convert the B-spline (i.e., elastic) transformation to raw.
-cmd = imagej2_base_utils.get_base_cmd_bunwarpj( None )
-if cmd is None:
-    imagej2_base_utils.stop_err( "bUnwarpJ not found!" )
-cmd += ' -convert_to_raw'
-# Target is sent before source.
-cmd += ' %s' % target_image_path
-cmd += ' %s' % source_image_path
-cmd += ' %s' % elastic_transformation_path
-cmd += ' %s' % args.raw_transformation
-
-# Convert the elastic transformation to raw using bUnwarpJ.
-proc = subprocess.Popen( args=cmd, stderr=tmp_stderr, stdout=tmp_stdout, shell=True )
-rc = proc.wait()
-if rc != 0:
-    error_message = imagej2_base_utils.get_stderr_exception( tmp_err, tmp_stderr, tmp_out, tmp_stdout )
-    imagej2_base_utils.stop_err( error_message )
-
-imagej2_base_utils.cleanup_before_exit( tmp_dir )
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_bunwarpj_elastic_transform.py
--- a/imagej2_bunwarpj_elastic_transform.py Tue Sep 17 17:08:47 2019 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
b
@@ -1,73 +0,0 @@
-#!/usr/bin/env python
-import argparse
-import shutil
-import subprocess
-import tempfile
-import imagej2_base_utils
-
-# Parse Command Line.
-parser = argparse.ArgumentParser()
-parser.add_argument( '--source_image', dest='source_image', help='Source image' )
-parser.add_argument( '--source_image_format', dest='source_image_format', help='Source image format' )
-parser.add_argument( '--target_image', dest='target_image', help='Target image' )
-parser.add_argument( '--target_image_format', dest='target_image_format', help='Target image format' )
-parser.add_argument( '--elastic_transformation', dest='elastic_transformation', help='Elastic transformation as saved by bUnwarpJ in elastic format' )
-parser.add_argument( '--source_out', help='Output source image' )
-parser.add_argument( '--source_out_datatype', help='Output registered source image format' )
-parser.add_argument( '--jython_script', dest='jython_script', help='Path to the Jython script' )
-
-args = parser.parse_args()
-
-tmp_dir = imagej2_base_utils.get_temp_dir()
-source_image_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.source_image, args.source_image_format )
-tmp_source_out_tiff_path = imagej2_base_utils.get_temporary_image_path( tmp_dir, 'tiff' )
-tmp_source_out_path = imagej2_base_utils.get_temporary_image_path( tmp_dir, args.source_out_datatype )
-target_image_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.target_image, args.target_image_format )
-elastic_transformation_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.elastic_transformation, 'txt' )
-
-# Define command response buffers.
-tmp_out = tempfile.NamedTemporaryFile().name
-tmp_stdout = open( tmp_out, 'wb' )
-tmp_err = tempfile.NamedTemporaryFile().name
-tmp_stderr = open( tmp_err, 'wb' )
-
-# Build the command line to apply the transformation.
-cmd = imagej2_base_utils.get_base_cmd_bunwarpj( None )
-if cmd is None:
-    imagej2_base_utils.stop_err( "bUnwarpJ not found!" )
-cmd += ' -elastic_transform'
-# Target is sent before source.
-cmd += ' %s' % target_image_path
-cmd += ' %s' % source_image_path
-cmd += ' %s' % elastic_transformation_path
-cmd += ' %s' % tmp_source_out_tiff_path
-
-# Apply the elastic transformation using bUnwarpJ.
-proc = subprocess.Popen( args=cmd, stderr=tmp_stderr, stdout=tmp_stdout, shell=True )
-rc = proc.wait()
-if rc != 0:
-    error_message = imagej2_base_utils.get_stderr_exception( tmp_err, tmp_stderr, tmp_out, tmp_stdout )
-    imagej2_base_utils.stop_err( error_message )
-
-# Convert the registered image to the specified output format.
-tmp_out = tempfile.NamedTemporaryFile().name
-tmp_stdout = open( tmp_out, 'wb' )
-tmp_err = tempfile.NamedTemporaryFile().name
-tmp_stderr = open( tmp_err, 'wb' )
-
-cmd = imagej2_base_utils.get_base_command_imagej2( None, jython_script=args.jython_script )
-if cmd is None:
-    imagej2_base_utils.stop_err( "ImageJ not found!" )
-cmd += ' %s %s %s' % ( tmp_source_out_tiff_path,
-                       args.source_out_datatype,
-                       tmp_source_out_path )
-
-proc = subprocess.Popen( args=cmd, stderr=tmp_stderr, stdout=tmp_stdout, shell=True )
-rc = proc.wait()
-if rc != 0:
-    error_message = imagej2_base_utils.get_stderr_exception( tmp_err, tmp_stderr, tmp_out, tmp_stdout )
-    imagej2_base_utils.stop_err( error_message )
-
-# Save the Registered Source Image to the defined output.
-shutil.move( tmp_source_out_path, args.source_out )
-imagej2_base_utils.cleanup_before_exit( tmp_dir )
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_bunwarpj_elastic_transform_jython_script.py
--- a/imagej2_bunwarpj_elastic_transform_jython_script.py Tue Sep 17 17:08:47 2019 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
[
@@ -1,16 +0,0 @@
-import sys
-import jython_utils
-from ij import IJ
-
-# Fiji Jython interpreter implements Python 2.5 which does not
-# provide support for argparse.
-
-source_tiff_path = sys.argv[ -3 ]
-source_datatype = sys.argv[ -2 ]
-source_path = sys.argv[ -1 ]
-
-# Save the Registered Source Image.
-registered_source_image = IJ.openImage( source_tiff_path )
-if source_datatype == 'tiff':
-    registered_source_image = jython_utils.convert_before_saving_as_tiff( registered_source_image )
-IJ.saveAs( registered_source_image, source_datatype, source_path )
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_bunwarpj_raw_transform.py
--- a/imagej2_bunwarpj_raw_transform.py Tue Sep 17 17:08:47 2019 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
b
@@ -1,73 +0,0 @@
-#!/usr/bin/env python
-import argparse
-import shutil
-import subprocess
-import tempfile
-import imagej2_base_utils
-
-# Parse Command Line.
-parser = argparse.ArgumentParser()
-parser.add_argument( '--source_image', dest='source_image', help='Source image' )
-parser.add_argument( '--source_image_format', dest='source_image_format', help='Source image format' )
-parser.add_argument( '--target_image', dest='target_image', help='Target image' )
-parser.add_argument( '--target_image_format', dest='target_image_format', help='Target image format' )
-parser.add_argument( '--raw_transformation', dest='raw_transformation', help='Raw transformation as saved by bUnwarpJ' )
-parser.add_argument( '--source_out', help='Output source image' )
-parser.add_argument( '--source_out_datatype', help='Output registered source image format' )
-parser.add_argument( '--jython_script', dest='jython_script', help='Path to the Jython script' )
-
-args = parser.parse_args()
-
-tmp_dir = imagej2_base_utils.get_temp_dir()
-source_image_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.source_image, args.source_image_format )
-tmp_source_out_tiff_path = imagej2_base_utils.get_temporary_image_path( tmp_dir, 'tiff' )
-tmp_source_out_path = imagej2_base_utils.get_temporary_image_path( tmp_dir, args.source_out_datatype )
-target_image_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.target_image, args.target_image_format )
-raw_transformation_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.raw_transformation, 'txt' )
-
-# Define command response buffers.
-tmp_out = tempfile.NamedTemporaryFile().name
-tmp_stdout = open( tmp_out, 'wb' )
-tmp_err = tempfile.NamedTemporaryFile().name
-tmp_stderr = open( tmp_err, 'wb' )
-
-# Build the command line to apply the raw transformation.
-cmd = imagej2_base_utils.get_base_cmd_bunwarpj( None )
-if cmd is None:
-    imagej2_base_utils.stop_err( "bUnwarpJ not found!" )
-cmd += ' -raw_transform'
-# Target is sent before source.
-cmd += ' %s' % target_image_path
-cmd += ' %s' % source_image_path
-cmd += ' %s' % raw_transformation_path
-cmd += ' %s' % tmp_source_out_tiff_path
-
-# Apply the raw transformation using bUnwarpJ.
-proc = subprocess.Popen( args=cmd, stderr=tmp_stderr, stdout=tmp_stdout, shell=True )
-rc = proc.wait()
-if rc != 0:
-    error_message = imagej2_base_utils.get_stderr_exception( tmp_err, tmp_stderr, tmp_out, tmp_stdout )
-    imagej2_base_utils.stop_err( error_message )
-
-# Convert the registered image to the specified output format.
-tmp_out = tempfile.NamedTemporaryFile().name
-tmp_stdout = open( tmp_out, 'wb' )
-tmp_err = tempfile.NamedTemporaryFile().name
-tmp_stderr = open( tmp_err, 'wb' )
-
-cmd = imagej2_base_utils.get_base_command_imagej2( None, jython_script=args.jython_script )
-if cmd is None:
-    imagej2_base_utils.stop_err( "ImageJ not found!" )
-cmd += ' %s %s %s' % ( tmp_source_out_tiff_path,
-                       args.source_out_datatype,
-                       tmp_source_out_path )
-
-proc = subprocess.Popen( args=cmd, stderr=tmp_stderr, stdout=tmp_stdout, shell=True )
-rc = proc.wait()
-if rc != 0:
-    error_message = imagej2_base_utils.get_stderr_exception( tmp_err, tmp_stderr, tmp_out, tmp_stdout )
-    imagej2_base_utils.stop_err( error_message )
-
-# Save the Registered Source Image to the defined output.
-shutil.move( tmp_source_out_path, args.source_out )
-imagej2_base_utils.cleanup_before_exit( tmp_dir )
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_bunwarpj_raw_transform_jython_script.py
--- a/imagej2_bunwarpj_raw_transform_jython_script.py Tue Sep 17 17:08:47 2019 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
[
@@ -1,16 +0,0 @@
-import sys
-import jython_utils
-from ij import IJ
-
-# Fiji Jython interpreter implements Python 2.5 which does not
-# provide support for argparse.
-
-source_tiff_path = sys.argv[ -3 ]
-source_datatype = sys.argv[ -2 ]
-source_path = sys.argv[ -1 ]
-
-# Save the Registered Source Image.
-registered_source_image = IJ.openImage( source_tiff_path )
-if source_datatype == 'tiff':
-    registered_source_image = jython_utils.convert_before_saving_as_tiff( registered_source_image )
-IJ.saveAs( registered_source_image, source_datatype, source_path )
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_create_image.py
--- a/imagej2_create_image.py Tue Sep 17 17:08:47 2019 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
b
@@ -1,40 +0,0 @@
-#!/usr/bin/env python
-import argparse
-import shutil
-import subprocess
-import tempfile
-import imagej2_base_utils
-
-if __name__=="__main__":
-    # Parse Command Line.
-    parser = argparse.ArgumentParser()
-    parser.add_argument( '--width', dest='width', type=int, help='Image width in pixels' )
-    parser.add_argument( '--height', dest='height', type=int, help='Image height in pixels' )
-    parser.add_argument( '--depth', dest='depth', type=int, help='Image depth (specifies the number of stack slices)' )
-    parser.add_argument( '--image_type', dest='image_type', help='Image type' )
-    parser.add_argument( '--image_title', dest='image_title', default='', help='Image title' )
-    parser.add_argument( '--output_datatype', dest='output_datatype', help='Output image format' )
-    parser.add_argument( '--jython_script', dest='jython_script', help='Path to the Jython script' )
-    parser.add_argument( '--out_fname', help='Path to the output file' )
-    args = parser.parse_args()
-
-    tmp_dir = imagej2_base_utils.get_temp_dir()
-    tmp_image_path = imagej2_base_utils.get_temporary_image_path( tmp_dir, args.output_datatype )
-
-    # Define command response buffers.
-    tmp_out = tempfile.NamedTemporaryFile().name
-    tmp_stdout = open( tmp_out, 'wb' )
-    tmp_err = tempfile.NamedTemporaryFile().name
-    tmp_stderr = open( tmp_err, 'wb' )
-    # Build the command line.
-    cmd = imagej2_base_utils.get_base_command_imagej2( None, jython_script=args.jython_script )
-    if cmd is None:
-        imagej2_base_utils.stop_err( "ImageJ not found!" )
-    cmd += ' %s %d %d %d %s %s' % ( args.image_title, args.width, args.height, args.depth, args.image_type, tmp_image_path )
-    proc = subprocess.Popen( args=cmd, stderr=tmp_stderr, stdout=tmp_stdout, shell=True )
-    rc = proc.wait()
-    if rc != 0:
-        error_message = imagej2_base_utils.get_stderr_exception( tmp_err, tmp_stderr, tmp_out, tmp_stdout )
-        imagej2_base_utils.stop_err( error_message )
-    shutil.move( tmp_image_path, args.out_fname )
-    imagej2_base_utils.cleanup_before_exit( tmp_dir )
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_create_image_jython_script.py
--- a/imagej2_create_image_jython_script.py Tue Sep 17 17:08:47 2019 -0400
+++ b/imagej2_create_image_jython_script.py Mon Sep 28 16:47:44 2020 +0000
[
@@ -1,14 +1,15 @@
 import sys
+
 from ij import IJ
 
 # Fiji Jython interpreter implements Python 2.5 which does not
 # provide support for argparse.
-title = sys.argv[ -6 ]
-width = int( sys.argv[ -5 ] )
-height = int( sys.argv[ -4 ] )
-depth = int( sys.argv[ -3 ] )
-type = sys.argv[ -2 ].replace( '_', ' ' )
-tmp_image_path = sys.argv[ -1 ]
+title = sys.argv[-6]
+width = int(sys.argv[-5])
+height = int(sys.argv[-4])
+depth = int(sys.argv[-3])
+type = sys.argv[-2].replace('_', ' ')
+tmp_image_path = sys.argv[-1]
 
