Repository 'scanpy_filter'
hg clone https://toolshed.g2.bx.psu.edu/repos/iuc/scanpy_filter

Changeset 1:6a76b60e05f5 (2019-10-16)
Previous changeset 0:6ea5a05a260a (2019-03-04) Next changeset 2:e62673c32a5d (2019-12-05)
Commit message:
"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/scanpy/ commit 8ef5f7c6f8728608a3f05bb51e11b642b84a05f5"
modified:
README.md
filter.xml
macros.xml
test-data/pl.clustermap.krumsiek11.png
test-data/pl.dotplot.krumsiek11.png
test-data/pl.pca_overview.pp.pca.krumsiek11.png
test-data/pl.scatter.krumsiek11.png
test-data/pp.filter_cells.krumsiek11-min_counts.h5ad
test-data/pp.filter_genes.krumsiek11-min_counts.h5ad
test-data/pp.filter_genes_dispersion.krumsiek11-seurat.h5ad
test-data/pp.log1p.krumsiek11.h5ad
test-data/pp.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad
test-data/pp.neighbors_umap_euclidean.recipe_weinreb17.paul15_subsample.h5ad
test-data/pp.pca.krumsiek11.h5ad
test-data/pp.recipe_seurat.recipe_zheng17.h5ad
test-data/pp.recipe_zheng17.random-randint.h5ad
test-data/pp.regress_out.krumsiek11.h5ad
test-data/pp.scale.krumsiek11.h5ad
test-data/pp.scale_max_value.krumsiek11.h5ad
test-data/pp.sqrt.krumsiek11.h5ad
test-data/pp.subsample.krumsiek11_fraction.h5ad
test-data/tl.diffmap.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad
test-data/tl.dpt.diffmap.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad
test-data/tl.louvain.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad
test-data/tl.paga.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad
test-data/tl.pca.krumsiek11.h5ad
test-data/tl.rank_genes_groups.krumsiek11.h5ad
test-data/tl.score_genes.krumsiek11.h5ad
test-data/tl.score_genes_cell_cycle.krumsiek11.h5ad
test-data/tl.tsne.krumsiek11.h5ad
test-data/tl.umap.neighbors_umap_euclidean.recipe_weinreb17.paul15_subsample.h5ad
added:
test-data/blobs.h5ad
test-data/pl.draw_graph.png
test-data/pl.highly_variable_genes.seurat.blobs.png
test-data/pl.rank_genes_groups.rank_genes_groups.krumsiek11.png
test-data/pl.rank_genes_groups_violin.Ery.png
test-data/pl.rank_genes_groups_violin.Mk.png
test-data/pl.rank_genes_groups_violin.Mo.png
test-data/pl.rank_genes_groups_violin.Neu.png
test-data/pl.rank_genes_groups_violin.progenitor.png
test-data/pl.scatter.umap.pbmc68k_reduced.png
test-data/pl.stacked_violin.krumsiek11.png
test-data/pp.calculate_qc_metrics.sparce_csr_matrix.h5ad
test-data/pp.combat.blobs.h5ad
test-data/pp.downsample_counts.random-randint.h5ad
test-data/pp.filter_cells.krumsiek11-max_genes.h5ad
test-data/pp.filter_rank_genes_groups.h5ad
test-data/pp.highly_variable_genes.krumsiek11-cell_ranger.h5ad
test-data/pp.highly_variable_genes.seurat.blobs.h5ad
test-data/pp.normalize_total.krumsiek11.h5ad
test-data/pp.recipe_weinreb17.paul15_subsample.updated.h5ad
test-data/sparce_csr_matrix.h5ad
test-data/tl.draw_graph.pp.neighbors_umap_euclidean.recipe_weinreb17.paul15_subsample.h5ad
test-data/tl.leiden.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad
test-data/tl.rank_genes_groups.liblinear.krumsiek11.h5ad
test-data/tl.rank_genes_groups.newton-cg.pbmc68k_reduced.h5ad
removed:
README.rst
test-data/pp.filter_cells.number_per_cell.krumsiek11-max_genes.tabular
test-data/pp.filter_genes.number_per_gene.krumsiek11-min_counts.tabular
test-data/pp.filter_genes.number_per_gene.pbmc68k_reduced-max_cells.tabular
test-data/pp.filter_genes_dispersion.per_gene.krumsiek11-cell_ranger.tabular
test-data/pp.filter_genes_dispersion.per_gene.krumsiek11-seurat.tabular
test-data/pp.normalize_per_cell.obs.krumsiek11.tabular
test-data/tl.diffmap.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.X_diffmap.tabular
test-data/tl.dpt.diffmap.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.obs.tabular
test-data/tl.score_genes.krumsiek11.obs.tabular
test-data/tl.score_genes_cell_cycle.krumsiek11.obs.tabular
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 README.md
--- a/README.md Mon Mar 04 10:15:02 2019 -0500
+++ b/README.md Wed Oct 16 06:32:33 2019 -0400
[
