Next changeset 1:e769cde223a5 (2014-04-03) |
Commit message:
Imported from capsule None |
added:
best_regression_subsets.py best_regression_subsets.xml |
b |
diff -r 000000000000 -r 54c7a01a2cc7 best_regression_subsets.py --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/best_regression_subsets.py Tue Apr 01 10:50:17 2014 -0400 |
[ |
@@ -0,0 +1,91 @@ +#!/usr/bin/env python + +from galaxy import eggs + +import sys +from rpy import * +import numpy + +def stop_err(msg): + sys.stderr.write(msg) + sys.exit() + + +infile = sys.argv[1] +y_col = int(sys.argv[2])-1 +x_cols = sys.argv[3].split(',') +outfile = sys.argv[4] +outfile2 = sys.argv[5] +print "Predictor columns: %s; Response column: %d" % ( x_cols, y_col+1 ) +fout = open(outfile,'w') + +for i, line in enumerate( file ( infile )): + line = line.rstrip('\r\n') + if len( line )>0 and not line.startswith( '#' ): + elems = line.split( '\t' ) + break + if i == 30: + break # Hopefully we'll never get here... + +if len( elems )<1: + stop_err( "The data in your input dataset is either missing or not formatted properly." ) + +y_vals = [] +x_vals = [] + +for k, col in enumerate(x_cols): + x_cols[k] = int(col)-1 + x_vals.append([]) + +NA = 'NA' +for ind, line in enumerate( file( infile ) ): + if line and not line.startswith( '#' ): + try: + fields = line.split("\t") + try: + yval = float(fields[y_col]) + except Exception, ey: + yval = r('NA') + y_vals.append(yval) + for k, col in enumerate(x_cols): + try: + xval = float(fields[col]) + except Exception, ex: + xval = r('NA') + x_vals[k].append(xval) + except: + pass + +response_term = "" + +x_vals1 = numpy.asarray(x_vals).transpose() + +dat = r.list(x=array(x_vals1), y=y_vals) + +r.library("leaps") + +set_default_mode(NO_CONVERSION) +try: + leaps = r.regsubsets(r("y ~ x"), data= r.na_exclude(dat)) +except RException, rex: + stop_err("Error performing linear regression on the input data.\nEither the response column or one of the predictor columns contain no numeric values.") +set_default_mode(BASIC_CONVERSION) + +summary = r.summary(leaps) +tot = len(x_vals) +pattern = "[" +for i in range(tot): + pattern = pattern + 'c' + str(int(x_cols[int(i)]) + 1) + ' ' +pattern = pattern.strip() + ']' +print >> fout, "#Vars\t%s\tR-sq\tAdj. R-sq\tC-p\tbic" % (pattern) +for ind, item in enumerate(summary['outmat']): + print >> fout, "%s\t%s\t%s\t%s\t%s\t%s" % (str(item).count('*'), item, summary['rsq'][ind], summary['adjr2'][ind], summary['cp'][ind], summary['bic'][ind]) + + +r.pdf( outfile2, 8, 8 ) +r.plot(leaps, scale="Cp", main="Best subsets using Cp Criterion") +r.plot(leaps, scale="r2", main="Best subsets using R-sq Criterion") +r.plot(leaps, scale="adjr2", main="Best subsets using Adjusted R-sq Criterion") +r.plot(leaps, scale="bic", main="Best subsets using bic Criterion") + +r.dev_off() |
b |
diff -r 000000000000 -r 54c7a01a2cc7 best_regression_subsets.xml --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/best_regression_subsets.xml Tue Apr 01 10:50:17 2014 -0400 |
[ |
@@ -0,0 +1,66 @@ +<tool id="BestSubsetsRegression1" name="Perform Best-subsets Regression" version="0.0.1"> + <description> </description> + <command interpreter="python"> + best_regression_subsets.py + $input1 + $response_col + $predictor_cols + $out_file1 + $out_file2 + 1>/dev/null + 2>/dev/null + </command> + <inputs> + <param format="tabular" name="input1" type="data" label="Select data" help="Dataset missing? See TIP below."/> + <param name="response_col" label="Response column (Y)" type="data_column" data_ref="input1" /> + <param name="predictor_cols" label="Predictor columns (X)" type="data_column" data_ref="input1" multiple="true" > + <validator type="no_options" message="Please select at least one column."/> + </param> + </inputs> + <outputs> + <data format="input" name="out_file1" metadata_source="input1" /> + <data format="pdf" name="out_file2" /> + </outputs> + <requirements> + <requirement type="python-module">rpy</requirement> + </requirements> + <tests> + <!-- Testing this tool will not be possible because this tool produces a pdf output file. + --> + </tests> + <help> + +.. class:: infomark + +**TIP:** If your data is not TAB delimited, use *Edit Datasets->Convert characters* + +----- + +.. class:: infomark + +**What it does** + +This tool uses the 'regsubsets' function from R statistical package for regression subset selection. It outputs two files, one containing a table with the best subsets and the corresponding summary statistics, and the other containing the graphical representation of the results. + +----- + +.. class:: warningmark + +**Note** + +- This tool currently treats all predictor and response variables as continuous variables. + +- Rows containing non-numeric (or missing) data in any of the chosen columns will be skipped from the analysis. + +- The 6 columns in the output are described below: + + - Column 1 (Vars): denotes the number of variables in the model + - Column 2 ([c2 c3 c4...]): represents a list of the user-selected predictor variables (full model). An asterix denotes the presence of the corresponding predictor variable in the selected model. + - Column 3 (R-sq): the fraction of variance explained by the model + - Column 4 (Adj. R-sq): the above R-squared statistic adjusted, penalizing for higher number of predictors (p) + - Column 5 (Cp): Mallow's Cp statistics + - Column 6 (bic): Bayesian Information Criterion. + + + </help> +</tool> |