-imp = IJ.newImage( title, type, width, height, depth )
-IJ.save( imp, "%s" % tmp_image_path )
+imp = IJ.newImage(title, type, width, height, depth)
+IJ.save(imp, "%s" % tmp_image_path)
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_enhance_contrast.py
--- a/imagej2_enhance_contrast.py Tue Sep 17 17:08:47 2019 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
b
@@ -1,63 +0,0 @@
-#!/usr/bin/env python
-import argparse
-import os
-import shutil
-import subprocess
-import tempfile
-import imagej2_base_utils
-
-parser = argparse.ArgumentParser()
-parser.add_argument( '--input', dest='input', help='Path to the input file' )
-parser.add_argument( '--input_datatype', dest='input_datatype', help='Datatype of the input image' )
-parser.add_argument( '--equalize_histogram', dest='equalize_histogram', help='Equalize_histogram' )
-parser.add_argument( '--saturated_pixels', dest='saturated_pixels', type=float, default=None, help='Saturated pixel pct' )
-parser.add_argument( '--normalize', dest='normalize', help='Normalize' )
-parser.add_argument( '--jython_script', dest='jython_script', help='Path to the Jython script' )
-parser.add_argument( '--output', dest='output', help='Path to the output file' )
-parser.add_argument( '--output_datatype', dest='output_datatype', help='Datatype of the output image' )
-args = parser.parse_args()
-
-tmp_dir = imagej2_base_utils.get_temp_dir()
-# ImageJ expects valid image file extensions, so the Galaxy .dat extension does not
-# work for some features.  The following creates a symlink with an appropriate file
-# extension that points to the Galaxy dataset.  This symlink is used by ImageJ.
-tmp_input_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.input, args.input_datatype )
-tmp_output_path = imagej2_base_utils.get_temporary_image_path( tmp_dir, args.output_datatype )
-
-# Define command response buffers.
-tmp_out = tempfile.NamedTemporaryFile().name
-tmp_stdout = open( tmp_out, 'wb' )
-tmp_err = tempfile.NamedTemporaryFile().name
-tmp_stderr = open( tmp_err, 'wb' )
-# Java writes a lot of stuff to stderr, so we'll specify a file for handling actual errors.
-error_log = tempfile.NamedTemporaryFile( delete=False ).name
-
-# Build the command line.
-cmd = imagej2_base_utils.get_base_command_imagej2( None, jython_script=args.jython_script )
-if cmd is None:
-    imagej2_base_utils.stop_err( "ImageJ not found!" )
-cmd += ' %s' % error_log
-cmd += ' %s' % tmp_input_path
-cmd += ' %s' % args.equalize_histogram
-cmd += imagej2_base_utils.handle_none_type( args.saturated_pixels )
-cmd += ' %s' % args.normalize
-cmd += ' %s' % tmp_output_path
-cmd += ' %s' % args.output_datatype
-
-# Run the command.
-proc = subprocess.Popen( args=cmd, stderr=tmp_stderr, stdout=tmp_stdout, shell=True )
-rc = proc.wait()
-
-# Handle execution errors.
-if rc != 0:
-    error_message = imagej2_base_utils.get_stderr_exception( tmp_err, tmp_stderr, tmp_out, tmp_stdout )
-    imagej2_base_utils.stop_err( error_message )
-
-# Handle processing errors.
-if os.path.getsize( error_log ) > 0:
-    error_message = open( error_log, 'r' ).read()
-    imagej2_base_utils.stop_err( error_message )
-
-# Save the output image.
-shutil.move( tmp_output_path, args.output )
-imagej2_base_utils.cleanup_before_exit( tmp_dir )
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_enhance_contrast_jython_script.py
--- a/imagej2_enhance_contrast_jython_script.py Tue Sep 17 17:08:47 2019 -0400
+++ b/imagej2_enhance_contrast_jython_script.py Mon Sep 28 16:47:44 2020 +0000
[
@@ -1,19 +1,19 @@
-import jython_utils
 import sys
+
 from ij import IJ
 
 # Fiji Jython interpreter implements Python 2.5 which does not
 # provide support for argparse.
-error_log = sys.argv[ -7 ]
-input = sys.argv[ -6 ]
-equalize_histogram = jython_utils.asbool( sys.argv[ -5 ] )
-saturated_pixels = sys.argv[ -4 ]
-normalize = jython_utils.asbool( sys.argv[ -3 ] )
-tmp_output_path = sys.argv[ -2 ]
-output_datatype = sys.argv[ -1 ]
+error_log = sys.argv[-7]
+input = sys.argv[-6]
+equalize_histogram = sys.argv[-5] == "yes"
+saturated_pixels = sys.argv[-4]
+normalize = sys.argv[-3] == "yes"
+tmp_output_path = sys.argv[-2]
+output_datatype = sys.argv[-1]
 
 # Open the input image file.
-input_image_plus = IJ.openImage( input )
+input_image_plus = IJ.openImage(input)
 
 # Create a copy of the image.
 input_image_plus_copy = input_image_plus.duplicate()
@@ -24,19 +24,16 @@
 options = []
 # If equalize_histogram, saturated_pixels and normalize are ignored.
 if equalize_histogram:
-    options.append( 'equalize' )
+    options.append('equalize')
 else:
-    if saturated_pixels not in [ None, 'None' ]:
+    if saturated_pixels not in [None, 'None']:
         # Fiji allows only a single decimal place for this value.
-        options.append( 'saturated=%.3f' % float( saturated_pixels ) )
+        options.append('saturated=%.3f' % float(saturated_pixels))
     # Normalization of RGB images is not supported.
     if bit_depth != 24 and normalize:
-        options.append( 'normalize' )
-try:
-    # Run the command.
-    options = "%s" % ' '.join( options )
-    IJ.run( input_image_plus_copy, "Enhance Contrast...", options )
-    # Save the ImagePlus object as a new image.
-    IJ.saveAs( input_image_plus_copy, output_datatype, tmp_output_path )
-except Exception, e:
-    jython_utils.handle_error( error_log, str( e ) )
+        options.append('normalize')
+# Run the command.
+options = "%s" % ' '.join(options)
+IJ.run(input_image_plus_copy, "Enhance Contrast...", options)
+# Save the ImagePlus object as a new image.
+IJ.saveAs(input_image_plus_copy, output_datatype, tmp_output_path)
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_find_edges.py
--- a/imagej2_find_edges.py Tue Sep 17 17:08:47 2019 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
b
@@ -1,57 +0,0 @@
-#!/usr/bin/env python
-import argparse
-import os
-import shutil
-import subprocess
-import tempfile
-import imagej2_base_utils
-
-parser = argparse.ArgumentParser()
-parser.add_argument( '--input', dest='input', help='Path to the input file' )
-parser.add_argument( '--input_datatype', dest='input_datatype', help='Datatype of the input image' )
-parser.add_argument( '--jython_script', dest='jython_script', help='Path to the Jython script' )
-parser.add_argument( '--output', dest='output', help='Path to the output file' )
-parser.add_argument( '--output_datatype', dest='output_datatype', help='Datatype of the output image' )
-args = parser.parse_args()
-
-tmp_dir = imagej2_base_utils.get_temp_dir()
-# ImageJ expects valid image file extensions, so the Galaxy .dat extension does not
-# work for some features.  The following creates a symlink with an appropriate file
-# extension that points to the Galaxy dataset.  This symlink is used by ImageJ.
-tmp_input_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.input, args.input_datatype )
-tmp_output_path = imagej2_base_utils.get_temporary_image_path( tmp_dir, args.output_datatype )
-
-# Define command response buffers.
-tmp_out = tempfile.NamedTemporaryFile().name
-tmp_stdout = open( tmp_out, 'wb' )
-tmp_err = tempfile.NamedTemporaryFile().name
-tmp_stderr = open( tmp_err, 'wb' )
-# Java writes a lot of stuff to stderr, so we'll specify a file for handling actual errors.
-error_log = tempfile.NamedTemporaryFile( delete=False ).name
-
-# Build the command line.
-cmd = imagej2_base_utils.get_base_command_imagej2( None, jython_script=args.jython_script )
-if cmd is None:
-    imagej2_base_utils.stop_err( "ImageJ not found!" )
-cmd += ' %s' % error_log
-cmd += ' %s' % tmp_input_path
-cmd += ' %s' % tmp_output_path
-cmd += ' %s' % args.output_datatype
-
-# Run the command.
-proc = subprocess.Popen( args=cmd, stderr=tmp_stderr, stdout=tmp_stdout, shell=True )
-rc = proc.wait()
-
-# Handle execution errors.
-if rc != 0:
-    error_message = imagej2_base_utils.get_stderr_exception( tmp_err, tmp_stderr, tmp_out, tmp_stdout )
-    imagej2_base_utils.stop_err( error_message )
-
-# Handle processing errors.
-if os.path.getsize( error_log ) > 0:
-    error_message = open( error_log, 'r' ).read()
-    imagej2_base_utils.stop_err( error_message )
-
-# Save the output image.
-shutil.move( tmp_output_path, args.output )
-imagej2_base_utils.cleanup_before_exit( tmp_dir )
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_find_edges_jython_script.py
--- a/imagej2_find_edges_jython_script.py Tue Sep 17 17:08:47 2019 -0400
+++ b/imagej2_find_edges_jython_script.py Mon Sep 28 16:47:44 2020 +0000
[
@@ -1,25 +1,22 @@
-import jython_utils
 import sys
+
 from ij import IJ
 
 # Fiji Jython interpreter implements Python 2.5 which does not
 # provide support for argparse.
-error_log = sys.argv[ -4 ]
-input = sys.argv[ -3 ]
-tmp_output_path = sys.argv[ -2 ]
-output_datatype = sys.argv[ -1 ]
+error_log = sys.argv[-4]
+input = sys.argv[-3]
+tmp_output_path = sys.argv[-2]
+output_datatype = sys.argv[-1]
 
 # Open the input image file.
-input_image_plus = IJ.openImage( input )
+input_image_plus = IJ.openImage(input)
 
 # Create a copy of the image.
 input_image_plus_copy = input_image_plus.duplicate()
 image_processor_copy = input_image_plus_copy.getProcessor()
 
-try:
-    # Run the command.
-    IJ.run( input_image_plus_copy, "Find Edges", "" )
-    # Save the ImagePlus object as a new image.
-    IJ.saveAs( input_image_plus_copy, output_datatype, tmp_output_path )
-except Exception, e:
-    jython_utils.handle_error( error_log, str( e ) )
+# Run the command.
+IJ.run(input_image_plus_copy, "Find Edges", "")
+# Save the ImagePlus object as a new image.
+IJ.saveAs(input_image_plus_copy, output_datatype, tmp_output_path)
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_find_maxima.py
--- a/imagej2_find_maxima.py Tue Sep 17 17:08:47 2019 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
b
@@ -1,69 +0,0 @@
-#!/usr/bin/env python
-import argparse
-import os
-import shutil
-import subprocess
-import tempfile
-import imagej2_base_utils
-
-parser = argparse.ArgumentParser()
-parser.add_argument( '--input', dest='input', help='Path to the input file' )
-parser.add_argument( '--input_datatype', dest='input_datatype', help='Datatype of the input image' )
-parser.add_argument( '--scale_when_converting', dest='scale_when_converting', help='Scale when converting RGB image' )
-parser.add_argument( '--weighted_rgb_conversions', dest='weighted_rgb_conversions', help='Weighted RGB conversions for RGB image' )
-parser.add_argument( '--noise_tolerance', dest='noise_tolerance', type=int, help='Noise tolerance' )
-parser.add_argument( '--output_type', dest='output_type', help='Output type' )
-parser.add_argument( '--exclude_edge_maxima', dest='exclude_edge_maxima', help='Exclude edge maxima' )
-parser.add_argument( '--light_background', dest='light_background', help='Light background' )
-parser.add_argument( '--jython_script', dest='jython_script', help='Path to the Jython script' )
-parser.add_argument( '--output', dest='output', help='Path to the output file' )
-parser.add_argument( '--output_datatype', dest='output_datatype', help='Datatype of the output image' )
-args = parser.parse_args()
-
-tmp_dir = imagej2_base_utils.get_temp_dir()
-# ImageJ expects valid image file extensions, so the Galaxy .dat extension does not
-# work for some features.  The following creates a symlink with an appropriate file
-# extension that points to the Galaxy dataset.  This symlink is used by ImageJ.
-tmp_input_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.input, args.input_datatype )
-tmp_output_path = imagej2_base_utils.get_temporary_image_path( tmp_dir, args.output_datatype )
-
-# Define command response buffers.
-tmp_out = tempfile.NamedTemporaryFile().name
-tmp_stdout = open( tmp_out, 'wb' )
-tmp_err = tempfile.NamedTemporaryFile().name
-tmp_stderr = open( tmp_err, 'wb' )
-# Java writes a lot of stuff to stderr, so we'll specify a file for handling actual errors.
-error_log = tempfile.NamedTemporaryFile( delete=False ).name
-
-# Build the command line.
-cmd = imagej2_base_utils.get_base_command_imagej2( None, jython_script=args.jython_script )
-if cmd is None:
-    imagej2_base_utils.stop_err( "ImageJ not found!" )
-cmd += ' %s' % error_log
-cmd += ' %s' % tmp_input_path
-cmd += ' %s' % args.scale_when_converting
-cmd += ' %s' % args.weighted_rgb_conversions
-cmd += ' %d' % args.noise_tolerance
-cmd += ' %s' % args.output_type
-cmd += ' %s' % args.exclude_edge_maxima
-cmd += ' %s' % args.light_background
-cmd += ' %s' % tmp_output_path
-cmd += ' %s' % args.output_datatype
-
-# Run the command.
-proc = subprocess.Popen( args=cmd, stderr=tmp_stderr, stdout=tmp_stdout, shell=True )
-rc = proc.wait()
-
-# Handle execution errors.
-if rc != 0:
-    error_message = imagej2_base_utils.get_stderr_exception( tmp_err, tmp_stderr, tmp_out, tmp_stdout )
-    imagej2_base_utils.stop_err( error_message )
-
-# Handle processing errors.
-if os.path.getsize( error_log ) > 0:
-    error_message = open( error_log, 'r' ).read()
-    imagej2_base_utils.stop_err( error_message )
-
-# Save the output image.
-shutil.move( tmp_output_path, args.output )
-imagej2_base_utils.cleanup_before_exit( tmp_dir )
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_find_maxima_jython_script.py
--- a/imagej2_find_maxima_jython_script.py Tue Sep 17 17:08:47 2019 -0400
+++ b/imagej2_find_maxima_jython_script.py Mon Sep 28 16:47:44 2020 +0000
[
@@ -1,94 +1,90 @@
 import sys
-import jython_utils
-from ij import ImagePlus, IJ
+
+from ij import IJ, ImagePlus
 from ij.plugin.filter import Analyzer, MaximumFinder
 from ij.process import ImageProcessor
-from jarray import array
 