b'@@ -1,138 +1,115 @@\n Scanpy\n ======\n \n-## Classification of methods into steps\n+1. Inspect & Manipulate (`inspect.xml`)\n \n-Steps:\n+    Methods | Description\n+    --- | ---\n+    `pp.calculate_qc_metrics` | Calculate quality control metrics\n+    `pp.neighbors` | Compute a neighborhood graph of observations\n+    `tl.score_genes` | Score a set of genes\n+    `tl.score_genes_cell_cycle` | Score cell cycle gene\n+    `tl.rank_genes_groups` | Rank genes for characterizing groups\n+    `tl.marker_gene_overlap` | Calculate an overlap score between data-deriven marker genes and provided markers (**not working for now**)\n+    `pp.log1p` | Logarithmize the data matrix.\n+    `pp.scale` | Scale data to unit variance and zero mean\n+    `pp.sqrt` | Square root the data matrix\n \n-1. Filtering\n+2. Filter (`filter.xml`)\n \n     Methods | Description\n     --- | ---\n     `pp.filter_cells` | Filter cell outliers based on counts and numbers of genes expressed.\n     `pp.filter_genes` | Filter genes based on number of cells or counts.\n-    `pp.filter_genes_dispersion` | Extract highly variable genes\n+    `tl.filter_rank_genes_groups` | Filters out genes based on fold change and fraction of genes expressing the gene within and outside the groupby categories (**to fix**)\n     `pp.highly_variable_genes` | Extract highly variable genes\n     `pp.subsample` | Subsample to a fraction of the number of observations\n-    `queries.gene_coordinates` | (Could not find...)\n-    `queries.mitochondrial_genes` | Retrieves Mitochondrial gene symbols for specific organism through BioMart for filtering\n-\n-2. Quality Plots\n-\n-   These are in-between stages used to measure the effectiveness of a Filtering/Normalisation/Conf.Removal stage either after processing or prior to.\n+    `pp.downsample_counts` | Downsample counts so that each cell has no more than target_counts\n \n-    Methods | Description | Notes\n-    --- | --- | ---\n-    `pp.calculate_qc_metrics` | Calculate quality control metrics\n-    `pl.violin` | violin plot of features, lib. size, or subsets of. \n-    `pl.stacked_violin` | Same as above but for multiple series of features or cells\n-\n-3. Normalization\n+3. Normalize (`normalize.xml`)\n \n     Methods | Description\n     --- | ---\n-    `pp.normalize_per_cell` | Normalize total counts per cell\n+    `pp.normalize_total` | Normalize counts per cell\n     `pp.recipe_zheng17` | Normalization and filtering as of [Zheng17]\n     `pp.recipe_weinreb17` | Normalization and filtering as of [Weinreb17]\n     `pp.recipe_seurat` | Normalization and filtering as of Seurat [Satija15]\n-    `pp.log1p` | Logarithmize the data matrix.\n-    `pp.scale` | Scale data to unit variance and zero mean\n-    `pp.sqrt` | \n-    `pp.downsample_counts` | Downsample counts so that each cell has no more than target_counts\n \n-4. Conf. removal\n+4. Remove confounders (`remove_confounder.xml`)\n \n     Methods | Description\n     --- | ---\n    `pp.regress_out` | Regress out unwanted sources of variation\n    `pp.mnn_correct` | Correct batch effects by matching mutual nearest neighbors\n-   `pp.dca` | Deep count autoencoder to denoise the data\n-   `pp.magic` | Markov Affinity-based Graph Imputation of Cells (MAGIC) API to denoise\n-   `tl.sim` | Simulate dynamic gene expression data [Wittman09]\n-   `pp.calculate_qc_metrics` | Calculate quality control metrics\n-   `tl.score_genes` | Score a set of genes\n-   `tl.score_genes_cell_cycle` | Score cell cycle genes\n-   `tl.cyclone` | Assigns scores and predicted class to observations based on cell-cycle genes [Scialdone15]\n-   `tl.sandbag` | Calculates pairs of genes serving as markers for each cell-cycle phase [Scialdone15]\n+   `pp.combat` | ComBat function for batch effect correction\n \n-5. Clustering and Heatmaps\n+5. Clustering, embedding and trajectory inference (`cluster_reduce_dimension.xml`)\n \n     Methods | Description\n     --- | ---\n-    `tl.leiden` | Cluster cells into subgroups [Traag18] [Levine15]\n-    `tl.louvain` | Cluster cells into subgroups [Blondel08] [Lev'..b"| Heatmap of the expression values of set of genes\n+        `pl.dotplot` | Makes a dot plot of the expression values\n+        `pl.violin` | Violin plot\n+        `pl.stacked_violin` | Stacked violin plots\n+        `pl.matrixplot` | Heatmap of the mean expression values per cluster\n+        `pl.clustermap` | Hierarchically-clustered heatmap\n     \n-6. Cluster Inspection and plotting\n+    2. Preprocessing\n \n-    Methods that draw out the clusters computed in the previous stage, not heatmap or pseudotime related.