Repository 'query_crapome'
hg clone https://toolshed.g2.bx.psu.edu/repos/bornea/query_crapome

Changeset 0:4d47d78b193a (2016-04-18)
Next changeset 1:7a0b06a1cabd (2016-04-18)
Commit message:
Uploaded
added:
CRAPomeQuery.py
b
diff -r 000000000000 -r 4d47d78b193a CRAPomeQuery.py
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/CRAPomeQuery.py Mon Apr 18 12:16:53 2016 -0400
[
@@ -0,0 +1,162 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Thu Apr 14 16:58:05 2016
+
+@author: brentkuenzi
+"""
+################################################################################
+# This program will read in a SAINT formatted 'prey.txt' file or a file
+# containing a single column list of uniprot accessions (e.g. "P00533" or 
+# "EGFR_HUMAN")query the CRAPome database (v1.1), and return a file specifying 
+# the prevalence of each protein in the CRAPome.
+################################################################################
+# Copyright (C)  Brent Kuenzi.
+# Permission is granted to copy, distribute and/or modify this document
+# under the terms of the GNU Free Documentation License, Version 1.3
+# or any later version published by the Free Software Foundation;
+# with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
+# A copy of the license is included in the section entitled "GNU
+# Free Documentation License".
+################################################################################
+## REQUIRED INPUT ##
+# 1) crappyData: Prey.txt or single column list of Uniprot accessions
+crappyData = sys.argv[1] # Prey file or File with single column of accessions
+# 2) Species: HUMAN or YEAST
+species = sys.argv[2] # HUMAN or YEAST
+db_path = sys.argv[4]
+################################################################################
+## Dependencies ##
+import urllib2
+import sys
+import numpy
+import os
+################################################################################
+## Global Variables ##
+if species == "HUMAN":
+    database = "Human_CRAPome_v1-1.txt"
+if species == "YEAST":
+    database = "Yeast_CRAPome_v1-1.txt"
+################################################################################
+## CRAPomeQuery ##
+class ReturnValue1(object):
+    def __init__(self, uniprot_acc, gene, swissprot):
+        self.up = uniprot_acc
+        self.gn = gene
+        self.sp = swissprot
+def get_info(uniprot_accession_in): #get aa lengths and gene name
+    error = open('error proteins.txt', 'a+')
+    i=0
+    while i==0:
+        try:
+            data = urllib2.urlopen("http://www.uniprot.org/uniprot/" + uniprot_accession_in + ".fasta")
+            break
+        except urllib2.HTTPError, err:
+            i = i + 1
+            if i == 50:
+                sys.exit("More than 50 errors. Check your file or try again later.")
+            if err.code == 404:
+                error.write(uniprot_accession_in + '\t' + "Invalid URL. Check protein" + '\n')
+                seqlength = 'NA'
+                genename = 'NA'
+                return ReturnValue1(seqlength, genename)
+            elif err.code == 302:
+                sys.exit("Request timed out. Check connection and try again.")
+            else:
+                sys.exit("Uniprot had some other error")
+    lines = data.readlines()
+    header = lines[0]
+    lst = header.split('|')
+    lst2 = lst[2].split(' ')
+    swissprot = lst2[0]
+    uniprot_acc = lst[1]
+    if lines == []:
+        error.write(uniprot_accession_in + '\t' + "Blank Fasta" + '\n')
+        error.close
+        uniprot_acc = 'NA'
+        genename = 'NA'
+        return ReturnValue1(uniprot_acc, genename, swissprot)
+    if lines != []:
+        seqlength = 0
+        header = lines[0]
+        if 'GN=' in header:
+            lst = header.split('GN=')
+            lst2 = lst[1].split(' ')
+            genename = lst2[0]
+            error.close
+            return ReturnValue1(uniprot_acc, genename, swissprot)
+        if 'GN=' not in header:
+            genename = 'NA'
+            error.close
+            return ReturnValue1(uniprot_acc, genename, swissprot)
+def readtab(infile): # read in tab-delim text
+    with open(infile,'r') as x:
+        output = []
+        for line in x:
+            line = line.strip()
+            temp = line.split('\t')
+            output.append(temp)
+    return output
+def crapome(infile): # Query CRAPome
+    data = readtab(infile)
+    crapome = readtab(database)
+    filt = []
+    for i in data: # Filter CRAPome database on our data
+        flag = 0 # is protein in CRAPome?
+        ac_flag = 0 # is it _SPECIES or not
+        unique = 0 # only take first ID in CRAPome
+        if "_"+species in i[0]:
+            ac = i[0] 
+        else:
+            ac = get_info(i[0]).sp # query swissprot if not _SPECIES
+            ac_flag +=1
+        for j in crapome:
+            if ac == j[2]:
+                if ac_flag == 0: # if _SPECIES
+                    if unique == 0:
+                        filt.append(j)
+                        flag+=1
+                        unique+=1
+                if ac_flag != 0: # if not _SPECIES
+                    if unique == 0:
+                        unique+=1
+                        j[2] = i[0] # change to user input
+                        filt.append(j)
+                        flag +=1
+        if flag == 0: # if protein is not present in CRAPome database then add it
+            filt.append(["\t", "\t", i[0], "Invalid identifier / gene not available"])
+    total = 0 # Experiment counter
+    query = []
+    for i in filt: # Create CRAPome file as list
+        temp=[]
+        if len(i) > 5:
+            cnt=0
+            temp.append(i[2]) # append accession
+            temp.append(i[0]) # append gene name
+            ave = []
+            total = len(i[3:]) # calculate total experiments
+            for j in i[3:]: 
+                if j != '0':
+                    ave.append(int(j)) # calculate Ave.SC on only experiments with ID
+                    cnt+=1
+            temp.append(str(cnt) + " / "+str(total)) # format ratio
+            if ave != []:
+                temp.append(str(round(numpy.mean(ave),1))) # calculate Ave.SC
+                temp.append(str(max(ave))) # calculate Max.SC
+            else:
+                temp.append(0) # add 0 if has not been ID'd in CRAPome
+                temp.append(0) # add 0 if has not been ID'd in CRAPome
+        else:
+            temp.append(i[2]) # append accession
+            temp.append(i[3])
+        query.append(temp) # final query results
+
+    header = ["User Input","Mapped Gene Symbol","Num of Expt. (found/total)","Ave SC","Max SC"]
+    with open("Crappy Data.txt","wt") as x: # write file
+        x.write("\t".join(header) + "\n")
+        for i in query:
+            x.write("\t".join(i) + "\n")
+if __name__ == '__main__':
+    crapome(crappyData)
+
+os.rename("Crappy Data.txt", sys.argv[3])
+## END ##
\ No newline at end of file