 # Fiji Jython interpreter implements Python 2.5 which does not
 # provide support for argparse.
-error_log = sys.argv[ -10 ]
-input = sys.argv[ -9 ]
-scale_when_converting = jython_utils.asbool( sys.argv[ -8 ] )
-weighted_rgb_conversions = jython_utils.asbool( sys.argv[ -7 ] )
-noise_tolerance = int( sys.argv[ -6 ] )
-output_type = sys.argv[ -5 ]
-exclude_edge_maxima = jython_utils.asbool( sys.argv[ -4 ] )
-light_background = jython_utils.asbool( sys.argv[ -3 ] )
-tmp_output_path = sys.argv[ -2 ]
-output_datatype = sys.argv[ -1 ]
+error_log = sys.argv[-10]
+input_file = sys.argv[-9]
+scale_when_converting = sys.argv[-8] == 'yes'
+weighted_rgb_conversions = sys.argv[-7] == 'yes'
+noise_tolerance = int(sys.argv[-6])
+output_type = sys.argv[-5]
+exclude_edge_maxima = sys.argv[-4] == 'yes'
+light_background = sys.argv[-3]
+tmp_output_path = sys.argv[-2]
+output_datatype = sys.argv[-1]
 
 # Open the input image file.
-input_image_plus = IJ.openImage( input )
+input_image_plus = IJ.openImage(input_file)
 
 # Create a copy of the image.
 input_image_plus_copy = input_image_plus.duplicate()
 image_processor_copy = input_image_plus_copy.getProcessor()
 bit_depth = image_processor_copy.getBitDepth()
-analyzer = Analyzer( input_image_plus_copy )
+analyzer = Analyzer(input_image_plus_copy)
 
-try:
-    # Set the conversion options.
-    options = []
-    # The following 2 options are applicable only to RGB images.
-    if bit_depth == 24:
-        if scale_when_converting:
-            option.append( "scale" )
-        if weighted_rgb_conversions:
-            options.append( "weighted" )
-    # Perform conversion - must happen even if no options are set.
-    IJ.run( input_image_plus_copy, "Conversions...", "%s" % " ".join( options ) )
-    if output_type in [ 'List', 'Count' ]:
-        # W're  generating a tabular file for the output.
-        # Set the Find Maxima options.
-        options = [ 'noise=%d' % noise_tolerance ]
-        if output_type.find( '_' ) > 0:
-            output_type_str = 'output=[%s]' % output_type.replace( '_', ' ' )
-        else:
-            output_type_str = 'output=%s' % output_type
-        options.append( output_type_str )
-        if exclude_edge_maxima:
-            options.append( 'exclude' )
-        if light_background:
-            options.append( 'light' )
-        # Run the command.
-        IJ.run( input_image_plus_copy, "Find Maxima...", "%s" % " ".join( options ) )
-        results_table = analyzer.getResultsTable()
-        results_table.saveAs( tmp_output_path )
+# Set the conversion options.
+options = []
+# The following 2 options are applicable only to RGB images.
+if bit_depth == 24:
+    if scale_when_converting:
+        options.append("scale")
+    if weighted_rgb_conversions:
+        options.append("weighted")
+# Perform conversion - must happen even if no options are set.
+IJ.run(input_image_plus_copy, "Conversions...", "%s" % " ".join(options))
+if output_type in ['List', 'Count']:
+    # W're  generating a tabular file for the output.
+    # Set the Find Maxima options.
+    options = ['noise=%d' % noise_tolerance]
+    if output_type.find('_') > 0:
+        output_type_str = 'output=[%s]' % output_type.replace('_', ' ')
     else:
-        # Find the maxima of an image (does not find minima).
-        # LIMITATIONS: With output_type=Segmented_Particles
-        # (watershed segmentation), some segmentation lines
-        # may be improperly placed if local maxima are suppressed
-        # by the tolerance.
-        mf = MaximumFinder()
-        if output_type == 'Single_Points':
-            output_type_param = mf.SINGLE_POINTS
-        elif output_type == 'Maxima_Within_Tolerance':
-            output_type_param = mf.IN_TOLERANCE
-        elif output_type == 'Segmented_Particles':
-            output_type_param = mf.SEGMENTED
-        elif output_type == 'List':
-            output_type_param = mf.LIST
-        elif output_type == 'Count':
-            output_type_param = mf.COUNT
-        # Get a new byteProcessor with a normal (uninverted) LUT where
-        # the marked points are set to 255 (Background 0). Pixels outside
-        # of the roi of the input image_processor_copy are not set. No
-        # output image is created for output types POINT_SELECTION, LIST
-        # and COUNT.  In these cases findMaxima returns null.
-        byte_processor = mf.findMaxima( image_processor_copy,
-                                        noise_tolerance,
-                                        ImageProcessor.NO_THRESHOLD,
-                                        output_type_param,
-                                        exclude_edge_maxima,
-                                        False )
-        # Invert the image or ROI.
-        byte_processor.invert()
-        if output_type == 'Segmented_Particles' and not light_background:
-            # Invert the values in this image's LUT (indexed color model).
-            byte_processor.invertLut()
-        image_plus = ImagePlus( "output", byte_processor )
-        IJ.saveAs( image_plus, output_datatype, tmp_output_path )
-except Exception, e:
-    jython_utils.handle_error( error_log, str( e ) )
+        output_type_str = 'output=%s' % output_type
+    options.append(output_type_str)
+    if exclude_edge_maxima:
+        options.append('exclude')
+    if light_background:
+        options.append('light')
+    # Run the command.
+    IJ.run(input_image_plus_copy, "Find Maxima...", "%s" % " ".join(options))
+    results_table = analyzer.getResultsTable()
+    results_table.saveAs(tmp_output_path)
+else:
+    # Find the maxima of an image (does not find minima).
+    # LIMITATIONS: With output_type=Segmented_Particles
+    # (watershed segmentation), some segmentation lines
+    # may be improperly placed if local maxima are suppressed
+    # by the tolerance.
+    mf = MaximumFinder()
+    if output_type == 'Single_Points':
+        output_type_param = mf.SINGLE_POINTS
+    elif output_type == 'Maxima_Within_Tolerance':
+        output_type_param = mf.IN_TOLERANCE
+    elif output_type == 'Segmented_Particles':
+        output_type_param = mf.SEGMENTED
+    elif output_type == 'List':
+        output_type_param = mf.LIST
+    elif output_type == 'Count':
+        output_type_param = mf.COUNT
+    # Get a new byteProcessor with a normal (uninverted) LUT where
+    # the marked points are set to 255 (Background 0). Pixels outside
+    # of the roi of the input image_processor_copy are not set. No
+    # output image is created for output types POINT_SELECTION, LIST
+    # and COUNT.  In these cases findMaxima returns null.
+    byte_processor = mf.findMaxima(image_processor_copy,
+                                   noise_tolerance,
+                                   ImageProcessor.NO_THRESHOLD,
+                                   output_type_param,
+                                   exclude_edge_maxima,
+                                   False)
+    # Invert the image or ROI.
+    byte_processor.invert()
+    if output_type == 'Segmented_Particles' and not light_background:
+        # Invert the values in this image's LUT (indexed color model).
+        byte_processor.invertLut()
+    image_plus = ImagePlus("output", byte_processor)
+    IJ.saveAs(image_plus, output_datatype, tmp_output_path)
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_macros.xml
--- a/imagej2_macros.xml Tue Sep 17 17:08:47 2019 -0400
+++ b/imagej2_macros.xml Mon Sep 28 16:47:44 2020 +0000
b
@@ -1,9 +1,9 @@
-<?xml version='1.0' encoding='UTF-8'?>
 <macros>
     <token name="@WRAPPER_VERSION@">3.0</token>
     <xml name="fiji_requirements">
         <requirements>
             <requirement type="package" version="20170530">fiji</requirement>
+            <requirement type="package" version="3.4">grep</requirement>
         </requirements>
     </xml>
     <xml name="stdio">
@@ -16,7 +16,7 @@
     </xml>
     <xml name="image_type">
         <param name="image_type" type="select" label="Image type">
-            <option value="8-bit_white" selected="True">8-bit white</option>
+            <option value="8-bit_white" selected="true">8-bit white</option>
             <option value="8-bit_black">8-bit black</option>
             <option value="8-bit_random">8-bit random</option>
             <option value="8-bit_ramp">8-bit ramp</option>
@@ -38,20 +38,45 @@
         <param name="iterations" type="integer" value="1" min="1" max="100" label="Iterations" help="The number of times (1-100) erosion, dilation, opening, and closing are performed."/>
         <param name="count" type="integer" value="1" min="1" max="8" label="Count" help="The number of adjacent background pixels necessary (1-8) for erosion or dilation."/>
         <param name="black_background" type="select" label="Black background" help="If Yes, the background is black and the foreground is white (no implies the opposite).">
-            <option value="no" selected="True">No</option>
+            <option value="no" selected="true">No</option>
             <option value="yes">Yes</option>
         </param>
         <param name="pad_edges_when_eroding" type="select" label="Pad edges when eroding" help="If Yes, eroding does not erode from the edges of the image.">
-            <option value="no" selected="True">No</option>
+            <option value="no" selected="true">No</option>
             <option value="yes">Yes</option>
         </param>
     </xml>
     <xml name="black_background_param">
         <param name="black_background" type="select" label="Black background" help="If Yes, the background is black and the foreground is white (no implies the opposite).">
-            <option value="no" selected="True">No</option>
+            <option value="no" selected="true">No</option>
             <option value="yes">Yes</option>
         </param>
     </xml>
+    <xml name="param_input">
+        <param format="bmp,eps,gif,jpg,pcx,pgm,png,psd,tiff" name="input" type="data" label="Select image"/>
+    </xml>
+    <xml name="param_source_image">
+        <param format="bmp,eps,gif,jpg,pcx,pgm,png,psd,tiff" name="source_image" type="data" label="Source image"/>
+    </xml>
+    <xml name="param_source_mask">
+        <param format="bmp,eps,gif,jpg,pcx,pgm,png,psd,tiff" name="source_mask" type="data" label="Source mask"/>
+    </xml>
+    <xml name="param_target_image">
+        <param format="bmp,eps,gif,jpg,pcx,pgm,png,psd,tiff" name="target_image" type="data" label="Target image"/>
+    </xml>
+    <xml name="param_target_mask">
+        <param format="bmp,eps,gif,jpg,pcx,pgm,png,psd,tiff" name="target_mask" type="data" label="Target mask"/>
+    </xml>
+    <xml name="test_bunwarpj_raw_transform">
+        <param name="target_image" value="dotblot.jpg"/>
+        <param name="source_image" value="blobs.gif"/>
+        <param name="target_raw_transformation" value="target_raw_transformation.txt"/>
+        <param name="source_raw_transformation" value="source_raw_transformation.txt"/>
+    </xml>
+    <xml name="test_target_source_images">
+        <param name="target_image" value="dotblot.jpg"/>
+        <param name="source_image" value="blobs.gif"/>
+    </xml>
     <token name="@make_binary_args@">
         --iterations $iterations
         --count $count
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_make_binary.py
--- a/imagej2_make_binary.py Tue Sep 17 17:08:47 2019 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
b
@@ -1,59 +0,0 @@
-#!/usr/bin/env python
-import argparse
-import os
-import shutil
-import subprocess
-import tempfile
-import imagej2_base_utils
-
-parser = argparse.ArgumentParser()
-parser.add_argument( '--input', dest='input', help='Path to the input file' )
-parser.add_argument( '--input_datatype', dest='input_datatype', help='Datatype of the input image' )
-parser.add_argument( '--iterations', dest='iterations', type=int, help='Iterations' )
-parser.add_argument( '--count', dest='count', type=int, help='Count' )
-parser.add_argument( '--black_background', dest='black_background', help='Black background' )
-parser.add_argument( '--pad_edges_when_eroding', dest='pad_edges_when_eroding', help='Pad edges when eroding' )
-parser.add_argument( '--jython_script', dest='jython_script', help='Path to the Jython script' )
-parser.add_argument( '--output', dest='output', help='Path to the output file' )
-parser.add_argument( '--output_datatype', dest='output_datatype', help='Datatype of the output image' )
-args = parser.parse_args()
-
-tmp_dir = imagej2_base_utils.get_temp_dir()
-# ImageJ expects valid image file extensions, so the Galaxy .dat extension does not
-# work for some features.  The following creates a symlink with an appropriate file
-# extension that points to the Galaxy dataset.  This symlink is used by ImageJ.
-tmp_input_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.input, args.input_datatype )
-tmp_output_path = imagej2_base_utils.get_temporary_image_path( tmp_dir, args.output_datatype )
-# Define command response buffers.
-tmp_out = tempfile.NamedTemporaryFile().name
-tmp_stdout = open( tmp_out, 'wb' )
-tmp_err = tempfile.NamedTemporaryFile().name
-tmp_stderr = open( tmp_err, 'wb' )
-# Java writes a lot of stuff to stderr, so we'll specify a file for handling actual errors.
-error_log = tempfile.NamedTemporaryFile( delete=False ).name
-# Build the command line.
-cmd = imagej2_base_utils.get_base_command_imagej2( None, jython_script=args.jython_script )
-if cmd is None:
-    imagej2_base_utils.stop_err( "ImageJ not found!" )
-cmd += ' %s' % error_log
-cmd += ' %s' % tmp_input_path
-cmd += ' %d' % args.iterations
-cmd += ' %d' % args.count
-cmd += ' %s' % args.black_background
-cmd += ' %s' % args.pad_edges_when_eroding
-cmd += ' %s' % tmp_output_path
-cmd += ' %s' % args.output_datatype
-# Run the command.
-proc = subprocess.Popen( args=cmd, stderr=tmp_stderr, stdout=tmp_stdout, shell=True )
-rc = proc.wait()
-# Handle execution errors.
-if rc != 0:
-    error_message = imagej2_base_utils.get_stderr_exception( tmp_err, tmp_stderr, tmp_out, tmp_stdout )
-    imagej2_base_utils.stop_err( error_message )
-# Handle processing errors.
-if os.path.getsize( error_log ) > 0:
-    error_message = open( error_log, 'r' ).read()
-    imagej2_base_utils.stop_err( error_message )
-# Save the output image.
-shutil.move( tmp_output_path, args.output )
-imagej2_base_utils.cleanup_before_exit( tmp_dir )
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_make_binary_jython_script.py
--- a/imagej2_make_binary_jython_script.py Tue Sep 17 17:08:47 2019 -0400
+++ b/imagej2_make_binary_jython_script.py Mon Sep 28 16:47:44 2020 +0000
[
@@ -1,37 +1,36 @@
-import jython_utils
 import sys
+
 from ij import IJ
 
