Repository 'qiime2__vsearch__cluster_features_de_novo'
hg clone https://toolshed.g2.bx.psu.edu/repos/q2d2/qiime2__vsearch__cluster_features_de_novo

Changeset 0:63ed53250d02 (2022-08-29)
Next changeset 1:a753a1136636 (2023-01-13)
Commit message:
planemo upload for repository https://github.com/qiime2/galaxy-tools/tree/main/tools/suite_qiime2__vsearch commit 9023cfd83495a517fbcbb6f91d5b01a6f1afcda1
added:
qiime2__vsearch__cluster_features_de_novo.xml
test-data/.gitkeep
b
diff -r 000000000000 -r 63ed53250d02 qiime2__vsearch__cluster_features_de_novo.xml
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/qiime2__vsearch__cluster_features_de_novo.xml Mon Aug 29 20:32:41 2022 +0000
[
@@ -0,0 +1,71 @@
+<?xml version='1.0' encoding='utf-8'?>
+<!--
+Copyright (c) 2022, QIIME 2 development team.
+
+Distributed under the terms of the Modified BSD License. (SPDX: BSD-3-Clause)
+-->
+<!--
+This tool was automatically generated by:
+    q2galaxy (version: 2022.8.1)
+for:
+    qiime2 (version: 2022.8.1)
+-->
+<tool name="qiime2 vsearch cluster-features-de-novo" id="qiime2__vsearch__cluster_features_de_novo" version="2022.8.0+q2galaxy.2022.8.1.2" profile="22.05" license="BSD-3-Clause">
+    <description>De novo clustering of features.</description>
+    <requirements>
+        <container type="docker">quay.io/qiime2/core:2022.8</container>
+    </requirements>
+    <version_command>q2galaxy version vsearch</version_command>
+    <command detect_errors="aggressive">q2galaxy run vsearch cluster_features_de_novo '$inputs'</command>
+    <configfiles>
+        <inputs name="inputs" data_style="paths"/>
+    </configfiles>
+    <inputs>
+        <param name="sequences" type="data" format="qza" label="sequences: FeatureData[Sequence]" help="[required]  The sequences corresponding to the features in table.">
+            <options options_filter_attribute="metadata.semantic_type">
+                <filter type="add_value" value="FeatureData[Sequence]"/>
+            </options>
+            <validator type="expression" message="Incompatible type">hasattr(value.metadata, "semantic_type") and value.metadata.semantic_type in ['FeatureData[Sequence]']</validator>
+        </param>
+        <param name="table" type="data" format="qza" label="table: FeatureTable[Frequency]" help="[required]  The feature table to be clustered.">
+            <options options_filter_attribute="metadata.semantic_type">
+                <filter type="add_value" value="FeatureTable[Frequency]"/>
+            </options>
+            <validator type="expression" message="Incompatible type">hasattr(value.metadata, "semantic_type") and value.metadata.semantic_type in ['FeatureTable[Frequency]']</validator>
+        </param>
+        <param name="perc_identity" type="float" min="1e-06" max="1" value="" label="perc_identity: Float % Range(0, 1, inclusive_start=False, inclusive_end=True)" help="[required]  The percent identity at which clustering should be performed. This parameter maps to vsearch's --id parameter."/>
+        <section name="__q2galaxy__GUI__section__extra_opts__" title="Click here for additional options">
+            <param name="threads" type="integer" min="0" max="256" value="1" label="threads: Int % Range(0, 256, inclusive_end=True)" help="[default: 1]  The number of threads to use for computation. Passing 0 will launch one thread per CPU core."/>
+        </section>
+    </inputs>
+    <outputs>
+        <data name="clustered_table" format="qza" label="${tool.name} on ${on_string}: clustered_table.qza" from_work_dir="clustered_table.qza"/>
+        <data name="clustered_sequences" format="qza" label="${tool.name} on ${on_string}: clustered_sequences.qza" from_work_dir="clustered_sequences.qza"/>
+    </outputs>
+    <tests/>
+    <help>
+QIIME 2: vsearch cluster-features-de-novo
+=========================================
+De novo clustering of features.
+
+
+Outputs:
+--------
+:clustered_table.qza: The table following clustering of features.
+:clustered_sequences.qza: Sequences representing clustered features.
+
+|  
+
+Description:
+------------
+Given a feature table and the associated feature sequences, cluster the features based on user-specified percent identity threshold of their sequences. This is not a general-purpose de novo clustering method, but rather is intended to be used for clustering the results of quality-filtering/dereplication methods, such as DADA2, or for re-clustering a FeatureTable at a lower percent identity than it was originally clustered at. When a group of features in the input table are clustered into a single feature, the frequency of that single feature in a given sample is the sum of the frequencies of the features that were clustered in that sample. Feature identifiers and sequences will be inherited from the centroid feature of each cluster. See the vsearch documentation for details on how sequence clustering is performed.
+
+
+|  
+
+</help>
+    <citations>
+        <citation type="doi">10.7717/peerj.2584</citation>
+        <citation type="doi">10.1038/s41587-019-0209-9</citation>
+    </citations>
+</tool>