 # Fiji Jython interpreter implements Python 2.5 which does not
 # provide support for argparse.
-error_log = sys.argv[ -8 ]
-input = sys.argv[ -7 ]
-iterations = int( sys.argv[ -6 ] )
-count = int( sys.argv[ -5 ] )
-black_background = jython_utils.asbool( sys.argv[ -4 ] )
-pad_edges_when_eroding = jython_utils.asbool( sys.argv[ -3 ] )
-tmp_output_path = sys.argv[ -2 ]
-output_datatype = sys.argv[ -1 ]
+error_log = sys.argv[-8]
+input = sys.argv[-7]
+iterations = int(sys.argv[-6])
+count = int(sys.argv[-5])
+black_background = sys.argv[-4] == 'yes'
+pad_edges_when_eroding = sys.argv[-3] == 'yes'
+tmp_output_path = sys.argv[-2]
+output_datatype = sys.argv[-1]
 
 # Open the input image file.
-input_image_plus = IJ.openImage( input )
+input_image_plus = IJ.openImage(input)
 
 # Create a copy of the image.
 input_image_plus_copy = input_image_plus.duplicate()
 image_processor_copy = input_image_plus_copy.getProcessor()
 
-try:
-    # Set binary options.
-    options = jython_utils.get_binary_options( black_background=black_background,
-                                               iterations=iterations,
-                                               count=count,
-                                               pad_edges_when_eroding=pad_edges_when_eroding )
-    IJ.run( input_image_plus_copy, "Options...", options )
+# Set binary options.
+options = ['edm=Overwrite', 'iterations=%d' % iterations, 'count=%d' % count]
+if pad_edges_when_eroding:
+    options.append('pad')
+if black_background:
+    options.append('black')
+options = ' '.join(options)
+IJ.run(input_image_plus_copy, "Options...", options)
 
-    # Run the command.
-    IJ.run( input_image_plus_copy, "Make Binary", "" )
+# Run the command.
+IJ.run(input_image_plus_copy, "Make Binary", "")
 
-    # Save the ImagePlus object as a new image.
-    IJ.saveAs( input_image_plus_copy, output_datatype, tmp_output_path )
-except Exception, e:
-    jython_utils.handle_error( error_log, str( e ) )
+# Save the ImagePlus object as a new image.
+IJ.saveAs(input_image_plus_copy, output_datatype, tmp_output_path)
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_math.py
--- a/imagej2_math.py Tue Sep 17 17:08:47 2019 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
[
@@ -1,69 +0,0 @@
-#!/usr/bin/env python
-import argparse
-import os
-import shutil
-import subprocess
-import tempfile
-import imagej2_base_utils
-
-parser = argparse.ArgumentParser()
-parser.add_argument( '--input', dest='input', help='Path to the input file' )
-parser.add_argument( '--input_datatype', dest='input_datatype', help='Datatype of the input image' )
-parser.add_argument( '--operation', dest='operation', help='Operation' )
-parser.add_argument( '--expression', dest='expression', default=None, help='Expression' )
-parser.add_argument( '--bin_constant', dest='bin_constant', type=int, default=None, help='Constant of type binary integer' )
-parser.add_argument( '--float_constant', dest='float_constant', type=float, default=None, help='Constant of type float' )
-parser.add_argument( '--jython_script', dest='jython_script', help='Path to the Jython script' )
-parser.add_argument( '--output', dest='output', help='Path to the output file' )
-parser.add_argument( '--output_datatype', dest='output_datatype', help='Datatype of the output image' )
-args = parser.parse_args()
-
-tmp_dir = imagej2_base_utils.get_temp_dir()
-# ImageJ expects valid image file extensions, so the Galaxy .dat extension does not
-# work for some features.  The following creates a symlink with an appropriate file
-# extension that points to the Galaxy dataset.  This symlink is used by ImageJ.
-tmp_input_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.input, args.input_datatype )
-tmp_output_path = imagej2_base_utils.get_temporary_image_path( tmp_dir, args.output_datatype )
-
-# Define command response buffers.
-tmp_out = tempfile.NamedTemporaryFile().name
-tmp_stdout = open( tmp_out, 'wb' )
-tmp_err = tempfile.NamedTemporaryFile().name
-tmp_stderr = open( tmp_err, 'wb' )
-# Java writes a lot of stuff to stderr, so we'll specify a file for handling actual errors.
-error_log = tempfile.NamedTemporaryFile( delete=False ).name
-
-# Build the command line.
-cmd = imagej2_base_utils.get_base_command_imagej2( None, jython_script=args.jython_script )
-if cmd is None:
-    imagej2_base_utils.stop_err( "ImageJ not found!" )
-cmd += ' %s' % error_log
-cmd += ' %s' % tmp_input_path
-cmd += ' %s' % args.operation
-# Handle the expression, which must be enclosed in " if not None.
-if args.expression in [ None, 'None' ]:
-    cmd += ' None'
-else:
-    cmd += ' "%s"' % args.expression
-cmd += imagej2_base_utils.handle_none_type( args.bin_constant, val_type='int' )
-cmd += imagej2_base_utils.handle_none_type( args.float_constant )
-cmd += ' %s' % tmp_output_path
-cmd += ' %s' % args.output_datatype
-
-# Run the command.
-proc = subprocess.Popen( args=cmd, stderr=tmp_stderr, stdout=tmp_stdout, shell=True )
-rc = proc.wait()
-
-# Handle execution errors.
-if rc != 0:
-    error_message = imagej2_base_utils.get_stderr_exception( tmp_err, tmp_stderr, tmp_out, tmp_stdout )
-    imagej2_base_utils.stop_err( error_message )
-
-# Handle processing errors.
-if os.path.getsize( error_log ) > 0:
-    error_message = open( error_log, 'r' ).read()
-    imagej2_base_utils.stop_err( error_message )
-
-# Save the output image.
-shutil.move( tmp_output_path, args.output )
-imagej2_base_utils.cleanup_before_exit( tmp_dir )
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_math_jython_script.py
--- a/imagej2_math_jython_script.py Tue Sep 17 17:08:47 2019 -0400
+++ b/imagej2_math_jython_script.py Mon Sep 28 16:47:44 2020 +0000
[
@@ -1,78 +1,84 @@
-import jython_utils
 import sys
+
 from ij import IJ
 
 # Fiji Jython interpreter implements Python 2.5 which does not
 # provide support for argparse.
-error_log = sys.argv[ -8 ]
-input = sys.argv[ -7 ]
-operation = sys.argv[ -6 ]
-expression = sys.argv[ -5 ]
-if sys.argv[ -4 ] in [ None, 'None' ]:
+error_log = sys.argv[-8]
+input_file = sys.argv[-7]
+operation = sys.argv[-6]
+expression = sys.argv[-5]
+if sys.argv[-4] in [None, 'None']:
     bin_constant = None
 else:
-    bin_constant = int( sys.argv[ -4 ] )
-if sys.argv[ -3 ] in [ None, 'None' ]:
+    bin_constant = int(sys.argv[-4])
+if sys.argv[-3] in [None, 'None']:
     float_constant = None
 else:
-    float_constant = float( sys.argv[ -3 ] )
-tmp_output_path = sys.argv[ -2 ]
-output_datatype = sys.argv[ -1 ]
+    float_constant = float(sys.argv[-3])
+tmp_output_path = sys.argv[-2]
+output_datatype = sys.argv[-1]
+
+print("\nerror_log: %s\n" % str(error_log))
+print("\ninput_file: %s\n" % str(input_file))
+print("\noperation: %s\n" % str(operation))
+print("\nexpression: %s\n" % str(expression))
+print("\nbin_constant: %s\n" % str(bin_constant))
+print("\nfloat_constant: %s\n" % str(float_constant))
+print("\ntmp_output_path: %s\n" % str(tmp_output_path))
+print("\noutput_datatype: %s\n" % str(output_datatype))
 
 # Open the input image file.
-input_image_plus = IJ.openImage( input )
+input_image_plus = IJ.openImage(input_file)
 
 # Create a copy of the image.
 input_image_plus_copy = input_image_plus.duplicate()
 image_processor_copy = input_image_plus_copy.getProcessor()
 bit_depth = image_processor_copy.getBitDepth()
 
-try:
-    if operation.find( '_' ) > 0:
-        # Square_Root.
-        new_operation = operation.replace( '_', ' ' )
-    elif operation in [ 'Square', 'Log', 'Exp', 'Abs', 'Reciprocal' ]:
-        # Unfortunately some ImageJ commands require a "..." ending
-        # while others do not.  There seems to be no pattern.
-        new_operation = '%s' % operation
-    else:
-        new_operation = '%s...' % operation
+if operation.find('_') > 0:
+    # Square_Root.
+    new_operation = operation.replace('_', ' ')
+elif operation in ['Square', 'Log', 'Exp', 'Abs', 'Reciprocal']:
+    # Unfortunately some ImageJ commands require a "..." ending
+    # while others do not.  There seems to be no pattern.
+    new_operation = '%s' % operation
+else:
+    new_operation = '%s...' % operation
 
-    if operation == 'Macro':
-        # Apply the macro code to the image via a call to it's
-        # ImageProcessor since this option does not work using
-        # the IJ.run() method.
-        new_expression = expression.lstrip( '"' ).rstrip( '"' )
-        options = 'code=%s' % new_expression
-        image_processor_copy.applyMacro( new_expression )
-    elif operation == 'Min':
-        # Min does not work without using the ImageProcessor.
-        image_processor_copy.min( float_constant )
-    elif operation == 'Max':
-        # Max does not work without using the ImageProcessor.
-        image_processor_copy.max( float_constant )
-    elif operation == 'Abs':
-        if bit_depth not in [ 16, 32 ]:
-            # Convert the image to 32-bit.
-            IJ.run( input_image_plus_copy, "32-bit", "" )
-            IJ.run( input_image_plus_copy, new_operation, "" )
-    elif operation == 'Reciprocal':
-        if bit_depth != 32:
-            # Convert the image to 32 bit.
-            IJ.run( input_image_plus_copy, "32-bit", "" )
-            IJ.run( input_image_plus_copy, new_operation, "" )
+if operation == 'Macro':
+    # Apply the macro code to the image via a call to it's
+    # ImageProcessor since this option does not work using
+    # the IJ.run() method.
+    new_expression = expression.lstrip('"').rstrip('"')
+    options = 'code=%s' % new_expression
+    image_processor_copy.applyMacro(new_expression)
+elif operation == 'Min':
+    # Min does not work without using the ImageProcessor.
+    image_processor_copy.min(float_constant)
+elif operation == 'Max':
+    # Max does not work without using the ImageProcessor.
+    image_processor_copy.max(float_constant)
+elif operation == 'Abs':
+    if bit_depth not in [16, 32]:
+        # Convert the image to 32-bit.
+        IJ.run(input_image_plus_copy, "32-bit", "")
+        IJ.run(input_image_plus_copy, new_operation, "")
+elif operation == 'Reciprocal':
+    if bit_depth != 32:
+        # Convert the image to 32 bit.
+        IJ.run(input_image_plus_copy, "32-bit", "")
+        IJ.run(input_image_plus_copy, new_operation, "")
+else:
+    if operation in ['AND', 'OR', 'XOR']:
+        # Value is a binary number.
+        options = 'value=%d' % bin_constant
+    elif operation in ['Log', 'Exp', 'Square', 'Square_Root']:
+        # No constant value.
+        options = ''
     else:
-        if operation in [ 'AND', 'OR', 'XOR' ]:
-            # Value is a binary number.
-            options = 'value=%d' % bin_constant
-        elif operation in [ 'Log', 'Exp', 'Square', 'Square_Root' ]:
-            # No constant value.
-            options = ''
-        else:
-            # Value is a floating point number.
-            options = 'value=%.3f' % float_constant
-        IJ.run( input_image_plus_copy, "%s" % new_operation, "%s" % options )
-    # Save the ImagePlus object as a new image.
-    IJ.saveAs( input_image_plus_copy, output_datatype, tmp_output_path )
-except Exception, e:
-    jython_utils.handle_error( error_log, str( e ) )
+        # Value is a floating point number.
+        options = 'value=%.3f' % float_constant
+    IJ.run(input_image_plus_copy, "%s" % new_operation, "%s" % options)
+# Save the ImagePlus object as a new image.
+IJ.saveAs(input_image_plus_copy, output_datatype, tmp_output_path)
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_noise.py
--- a/imagej2_noise.py Tue Sep 17 17:08:47 2019 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
b
@@ -1,84 +0,0 @@
-#!/usr/bin/env python
-import argparse
-import os
-import shutil
-import subprocess
-import tempfile
-import imagej2_base_utils
-
-if __name__=="__main__":
-    # Parse Command Line.
-    parser = argparse.ArgumentParser()
-    parser.add_argument( '--input', dest='input', help='Path to the input file' )
-    parser.add_argument( '--input_datatype', dest='input_datatype', help='Datatype of the input image' )
-    parser.add_argument( '--noise', dest='noise', help='Specified noise to add to or remove from the image' )
-    parser.add_argument( '--standard_deviation', dest='standard_deviation', type=float, default=None, help='Standard deviation' )
-    parser.add_argument( '--radius', dest='radius', type=float, default=None, help='Radius' )
-    parser.add_argument( '--threshold', dest='threshold', type=float, default=None, help='Threshold' )
-    parser.add_argument( '--which_outliers', dest='which_outliers', default=None, help='Which outliers' )
-    parser.add_argument( '--randomj', dest='randomj', default=None, help='RandomJ' )
-    parser.add_argument( '--trials', dest='trials', type=float, default=None, help='Trials' )
-    parser.add_argument( '--probability', dest='probability', type=float, default=None, help='Probability' )
-    parser.add_argument( '--lammbda', dest='lammbda', type=float, default=None, help='Lambda' )
-    parser.add_argument( '--order', dest='order', type=int, default=None, help='Order' )
-    parser.add_argument( '--mean', dest='mean', type=float, default=None, help='Mean' )
-    parser.add_argument( '--sigma', dest='sigma', type=float, default=None, help='Sigma' )
-    parser.add_argument( '--min', dest='min', type=float, default=None, help='Min' )
-    parser.add_argument( '--max', dest='max', type=float, default=None, help='Max' )
-    parser.add_argument( '--insertion', dest='insertion', default=None, help='Insertion' )
-    parser.add_argument( '--jython_script', dest='jython_script', help='Path to the Jython script' )
-    parser.add_argument( '--output', dest='output', help='Path to the output file' )
-    args = parser.parse_args()
-
-    tmp_dir = imagej2_base_utils.get_temp_dir()
-    # ImageJ expects valid image file extensions, so the Galaxy .dat extension does not
-    # work for some features.  The following creates a symlink with an appropriate file
-    # extension that points to the Galaxy dataset.  This symlink is used by ImageJ.
-    tmp_input_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.input, args.input_datatype )
-    tmp_output_path = imagej2_base_utils.get_temporary_image_path( tmp_dir, args.input_datatype )
-
-    # Define command response buffers.
-    tmp_out = tempfile.NamedTemporaryFile().name
-    tmp_stdout = open( tmp_out, 'wb' )
-    tmp_err = tempfile.NamedTemporaryFile().name
-    tmp_stderr = open( tmp_err, 'wb' )
-    # Java writes a lot of stuff to stderr, so we'll specify a file for handling actual errors.
-    error_log = tempfile.NamedTemporaryFile( delete=False ).name
-    # Build the command line.
-    cmd = imagej2_base_utils.get_base_command_imagej2( None, jython_script=args.jython_script )
-    if cmd is None:
-        imagej2_base_utils.stop_err( "ImageJ not found!" )
-    cmd += ' %s' % error_log
-    cmd += ' %s' % tmp_input_path
-    cmd += ' %s' % args.input_datatype
-    cmd += ' %s ' % args.noise
-    cmd += imagej2_base_utils.handle_none_type( args.standard_deviation )
-    cmd += imagej2_base_utils.handle_none_type( args.radius )
-    cmd += imagej2_base_utils.handle_none_type( args.threshold )
-    cmd += ' %s' % args.which_outliers
-    cmd += ' %s' % args.randomj
-    cmd += imagej2_base_utils.handle_none_type( args.trials )
-    cmd += imagej2_base_utils.handle_none_type( args.probability )
-    cmd += imagej2_base_utils.handle_none_type( args.lammbda )
-    cmd += imagej2_base_utils.handle_none_type( args.order, val_type='int' )
-    cmd += imagej2_base_utils.handle_none_type( args.mean )
-    cmd += imagej2_base_utils.handle_none_type( args.sigma )
-    cmd += imagej2_base_utils.handle_none_type( args.min )
-    cmd += imagej2_base_utils.handle_none_type( args.max )
-    cmd += ' %s' % args.insertion
-    cmd += ' %s' % tmp_output_path
-
-    proc = subprocess.Popen( args=cmd, stderr=tmp_stderr, stdout=tmp_stdout, shell=True )
-    rc = proc.wait()
-
-    # Handle execution errors.
-    if rc != 0:
-        error_message = imagej2_base_utils.get_stderr_exception( tmp_err, tmp_stderr, tmp_out, tmp_stdout )
-        imagej2_base_utils.stop_err( error_message )
-    # Handle processing errors.
-    if os.path.getsize( error_log ) > 0:
-        error_message = open( error_log, 'r' ).read()
-        imagej2_base_utils.stop_err( error_message )
-    # Save the output image.
-    shutil.move( tmp_output_path, args.output )
-    imagej2_base_utils.cleanup_before_exit( tmp_dir )
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_noise_jython_script.py
--- a/imagej2_noise_jython_script.py Tue Sep 17 17:08:47 2019 -0400
+++ b/imagej2_noise_jython_script.py Mon Sep 28 16:47:44 2020 +0000
[
@@ -1,35 +1,32 @@
 import sys
+
 from ij import IJ
-from ij import ImagePlus
-import jython_utils
 
 # Fiji Jython interpreter implements Python 2.5 which does not
 # provide support for argparse.
-error_log = sys.argv[ -19 ]
-input = sys.argv[ -18 ]
-image_datatype = sys.argv[ -17 ]
-noise = sys.argv[ -16 ]
-standard_deviation = sys.argv[ -15 ]
-radius = sys.argv[ -14 ]
-threshold = sys.argv[ -13 ]
-which_outliers = sys.argv[ -12 ]
-randomj = sys.argv[ -11 ]
-trials = sys.argv[ -10 ]
-probability = sys.argv[ -9 ]
+error_log = sys.argv[-19]
+input_file = sys.argv[-18]
+image_datatype = sys.argv[-17]
+noise = sys.argv[-16]
+standard_deviation = sys.argv[-15]
+radius = sys.argv[-14]
+threshold = sys.argv[-13]
+which_outliers = sys.argv[-12]
+randomj = sys.argv[-11]
+trials = sys.argv[-10]
+probability = sys.argv[-9]
 # Note the spelling - so things don't get confused due to Python lambda function.
-lammbda = sys.argv[ -8 ]
-order = sys.argv[ -7 ]
-mean = sys.argv[ -6 ]
-sigma = sys.argv[ -5 ]
-min = sys.argv[ -4 ]
-max = sys.argv[ -3 ]
-insertion = sys.argv[ -2 ]
-tmp_output_path = sys.argv[ -1 ]
-
-error = False
+lammbda = sys.argv[-8]
+order = sys.argv[-7]
+mean = sys.argv[-6]
+sigma = sys.argv[-5]
+min = sys.argv[-4]
+max = sys.argv[-3]
+insertion = sys.argv[-2]
+tmp_output_path = sys.argv[-1]
 
 # Open the input image file.
-image_plus = IJ.openImage( input )
+image_plus = IJ.openImage(input_file)
 bit_depth = image_plus.getBitDepth()
 image_type = image_plus.getType()
 # Create an ImagePlus object for the image.
@@ -39,46 +36,32 @@
 
 # Perform the analysis on the ImagePlus object.
 if noise == 'add_noise':
-    IJ.run( image_plus_copy, "Add Noise", "" )
+    IJ.run(image_plus_copy, "Add Noise", "")
 elif noise == 'add_specified_noise':
-    IJ.run( image_plus_copy, "Add Specified Noise", "standard=&standard_deviation" )
+    IJ.run(image_plus_copy, "Add Specified Noise", "standard=&standard_deviation")
 elif noise == 'salt_and_pepper':
-    IJ.run( image_plus_copy, "Salt and Pepper", "" )
+    IJ.run(image_plus_copy, "Salt and Pepper", "")
 elif noise == 'despeckle':
-    IJ.run( image_plus_copy, "Despeckle", "" )
+    IJ.run(image_plus_copy, "Despeckle", "")
 elif noise == 'remove_outliers':
-    IJ.run( image_plus_copy, "Remove Outliers", "radius=&radius threshold=&threshold which=&which_outliers" )
+    IJ.run(image_plus_copy, "Remove Outliers", "radius=&radius threshold=&threshold which=&which_outliers")
 elif noise == 'remove_nans':
-    if bit_depth == 32:
-        IJ.run( image_plus_copy, "Remove NaNs", "" )
-    else:
-        # When Galaxy metadata for images is enhanced to include information like this,
-        # we'll be able to write tool validators rather than having to stop the job in
-        # an error state.
-        msg = "Remove NaNs requires a 32-bit image, the selected image is %d-bit" % bit_depth
-        jython_utils.handle_error( error_log, msg )
-        error = True
+    IJ.run(image_plus_copy, "Remove NaNs", "")
 elif noise == 'rof_denoise':
-    if image_type == ImagePlus.GRAY32:
-        IJ.run( image_plus_copy, "ROF Denoise", "" )
-    else:
-        msg = "ROF Denoise requires an image of type 32-bit grayscale, the selected image is %d-bit" % ( bit_depth )
-        jython_utils.handle_error( error_log, msg )
-        error = True
+    IJ.run(image_plus_copy, "ROF Denoise", "")
 elif noise == 'randomj':
     if randomj == 'randomj_binomial':
-        IJ.run( image_plus_copy, "RandomJ Binomial", "trials=&trials probability=&probability insertion=&insertion" )
+        IJ.run(image_plus_copy, "RandomJ Binomial", "trials=&trials probability=&probability insertion=&insertion")
     elif randomj == 'randomj_exponential':
-        IJ.run( image_plus_copy, "RandomJ Exponential", "lambda=&lammbda insertion=&insertion" )
+        IJ.run(image_plus_copy, "RandomJ Exponential", "lambda=&lammbda insertion=&insertion")
     elif randomj == 'randomj_gamma':
-        IJ.run( image_plus_copy, "RandomJ Gamma", "order=&order insertion=&insertion" )
+        IJ.run(image_plus_copy, "RandomJ Gamma", "order=&order insertion=&insertion")
     elif randomj == 'randomj_gaussian':
-        IJ.run( image_plus_copy, "RandomJ Gaussian", "mean=&mean sigma=&sigma insertion=&insertion" )
+        IJ.run(image_plus_copy, "RandomJ Gaussian", "mean=&mean sigma=&sigma insertion=&insertion")
     elif randomj == 'randomj_poisson':
-        IJ.run( image_plus_copy, "RandomJ Poisson", "mean=&mean insertion=&insertion" )
+        IJ.run(image_plus_copy, "RandomJ Poisson", "mean=&mean insertion=&insertion")
     elif randomj == 'randomj_uniform':
-        IJ.run( image_plus_copy, "RandomJ Uniform", "min=&min max=&max insertion=&insertion" )
+        IJ.run(image_plus_copy, "RandomJ Uniform", "min=&min max=&max insertion=&insertion")
 
-if not error:
-    # Save the ImagePlus object as a new image.
-    IJ.saveAs( image_plus_copy, image_datatype, tmp_output_path )
+# Save the ImagePlus object as a new image.
+IJ.saveAs(image_plus_copy, image_datatype, tmp_output_path)
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_shadows.py
--- a/imagej2_shadows.py Tue Sep 17 17:08:47 2019 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
b
@@ -1,59 +0,0 @@
-#!/usr/bin/env python
-import argparse
-import os
-import shutil
-import subprocess
-import tempfile
-import imagej2_base_utils
-
-parser = argparse.ArgumentParser()
-parser.add_argument( '--input', dest='input', help='Path to the input file' )
-parser.add_argument( '--input_datatype', dest='input_datatype', help='Datatype of the input image' )
-parser.add_argument( '--direction', dest='direction', help='Direction' )
-parser.add_argument( '--jython_script', dest='jython_script', help='Path to the Jython script' )
-parser.add_argument( '--output', dest='output', help='Path to the output file' )
-parser.add_argument( '--output_datatype', dest='output_datatype', help='Datatype of the output image' )
-args = parser.parse_args()
-
-tmp_dir = imagej2_base_utils.get_temp_dir()
-# ImageJ expects valid image file extensions, so the Galaxy .dat extension does not
-# work for some features.  The following creates a symlink with an appropriate file
-# extension that points to the Galaxy dataset.  This symlink is used by ImageJ.
-tmp_input_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.input, args.input_datatype )
-tmp_output_path = imagej2_base_utils.get_temporary_image_path( tmp_dir, args.output_datatype )
-
-# Define command response buffers.
-tmp_out = tempfile.NamedTemporaryFile().name
-tmp_stdout = open( tmp_out, 'wb' )
-tmp_err = tempfile.NamedTemporaryFile().name
-tmp_stderr = open( tmp_err, 'wb' )
-# Java writes a lot of stuff to stderr, so we'll specify a file for handling actual errors.
-error_log = tempfile.NamedTemporaryFile( delete=False ).name
-
-# Build the command line.
-cmd = imagej2_base_utils.get_base_command_imagej2( None, jython_script=args.jython_script )
-if cmd is None:
-    imagej2_base_utils.stop_err( "ImageJ not found!" )
-cmd += ' %s' % error_log
-cmd += ' %s' % tmp_input_path
-cmd += ' %s' % args.direction
-cmd += ' %s' % tmp_output_path
-cmd += ' %s' % args.output_datatype
-
-# Run the command.
-proc = subprocess.Popen( args=cmd, stderr=tmp_stderr, stdout=tmp_stdout, shell=True )
-rc = proc.wait()
-
-# Handle execution errors.
-if rc != 0:
-    error_message = imagej2_base_utils.get_stderr_exception( tmp_err, tmp_stderr, tmp_out, tmp_stdout )
-    imagej2_base_utils.stop_err( error_message )
-
-# Handle processing errors.
-if os.path.getsize( error_log ) > 0:
-    error_message = open( error_log, 'r' ).read()
-    imagej2_base_utils.stop_err( error_message )
-
-# Save the output image.
-shutil.move( tmp_output_path, args.output )
-imagej2_base_utils.cleanup_before_exit( tmp_dir )
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_shadows_jython_script.py
--- a/imagej2_shadows_jython_script.py Tue Sep 17 17:08:47 2019 -0400
+++ b/imagej2_shadows_jython_script.py Mon Sep 28 16:47:44 2020 +0000
[
@@ -1,26 +1,23 @@
-import jython_utils
 import sys
+
 from ij import IJ
 
 # Fiji Jython interpreter implements Python 2.5 which does not
 # provide support for argparse.
-error_log = sys.argv[ -5 ]
-input = sys.argv[ -4 ]
-direction = sys.argv[ -3 ]
-tmp_output_path = sys.argv[ -2 ]
-output_datatype = sys.argv[ -1 ]
+error_log = sys.argv[-5]
+input_file = sys.argv[-4]
+direction = sys.argv[-3]
+tmp_output_path = sys.argv[-2]
+output_datatype = sys.argv[-1]
 
 # Open the input image file.
-input_image_plus = IJ.openImage( input )
+input_image_plus = IJ.openImage(input_file)
 
 # Create a copy of the image.
 input_image_plus_copy = input_image_plus.duplicate()
 image_processor_copy = input_image_plus_copy.getProcessor()
 
-try:
-    # Run the command.
-    IJ.run( input_image_plus_copy, direction, "" )
-    # Save the ImagePlus object as a new image.
-    IJ.saveAs( input_image_plus_copy, output_datatype, tmp_output_path )
-except Exception, e:
-    jython_utils.handle_error( error_log, str( e ) )
+# Run the command.
+IJ.run(input_image_plus_copy, direction, "")
+# Save the ImagePlus object as a new image.
+IJ.saveAs(input_image_plus_copy, output_datatype, tmp_output_path)
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_sharpen.py
--- a/imagej2_sharpen.py Tue Sep 17 17:08:47 2019 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
b
@@ -1,57 +0,0 @@
-#!/usr/bin/env python
-import argparse
-import os
-import shutil
-import subprocess
-import tempfile
-import imagej2_base_utils
-
-parser = argparse.ArgumentParser()
-parser.add_argument( '--input', dest='input', help='Path to the input file' )
-parser.add_argument( '--input_datatype', dest='input_datatype', help='Datatype of the input image' )
-parser.add_argument( '--jython_script', dest='jython_script', help='Path to the Jython script' )
-parser.add_argument( '--output', dest='output', help='Path to the output file' )
-parser.add_argument( '--output_datatype', dest='output_datatype', help='Datatype of the output image' )
-args = parser.parse_args()
-
-tmp_dir = imagej2_base_utils.get_temp_dir()
-# ImageJ expects valid image file extensions, so the Galaxy .dat extension does not
-# work for some features.  The following creates a symlink with an appropriate file
-# extension that points to the Galaxy dataset.  This symlink is used by ImageJ.
-tmp_input_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.input, args.input_datatype )
-tmp_output_path = imagej2_base_utils.get_temporary_image_path( tmp_dir, args.output_datatype )
-
-# Define command response buffers.
-tmp_out = tempfile.NamedTemporaryFile().name
-tmp_stdout = open( tmp_out, 'wb' )
-tmp_err = tempfile.NamedTemporaryFile().name
-tmp_stderr = open( tmp_err, 'wb' )
-# Java writes a lot of stuff to stderr, so we'll specify a file for handling actual errors.
-error_log = tempfile.NamedTemporaryFile( delete=False ).name
-
-# Build the command line.
-cmd = imagej2_base_utils.get_base_command_imagej2( None, jython_script=args.jython_script )
-if cmd is None:
-    imagej2_base_utils.stop_err( "ImageJ not found!" )
-cmd += ' %s' % error_log
-cmd += ' %s' % tmp_input_path
-cmd += ' %s' % tmp_output_path
-cmd += ' %s' % args.output_datatype
-
-# Run the command.
-proc = subprocess.Popen( args=cmd, stderr=tmp_stderr, stdout=tmp_stdout, shell=True )
-rc = proc.wait()
-
-# Handle execution errors.
-if rc != 0:
-    error_message = imagej2_base_utils.get_stderr_exception( tmp_err, tmp_stderr, tmp_out, tmp_stdout )
-    imagej2_base_utils.stop_err( error_message )
-
-# Handle processing errors.
-if os.path.getsize( error_log ) > 0:
-    error_message = open( error_log, 'r' ).read()
-    imagej2_base_utils.stop_err( error_message )
-
-# Save the output image.
-shutil.move( tmp_output_path, args.output )
-imagej2_base_utils.cleanup_before_exit( tmp_dir )
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_sharpen_jython_script.py
--- a/imagej2_sharpen_jython_script.py Tue Sep 17 17:08:47 2019 -0400
+++ b/imagej2_sharpen_jython_script.py Mon Sep 28 16:47:44 2020 +0000
[
@@ -1,25 +1,22 @@
-import jython_utils
 import sys
+
 from ij import IJ
 
 # Fiji Jython interpreter implements Python 2.5 which does not
 # provide support for argparse.
-error_log = sys.argv[ -4 ]
-input = sys.argv[ -3 ]
-tmp_output_path = sys.argv[ -2 ]
-output_datatype = sys.argv[ -1 ]
+error_log = sys.argv[-4]
+input_file = sys.argv[-3]
+tmp_output_path = sys.argv[-2]
+output_datatype = sys.argv[-1]
 
 # Open the input image file.
-input_image_plus = IJ.openImage( input )
+input_image_plus = IJ.openImage(input_file)
 
 # Create a copy of the image.
 input_image_plus_copy = input_image_plus.duplicate()
 image_processor_copy = input_image_plus_copy.getProcessor()
 
-try:
-    # Run the command.
-    IJ.run( input_image_plus_copy, "Sharpen", "" )
-    # Save the ImagePlus object as a new image.
-    IJ.saveAs( input_image_plus_copy, output_datatype, tmp_output_path )
-except Exception, e:
-    jython_utils.handle_error( error_log, str( e ) )
+# Run the command.
+IJ.run(input_image_plus_copy, "Sharpen", "")
+# Save the ImagePlus object as a new image.
+IJ.saveAs(input_image_plus_copy, output_datatype, tmp_output_path)
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_skeletonize3d.py
--- a/imagej2_skeletonize3d.py Tue Sep 17 17:08:47 2019 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
b
@@ -1,53 +0,0 @@
-#!/usr/bin/env python
-import argparse
-import os
-import shutil
-import subprocess
-import tempfile
-import imagej2_base_utils
-
-parser = argparse.ArgumentParser()
-parser.add_argument( '--input', dest='input', help='Path to the input file' )
-parser.add_argument( '--input_datatype', dest='input_datatype', help='Datatype of the input image' )
-parser.add_argument( '--black_background', dest='black_background', help='Black background' )
-parser.add_argument( '--jython_script', dest='jython_script', help='Path to the Jython script' )
-parser.add_argument( '--output', dest='output', help='Path to the output file' )
-parser.add_argument( '--output_datatype', dest='output_datatype', help='Datatype of the output image' )
-args = parser.parse_args()
-
-tmp_dir = imagej2_base_utils.get_temp_dir()
-# ImageJ expects valid image file extensions, so the Galaxy .dat extension does not
-# work for some features.  The following creates a symlink with an appropriate file
-# extension that points to the Galaxy dataset.  This symlink is used by ImageJ.
-tmp_input_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.input, args.input_datatype )
-tmp_output_path = imagej2_base_utils.get_temporary_image_path( tmp_dir, args.output_datatype )
-# Define command response buffers.
-tmp_out = tempfile.NamedTemporaryFile().name
-tmp_stdout = open( tmp_out, 'wb' )
-tmp_err = tempfile.NamedTemporaryFile().name
-tmp_stderr = open( tmp_err, 'wb' )
-# Java writes a lot of stuff to stderr, so we'll specify a file for handling actual errors.
-error_log = tempfile.NamedTemporaryFile( delete=False ).name
-# Build the command line.
-cmd = imagej2_base_utils.get_base_command_imagej2( None, jython_script=args.jython_script )
-if cmd is None:
-    imagej2_base_utils.stop_err( "ImageJ not found!" )
-cmd += ' %s' % error_log
-cmd += ' %s' % tmp_input_path
-cmd += ' %s' % args.black_background
-cmd += ' %s' % tmp_output_path
-cmd += ' %s' % args.output_datatype
-# Run the command.
-proc = subprocess.Popen( args=cmd, stderr=tmp_stderr, stdout=tmp_stdout, shell=True )
-rc = proc.wait()
-# Handle execution errors.
-if rc != 0:
-    error_message = imagej2_base_utils.get_stderr_exception( tmp_err, tmp_stderr, tmp_out, tmp_stdout )
-    imagej2_base_utils.stop_err( error_message )
-# Handle processing errors.
-if os.path.getsize( error_log ) > 0:
-    error_message = open( error_log, 'r' ).read()
-    imagej2_base_utils.stop_err( error_message )
-# Save the output image.
-shutil.move( tmp_output_path, args.output )
-imagej2_base_utils.cleanup_before_exit( tmp_dir )
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_skeletonize3d_jython_script.py
--- a/imagej2_skeletonize3d_jython_script.py Tue Sep 17 17:08:47 2019 -0400
+++ b/imagej2_skeletonize3d_jython_script.py Mon Sep 28 16:47:44 2020 +0000
[
@@ -1,36 +1,36 @@
-import jython_utils
 import sys
+
 from ij import IJ
 
 # Fiji Jython interpreter implements Python 2.5 which does not
 # provide support for argparse.
-error_log = sys.argv[ -5 ]
-input = sys.argv[ -4 ]
-black_background = jython_utils.asbool( sys.argv[ -3 ] )
-tmp_output_path = sys.argv[ -2 ]
-output_datatype = sys.argv[ -1 ]
+error_log = sys.argv[-5]
+input_file = sys.argv[-4]
+black_background = sys.argv[-3] == 'yes'
+tmp_output_path = sys.argv[-2]
+output_datatype = sys.argv[-1]
 
 # Open the input image file.
-input_image_plus = IJ.openImage( input )
+input_image_plus = IJ.openImage(input_file)
 
 # Create a copy of the image.
 input_image_plus_copy = input_image_plus.duplicate()
 image_processor_copy = input_image_plus_copy.getProcessor()
 
-try:
-    # Set binary options.
-    options = jython_utils.get_binary_options( black_background=black_background )
-    IJ.run( input_image_plus_copy, "Options...", options )
+# Set binary options.
+options = ['edm=Overwrite', 'iterations=1', 'count=1']
+if (black_background):
+    options.append('black')
+options = " ".join(options)
+IJ.run(input_image_plus_copy, "Options...", options)
 
-    # Convert image to binary if necessary.
-    if not image_processor_copy.isBinary():
-        # Convert the image to binary grayscale.
-        IJ.run( input_image_plus_copy, "Make Binary", "" )
+# Convert image to binary if necessary.
+if not image_processor_copy.isBinary():
+    # Convert the image to binary grayscale.
+    IJ.run(input_image_plus_copy, "Make Binary", "")
 
-    # Run the command.
-    IJ.run( input_image_plus_copy, "Skeletonize (2D/3D)", "" )
+# Run the command.
+IJ.run(input_image_plus_copy, "Skeletonize (2D/3D)", "")
 
-    # Save the ImagePlus object as a new image.
-    IJ.saveAs( input_image_plus_copy, output_datatype, tmp_output_path )
-except Exception, e:
-    jython_utils.handle_error( error_log, str( e ) )
+# Save the ImagePlus object as a new image.
+IJ.saveAs(input_image_plus_copy, output_datatype, tmp_output_path)
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_smooth.py
--- a/imagej2_smooth.py Tue Sep 17 17:08:47 2019 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
b
@@ -1,57 +0,0 @@
-#!/usr/bin/env python
-import argparse
-import os
-import shutil
-import subprocess
-import tempfile
-import imagej2_base_utils
-
-parser = argparse.ArgumentParser()
-parser.add_argument( '--input', dest='input', help='Path to the input file' )
-parser.add_argument( '--input_datatype', dest='input_datatype', help='Datatype of the input image' )
-parser.add_argument( '--jython_script', dest='jython_script', help='Path to the Jython script' )
-parser.add_argument( '--output', dest='output', help='Path to the output file' )
-parser.add_argument( '--output_datatype', dest='output_datatype', help='Datatype of the output image' )
-args = parser.parse_args()
-
-tmp_dir = imagej2_base_utils.get_temp_dir()
-# ImageJ expects valid image file extensions, so the Galaxy .dat extension does not
-# work for some features.  The following creates a symlink with an appropriate file
-# extension that points to the Galaxy dataset.  This symlink is used by ImageJ.
-tmp_input_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.input, args.input_datatype )
-tmp_output_path = imagej2_base_utils.get_temporary_image_path( tmp_dir, args.output_datatype )
-
-# Define command response buffers.
-tmp_out = tempfile.NamedTemporaryFile().name
-tmp_stdout = open( tmp_out, 'wb' )
-tmp_err = tempfile.NamedTemporaryFile().name
-tmp_stderr = open( tmp_err, 'wb' )
-# Java writes a lot of stuff to stderr, so we'll specify a file for handling actual errors.
-error_log = tempfile.NamedTemporaryFile( delete=False ).name
-
-# Build the command line.
-cmd = imagej2_base_utils.get_base_command_imagej2( None, jython_script=args.jython_script )
-if cmd is None:
-    imagej2_base_utils.stop_err( "ImageJ not found!" )
-cmd += ' %s' % error_log
-cmd += ' %s' % tmp_input_path
-cmd += ' %s' % tmp_output_path
-cmd += ' %s' % args.output_datatype
-
-# Run the command.
-proc = subprocess.Popen( args=cmd, stderr=tmp_stderr, stdout=tmp_stdout, shell=True )
-rc = proc.wait()
-
-# Handle execution errors.
-if rc != 0:
-    error_message = imagej2_base_utils.get_stderr_exception( tmp_err, tmp_stderr, tmp_out, tmp_stdout )
-    imagej2_base_utils.stop_err( error_message )
-
-# Handle processing errors.
-if os.path.getsize( error_log ) > 0:
-    error_message = open( error_log, 'r' ).read()
-    imagej2_base_utils.stop_err( error_message )
-
-# Save the output image.
-shutil.move( tmp_output_path, args.output )
-imagej2_base_utils.cleanup_before_exit( tmp_dir )
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_smooth_jython_script.py
--- a/imagej2_smooth_jython_script.py Tue Sep 17 17:08:47 2019 -0400
+++ b/imagej2_smooth_jython_script.py Mon Sep 28 16:47:44 2020 +0000
[
@@ -1,25 +1,22 @@
-import jython_utils
 import sys
+
 from ij import IJ
 
 # Fiji Jython interpreter implements Python 2.5 which does not
 # provide support for argparse.
-error_log = sys.argv[ -4 ]
-input = sys.argv[ -3 ]
-tmp_output_path = sys.argv[ -2 ]
-output_datatype = sys.argv[ -1 ]
+error_log = sys.argv[-4]
+input = sys.argv[-3]
+tmp_output_path = sys.argv[-2]
+output_datatype = sys.argv[-1]
 
 # Open the input image file.
-input_image_plus = IJ.openImage( input )
+input_image_plus = IJ.openImage(input)
 
 # Create a copy of the image.
 input_image_plus_copy = input_image_plus.duplicate()
 image_processor_copy = input_image_plus_copy.getProcessor()
 
-try:
-    # Run the command.
-    IJ.run( input_image_plus_copy, "Smooth", "" )
-    # Save the ImagePlus object as a new image.
-    IJ.saveAs( input_image_plus_copy, output_datatype, tmp_output_path )
-except Exception, e:
-    jython_utils.handle_error( error_log, str( e ) )
+# Run the command.
+IJ.run(input_image_plus_copy, "Smooth", "")
+# Save the ImagePlus object as a new image.
+IJ.saveAs(input_image_plus_copy, output_datatype, tmp_output_path)
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_watershed_binary.py
--- a/imagej2_watershed_binary.py Tue Sep 17 17:08:47 2019 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
b
@@ -1,53 +0,0 @@
-#!/usr/bin/env python
-import argparse
-import os
-import shutil
-import subprocess
-import tempfile
-import imagej2_base_utils
-
-parser = argparse.ArgumentParser()
-parser.add_argument( '--input', dest='input', help='Path to the input file' )
-parser.add_argument( '--input_datatype', dest='input_datatype', help='Datatype of the input image' )
-parser.add_argument( '--black_background', dest='black_background', help='Black background' )
-parser.add_argument( '--jython_script', dest='jython_script', help='Path to the Jython script' )
-parser.add_argument( '--output', dest='output', help='Path to the output file' )
-parser.add_argument( '--output_datatype', dest='output_datatype', help='Datatype of the output image' )
-args = parser.parse_args()
-
-tmp_dir = imagej2_base_utils.get_temp_dir()
-# ImageJ expects valid image file extensions, so the Galaxy .dat extension does not
-# work for some features.  The following creates a symlink with an appropriate file
-# extension that points to the Galaxy dataset.  This symlink is used by ImageJ.
-tmp_input_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.input, args.input_datatype )
-tmp_output_path = imagej2_base_utils.get_temporary_image_path( tmp_dir, args.output_datatype )
-# Define command response buffers.
-tmp_out = tempfile.NamedTemporaryFile().name
-tmp_stdout = open( tmp_out, 'wb' )
-tmp_err = tempfile.NamedTemporaryFile().name
-tmp_stderr = open( tmp_err, 'wb' )
-# Java writes a lot of stuff to stderr, so we'll specify a file for handling actual errors.
-error_log = tempfile.NamedTemporaryFile( delete=False ).name
-# Build the command line.
-cmd = imagej2_base_utils.get_base_command_imagej2( None, jython_script=args.jython_script )
-if cmd is None:
-    imagej2_base_utils.stop_err( "ImageJ not found!" )
-cmd += ' %s' % error_log
-cmd += ' %s' % tmp_input_path
-cmd += ' %s' % args.black_background
-cmd += ' %s' % tmp_output_path
-cmd += ' %s' % args.output_datatype
-# Run the command.
-proc = subprocess.Popen( args=cmd, stderr=tmp_stderr, stdout=tmp_stdout, shell=True )
-rc = proc.wait()
-# Handle execution errors.
-if rc != 0:
-    error_message = imagej2_base_utils.get_stderr_exception( tmp_err, tmp_stderr, tmp_out, tmp_stdout )
-    imagej2_base_utils.stop_err( error_message )
-# Handle processing errors.
-if os.path.getsize( error_log ) > 0:
-    error_message = open( error_log, 'r' ).read()
-    imagej2_base_utils.stop_err( error_message )
-# Save the output image.
-shutil.move( tmp_output_path, args.output )
-imagej2_base_utils.cleanup_before_exit( tmp_dir )
b
diff -r 6840ce593a91 -r 423400b3c47f imagej2_watershed_binary_jython_script.py
--- a/imagej2_watershed_binary_jython_script.py Tue Sep 17 17:08:47 2019 -0400
+++ b/imagej2_watershed_binary_jython_script.py Mon Sep 28 16:47:44 2020 +0000
[
@@ -1,36 +1,36 @@
-import jython_utils
 import sys
+
 from ij import IJ
 
 # Fiji Jython interpreter implements Python 2.5 which does not
 # provide support for argparse.
-error_log = sys.argv[ -5 ]
-input = sys.argv[ -4 ]
-black_background = jython_utils.asbool( sys.argv[ -3 ] )
-tmp_output_path = sys.argv[ -2 ]
-output_datatype = sys.argv[ -1 ]
+error_log = sys.argv[-5]
+input = sys.argv[-4]
+black_background = sys.argv[-3] == 'yes'
+tmp_output_path = sys.argv[-2]
+output_datatype = sys.argv[-1]
 
 # Open the input image file.
-input_image_plus = IJ.openImage( input )
+input_image_plus = IJ.openImage(input)
 
 # Create a copy of the image.
 input_image_plus_copy = input_image_plus.duplicate()
 image_processor_copy = input_image_plus_copy.getProcessor()
 
-try:
-    # Set binary options.
-    options = jython_utils.get_binary_options( black_background=black_background )
-    IJ.run( input_image_plus_copy, "Options...", options )
+# Set binary options.
+options = ['edm=Overwrite', 'iterations=1', 'count=1']
+if (black_background):
+    options.append('black')
+options = " ".join(options)
+IJ.run(input_image_plus_copy, "Options...", options)
 
-    # Convert image to binary if necessary.
-    if not image_processor_copy.isBinary():
-        # Convert the image to binary grayscale.
-        IJ.run( input_image_plus_copy, "Make Binary", "" )
+# Convert image to binary if necessary.
+if not image_processor_copy.isBinary():
+    # Convert the image to binary grayscale.
+    IJ.run(input_image_plus_copy, "Make Binary", "")
 
-    # Run the command.
-    IJ.run( input_image_plus_copy, "Watershed", "" )
+# Run the command.
+IJ.run(input_image_plus_copy, "Watershed", "")
 
-    # Save the ImagePlus object as a new image.
-    IJ.saveAs( input_image_plus_copy, output_datatype, tmp_output_path )
-except Exception, e:
-    jython_utils.handle_error( error_log, str( e ) )
+# Save the ImagePlus object as a new image.
+IJ.saveAs(input_image_plus_copy, output_datatype, tmp_output_path)
b
diff -r 6840ce593a91 -r 423400b3c47f jython_utils.py
--- a/jython_utils.py Tue Sep 17 17:08:47 2019 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
[
@@ -1,48 +0,0 @@
-import imagej2_base_utils
-from ij import IJ
-
-IMAGE_PLUS_IMAGE_TYPE_FIELD_VALUES = { '0':'GRAY8', '1':'GRAY16', '2':'GRAY32',
-                                       '3':'COLOR_256', '4':'COLOR_RGB' }
-
-def asbool( val ):
-    return str( val ).lower() in [ 'yes', 'true' ]
-
-def convert_before_saving_as_tiff( image_plus ):
-    # The bUnwarpJ plug-in produces TIFF image stacks consisting of 3
-    # slices which can be viewed in ImageJ.  The 3 slices are: 1) the
-    # registered image, 2) the target image and 3) the black/white warp
-    # image.  When running bUnwarpJ from the command line (as these
-    # Galaxy wrappers do) the initial call to IJ.openImage() (to open the
-    # registered source and target images produced by bUnwarpJ) in the
-    # tool's jython_script.py returns an ImagePlus object with a single
-    # slice which is the "generally undesired" slice 3 discussed above.
-    # However, a call to IJ.saveAs() will convert the single-slice TIFF
-    # into a 3-slice TIFF image stack (as described above) if the selected
-    # format for saving is TIFF.  Galaxy supports only single-layered
-    # images, so to work around this behavior, we have to convert the
-    # image to something other than TIFF so that slices are eliminated.
-    # We can then convert back to TIFF for saving.  There might be a way
-    # to do this without converting twice, but I spent a lot of time looking
-    # and I have yet to discover it.
-    tmp_dir = imagej2_base_utils.get_temp_dir()
-    tmp_out_png_path = imagej2_base_utils.get_temporary_image_path( tmp_dir, 'png' )
-    IJ.saveAs( image_plus, 'png', tmp_out_png_path )
-    return IJ.openImage( tmp_out_png_path )
-
-def get_binary_options( black_background, iterations=1, count=1, pad_edges_when_eroding='no' ):
-    options = [ 'edm=Overwrite', 'iterations=%d' % iterations, 'count=%d' % count ]
-    if asbool( pad_edges_when_eroding ):
-        options.append( 'pad' )
-    if asbool( black_background ):
-        options.append( "black" )
-    return " ".join( options )
-
-def get_display_image_type( image_type ):
-    return IMAGE_PLUS_IMAGE_TYPE_FIELD_VALUES.get( str( image_type ), None )
-
-def handle_error( error_log, msg ):
-    # Java writes a lot of stuff to stderr, so the received error_log 
-    # will log actual errors.
-    elh = open( error_log, 'wb' )
-    elh.write( msg )
-    elh.close()
b
diff -r 6840ce593a91 -r 423400b3c47f test-data/analyze_particles_masks.gif
b
Binary file test-data/analyze_particles_masks.gif has changed
b
diff -r 6840ce593a91 -r 423400b3c47f test-data/analyze_particles_nothing.tabular
--- a/test-data/analyze_particles_nothing.tabular Tue Sep 17 17:08:47 2019 -0400
+++ b/test-data/analyze_particles_nothing.tabular Mon Sep 28 16:47:44 2020 +0000
b
@@ -29,38 +29,36 @@
 28 55 255 255 255
 29 116 255 255 255
 30 172 255 255 255
-31 103 255 255 255
+31 191 255 255 255
 32 4 255 255 255
 33 60 255 255 255
 34 198 255 255 255
 35 187 255 255 255
 36 7 255 255 255
 37 85 255 255 255
-38 80 255 255 255
-39 75 255 255 255
-40 103 255 255 255
-41 151 255 255 255
-42 52 255 255 255
-43 122 255 255 255
-44 129 255 255 255
-45 77 255 255 255
-46 171 255 255 255
-47 117 255 255 255
-48 207 255 255 255
-49 119 255 255 255
-50 181 255 255 255
-51 22 255 255 255
-52 49 255 255 255
-53 150 255 255 255
-54 191 255 255 255
-55 170 255 255 255
-56 64 255 255 255
-57 174 255 255 255
-58 270 255 255 255
-59 87 255 255 255
-60 69 255 255 255
-61 1 255 255 255
-62 29 255 255 255
-63 25 255 255 255
-64 16 255 255 255
-65 15 255 255 255
+38 75 255 255 255
+39 283 255 255 255
+40 151 255 255 255
+41 52 255 255 255
+42 122 255 255 255
+43 129 255 255 255
+44 77 255 255 255
+45 117 255 255 255
+46 207 255 255 255
+47 119 255 255 255
+48 181 255 255 255
+49 22 255 255 255
+50 49 255 255 255
+51 150 255 255 255
+52 191 255 255 255
+53 170 255 255 255
+54 64 255 255 255
+55 174 255 255 255
+56 270 255 255 255
+57 87 255 255 255
+58 69 255 255 255
+59 1 255 255 255
+60 29 255 255 255
+61 25 255 255 255
+62 16 255 255 255
+63 15 255 255 255
b
diff -r 6840ce593a91 -r 423400b3c47f test-data/analyze_particles_outlines.gif
b
Binary file test-data/analyze_particles_outlines.gif has changed
b
diff -r 6840ce593a91 -r 423400b3c47f test-data/basic.tabular
--- a/test-data/basic.tabular Tue Sep 17 17:08:47 2019 -0400
+++ b/test-data/basic.tabular Mon Sep 28 16:47:44 2020 +0000
b
@@ -1,2 +1,64 @@
 # Branches Junctions End-point Voxels Junction Voxels Slab Voxels Average branch length Triple Points Quadruple Points Maximum Branch Length
-96 60 7 120 1246 17.344 56 3 70.882
+1 0 2 0 5 6.000 0 0 6.000
+1 0 2 0 3 4.000 0 0 4.000
+0 0 1 0 0 0.000 0 0 0.000
+1 0 2 0 2 3.000 0 0 3.000
+0 0 1 0 0 0.000 0 0 0.000
+1 0 2 0 1 2.414 0 0 2.414
+1 0 2 0 6 8.243 0 0 8.243
+1 0 2 0 7 9.243 0 0 9.243
+1 0 2 0 0 1.414 0 0 1.414
+0 0 1 0 0 0.000 0 0 0.000
+0 0 1 0 0 0.000 0 0 0.000
+1 0 2 0 1 2.000 0 0 2.000
+0 0 1 0 0 0.000 0 0 0.000
+1 0 2 0 0 1.000 0 0 1.000
+1 0 2 0 3 4.414 0 0 4.414
+0 0 1 0 0 0.000 0 0 0.000
+1 0 2 0 3 4.414 0 0 4.414
+1 0 2 0 0 1.000 0 0 1.000
+0 0 1 0 0 0.000 0 0 0.000
+1 0 2 0 8 9.000 0 0 9.000
+1 0 2 0 1 2.828 0 0 2.828
+0 0 1 0 0 0.000 0 0 0.000
+1 0 2 0 0 1.000 0 0 1.000
+1 0 2 0 15 17.243 0 0 17.243
+1 0 2 0 2 3.828 0 0 3.828
+1 0 2 0 2 3.828 0 0 3.828
+1 0 2 0 0 1.000 0 0 1.000
+0 0 1 0 0 0.000 0 0 0.000
+1 0 2 0 11 14.485 0 0 14.485
+1 0 2 0 9 10.828 0 0 10.828
+1 0 2 0 8 9.828 0 0 9.828
+1 0 2 0 0 1.000 0 0 1.000
+1 0 2 0 2 4.243 0 0 4.243
+0 0 1 0 0 0.000 0 0 0.000
+1 0 2 0 0 1.414 0 0 1.414
+1 0 2 0 1 2.000 0 0 2.000
+1 0 2 0 0 1.000 0 0 1.000
+1 0 2 0 7 10.071 0 0 10.071
+1 0 2 0 7 8.414 0 0 8.414
+0 0 1 0 0 0.000 0 0 0.000
+1 0 2 0 6 7.414 0 0 7.414
+0 0 1 0 0 0.000 0 0 0.000
+1 0 2 0 4 5.414 0 0 5.414
+1 0 2 0 0 1.000 0 0 1.000
+0 0 1 0 0 0.000 0 0 0.000
+1 0 2 0 8 11.071 0 0 11.071
+0 0 1 0 0 0.000 0 0 0.000
+1 0 2 0 0 1.414 0 0 1.414
+1 0 2 0 0 1.414 0 0 1.414
+1 0 2 0 0 1.000 0 0 1.000
+1 0 2 0 3 4.828 0 0 4.828
+0 0 1 0 0 0.000 0 0 0.000
+1 0 2 0 0 1.000 0 0 1.000
+1 0 2 0 4 5.828 0 0 5.828
+1 0 2 0 0 1.414 0 0 1.414
+0 0 1 0 0 0.000 0 0 0.000
+1 0 2 0 0 1.000 0 0 1.000
+1 0 2 0 5 7.243 0 0 7.243
+1 0 2 0 0 1.414 0 0 1.414
+1 0 2 0 4 5.000 0 0 5.000
+1 0 2 0 2 3.000 0 0 3.000
+1 0 2 0 1 2.000 0 0 2.000
+1 0 2 0 3 4.000 0 0 4.000
b
diff -r 6840ce593a91 -r 423400b3c47f test-data/blobs_black_edm.gif
b
Binary file test-data/blobs_black_edm.gif has changed
b
diff -r 6840ce593a91 -r 423400b3c47f test-data/blobs_edm.gif
b
Binary file test-data/blobs_edm.gif has changed
b
diff -r 6840ce593a91 -r 423400b3c47f test-data/blobs_equalize.gif
b
Binary file test-data/blobs_equalize.gif has changed
b
diff -r 6840ce593a91 -r 423400b3c47f test-data/blobs_find_edges.gif
b
Binary file test-data/blobs_find_edges.gif has changed
b
diff -r 6840ce593a91 -r 423400b3c47f test-data/blobs_log.gif
b
Binary file test-data/blobs_log.gif has changed
b
diff -r 6840ce593a91 -r 423400b3c47f test-data/blobs_min.gif
b
Binary file test-data/blobs_min.gif has changed
b
diff -r 6840ce593a91 -r 423400b3c47f test-data/blobs_multiply.gif
b
Binary file test-data/blobs_multiply.gif has changed
b
diff -r 6840ce593a91 -r 423400b3c47f test-data/blobs_normalize.gif
b
Binary file test-data/blobs_normalize.gif has changed
b
diff -r 6840ce593a91 -r 423400b3c47f test-data/blobs_northwest.gif
b
Binary file test-data/blobs_northwest.gif has changed
b
diff -r 6840ce593a91 -r 423400b3c47f test-data/blobs_saturate.gif
b
Binary file test-data/blobs_saturate.gif has changed
b
diff -r 6840ce593a91 -r 423400b3c47f test-data/blobs_segmented.gif
b
Binary file test-data/blobs_segmented.gif has changed
b
diff -r 6840ce593a91 -r 423400b3c47f test-data/blobs_single_points.gif
b
Binary file test-data/blobs_single_points.gif has changed
b
diff -r 6840ce593a91 -r 423400b3c47f test-data/blobs_square.gif
b
Binary file test-data/blobs_square.gif has changed
b
diff -r 6840ce593a91 -r 423400b3c47f test-data/blobs_tolerance.gif
b
Binary file test-data/blobs_tolerance.gif has changed
b
diff -r 6840ce593a91 -r 423400b3c47f test-data/blobs_watershed_binary.gif
b
Binary file test-data/blobs_watershed_binary.gif has changed
b
diff -r 6840ce593a91 -r 423400b3c47f test-data/elastic_trans_registered_source1.png
b
Binary file test-data/elastic_trans_registered_source1.png has changed
b
diff -r 6840ce593a91 -r 423400b3c47f test-data/largest_shortest_path_basic.tabular
--- a/test-data/largest_shortest_path_basic.tabular Tue Sep 17 17:08:47 2019 -0400
+++ b/test-data/largest_shortest_path_basic.tabular Mon Sep 28 16:47:44 2020 +0000
b
@@ -1,2 +1,64 @@
 # Branches Junctions End-point Voxels Junction Voxels Slab Voxels Average branch length Triple Points Quadruple Points Maximum Branch Length Longest Shortest Path spx spy spz
-96 60 7 120 1246 17.344 56 3 70.882 207.380 135 137 0
+1 0 2 0 5 6.000 0 0 6.000 6.000 0 18 0
+1 0 2 0 3 4.000 0 0 4.000 4.000 2 130 0
+0 0 1 0 0 0.000 0 0 0.000 0.000 4 25 0
+1 0 2 0 2 3.000 0 0 3.000 3.000 4 56 0
+0 0 1 0 0 0.000 0 0 0.000 0.000 4 79 0
+1 0 2 0 1 2.414 0 0 2.414 2.414 9 94 0
+1 0 2 0 6 8.243 0 0 8.243 8.243 12 4 0
+1 0 2 0 7 9.243 0 0 9.243 9.243 16 126 0
+1 0 2 0 0 1.414 0 0 1.414 1.414 16 32 0
+0 0 1 0 0 0.000 0 0 0.000 0.000 19 49 0
+0 0 1 0 0 0.000 0 0 0.000 0.000 20 69 0
+1 0 2 0 1 2.000 0 0 2.000 2.000 24 98 0
+0 0 1 0 0 0.000 0 0 0.000 0.000 25 14 0
+1 0 2 0 0 1.000 0 0 1.000 1.000 25 137 0
+1 0 2 0 3 4.414 0 0 4.414 4.414 38 2 0
+0 0 1 0 0 0.000 0 0 0.000 0.000 34 69 0
+1 0 2 0 3 4.414 0 0 4.414 4.414 35 126 0
+1 0 2 0 0 1.000 0 0 1.000 1.000 36 47 0
+0 0 1 0 0 0.000 0 0 0.000 0.000 37 83 0
+1 0 2 0 8 9.000 0 0 9.000 9.000 46 143 0
+1 0 2 0 1 2.828 0 0 2.828 2.828 42 22 0
+0 0 1 0 0 0.000 0 0 0.000 0.000 43 137 0
+1 0 2 0 0 1.000 0 0 1.000 1.000 47 65 0
+1 0 2 0 15 17.243 0 0 17.243 17.243 51 83 0
+1 0 2 0 2 3.828 0 0 3.828 3.828 56 40 0
+1 0 2 0 2 3.828 0 0 3.828 3.828 59 122 0
+1 0 2 0 0 1.000 0 0 1.000 1.000 58 63 0
+0 0 1 0 0 0.000 0 0 0.000 0.000 60 6 0
+1 0 2 0 11 14.485 0 0 14.485 14.485 73 68 0
+1 0 2 0 9 10.828 0 0 10.828 10.828 77 143 0
+1 0 2 0 8 9.828 0 0 9.828 9.828 79 46 0
+1 0 2 0 0 1.000 0 0 1.000 1.000 73 112 0
+1 0 2 0 2 4.243 0 0 4.243 4.243 78 91 0
+0 0 1 0 0 0.000 0 0 0.000 0.000 77 12 0
+1 0 2 0 0 1.414 0 0 1.414 1.414 78 32 0
+1 0 2 0 1 2.000 0 0 2.000 2.000 77 134 0
+1 0 2 0 0 1.000 0 0 1.000 1.000 87 5 0
+1 0 2 0 7 10.071 0 0 10.071 10.071 95 78 0
+1 0 2 0 7 8.414 0 0 8.414 8.414 101 56 0
+0 0 1 0 0 0.000 0 0 0.000 0.000 94 41 0
+1 0 2 0 6 7.414 0 0 7.414 7.414 103 142 0
+0 0 1 0 0 0.000 0 0 0.000 0.000 98 18 0
+1 0 2 0 4 5.414 0 0 5.414 5.414 104 131 0
+1 0 2 0 0 1.000 0 0 1.000 1.000 101 103 0
+0 0 1 0 0 0.000 0 0 0.000 0.000 106 88 0
+1 0 2 0 8 11.071 0 0 11.071 11.071 112 28 0
+0 0 1 0 0 0.000 0 0 0.000 0.000 111 9 0
+1 0 2 0 0 1.414 0 0 1.414 1.414 116 115 0
+1 0 2 0 0 1.414 0 0 1.414 1.414 121 39 0
+1 0 2 0 0 1.000 0 0 1.000 1.000 120 95 0
+1 0 2 0 3 4.828 0 0 4.828 4.828 123 16 0
+0 0 1 0 0 0.000 0 0 0.000 0.000 125 54 0
+1 0 2 0 0 1.000 0 0 1.000 1.000 126 72 0
+1 0 2 0 4 5.828 0 0 5.828 5.828 134 143 0
+1 0 2 0 0 1.414 0 0 1.414 1.414 131 104 0
+0 0 1 0 0 0.000 0 0 0.000 0.000 131 26 0
+1 0 2 0 0 1.000 0 0 1.000 1.000 131 129 0
+1 0 2 0 5 7.243 0 0 7.243 7.243 140 84 0
+1 0 2 0 0 1.414 0 0 1.414 1.414 138 41 0
+1 0 2 0 4 5.000 0 0 5.000 5.000 139 10 0
+1 0 2 0 2 3.000 0 0 3.000 3.000 141 61 0
+1 0 2 0 1 2.000 0 0 2.000 2.000 143 71 0
+1 0 2 0 3 4.000 0 0 4.000 4.000 142 115 0
b
diff -r 6840ce593a91 -r 423400b3c47f test-data/raw_trans_registered_source1.png
b
Binary file test-data/raw_trans_registered_source1.png has changed
b
diff -r 6840ce593a91 -r 423400b3c47f test-data/registered_source1.png
b
Binary file test-data/registered_source1.png has changed
b
diff -r 6840ce593a91 -r 423400b3c47f test-data/registered_source2.png
b
Binary file test-data/registered_source2.png has changed
b
diff -r 6840ce593a91 -r 423400b3c47f test-data/registered_target1.png
b
Binary file test-data/registered_target1.png has changed
b
diff -r 6840ce593a91 -r 423400b3c47f test-data/registered_target2.png
b
Binary file test-data/registered_target2.png has changed
b
diff -r 6840ce593a91 -r 423400b3c47f test-data/skeletonized_blobs.gif
b
Binary file test-data/skeletonized_blobs.gif has changed
b
diff -r 6840ce593a91 -r 423400b3c47f test-data/source_elastic_transformation_out.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/source_elastic_transformation_out.txt Mon Sep 28 16:47:44 2020 +0000
b
@@ -0,0 +1,5 @@
+Intervals=4
+
+X Coeffs -----------------------------------
+
+Y Coeffs -----------------------------------
b
diff -r 6840ce593a91 -r 423400b3c47f test-data/target_elastic_transformation_out.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/target_elastic_transformation_out.txt Mon Sep 28 16:47:44 2020 +0000
b
@@ -0,0 +1,5 @@
+Intervals=4
+
+X Coeffs -----------------------------------
+
+Y Coeffs -----------------------------------