\n+        Methods | Description\n+        --- | ---\n+        `pl.highest_expr_genes` | Plot the fraction of counts assigned to each gene over all cells\n+        `pl.highly_variable_genes` | Plot dispersions versus means for genes\n+\n+    3. PCA\n \n-    Methods | Description \n-    --- | --- \n-    `pl.clustermap` |\n-    `pl.phate` | \n-    `pl.dotplot` | \n-    `pl.draw_graph` | (really general purpose, would not implement directly)\n-    `pl.filter_genes_dispersion` | (depreciated for 'highly_variable_genes')\n-    `pl.matrix` | (could not find in API)\n-    `pl.pca` | \n-    `pl.pca_loadings` | \n-    `pl.pca_overview` | \n-    `pl.pca_variance_ratio` | \n-    `pl.ranking` | (not sure what this does...)\n-    `pl.scatter` | ([very general purpose](https://icb-scanpy.readthedocs-hosted.com/en/latest/api/scanpy.api.pl.scatter.html), would not implement directly)\n-    `pl.set_rcParams_defaults` | \n-    `pl.set_rcParams_scanpy` | \n-    `pl.sim` | \n-    `pl.tsne` | \n-    `pl.umap` | \n+        Methods | Description\n+        --- | ---\n+        `pl.pca` | Scatter plot in PCA coordinates\n+        `pl.pca_loadings` | Rank genes according to contributions to PCs\n+        `pl.pca_variance_ratio` | Scatter plot in PCA coordinates\n+        `pl.pca_overview` | Plot PCA results\n \n-7. Branch/Between-Cluster Inspection\n+    4. Embeddings\n \n-    Pseudotime analysis, relies on initial clustering.\n+        Methods | Description\n+        --- | ---\n+        `pl.tsne` | Scatter plot in tSNE basis\n+        `pl.umap` | Scatter plot in UMAP basis\n+        `pl.diffmap` | Scatter plot in Diffusion Map basis\n+        `pl.draw_graph` | Scatter plot in graph-drawing basis\n \n-    Methods | Description\n-    --- | ---\n-    `tl.dpt` | Infer progression of cells through geodesic distance along the graph [Haghverdi16] [Wolf17i]\n-    `pl.dpt_groups_pseudotime` | \n-    `pl.dpt_timeseries` | \n-    `tl.paga_compare_paths` | \n-    `tl.paga_degrees` | \n-    `tl.paga_expression_entropies` | \n-    `tl.paga` | Generate cellular maps of differentiation manifolds with complex topologies [Wolf17i]\n-    `pl.paga` | \n-    `pl.paga_adjacency` | \n-    `pl.paga_compare` | \n-    `pl.paga_path` | \n-    `pl.timeseries` | \n-    `pl.timeseries_as_heatmap` | \n-    `pl.timeseries_subplot` | \n+    5. Branching trajectories and pseudotime, clustering\n \n+        Methods | Description\n+        --- | ---\n+        `pl.dpt_groups_pseudotime` | Plot groups and pseudotime\n+        `pl.dpt_timeseries` | Heatmap of pseudotime series\n+        `pl.paga` | Plot the abstracted graph through thresholding low-connectivity edges\n+        `pl.paga_compare` | Scatter and PAGA graph side-by-side\n+        `pl.paga_path` | Gene expression and annotation changes along paths\n \n-Methods to sort | Description\n---- | --- \n-`tl.ROC_AUC_analysis` | (could not find in API)\n-`tl.correlation_matrix` | (could not find in API)\n-`rtools.mnn_concatenate` | (could not find in API)\n-`utils.compute_association_matrix_of_groups` | (could not find in API) \n-`utils.cross_entropy_neighbors_in_rep` | (could not find in API)\n-`utils.merge_groups` | (could not find in API)\n-`utils.plot_category_association` | (could not find in API)\n-`utils.select_groups` | (could not find in API)\n\\ No newline at end of file\n+    6. Marker genes\n+\n+        Methods | Description\n+        --- | ---\n+        `pl.rank_genes_groups` | Plot ranking of genes using dotplot plot\n+        `pl.rank_genes_groups_violin` | Plot ranking of genes for all tested comparisons\n"
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 README.rst
--- a/README.rst Mon Mar 04 10:15:02 2019 -0500
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
b
@@ -1,105 +0,0 @@
-The different methods from Scanpy have been grouped by themes:
-
-1. Filter in `filter.xml`
-  - Filter cell outliers based on counts and numbers of genes expressed, using `pp.filter_cells`
-  - Filter genes based on number of cells or counts, using `pp.filter_genes`
-  - Extract highly variable genes, using `pp.filter_genes_dispersion`
-  - `tl.highly_variable_genes` (need to be added)
-  - Subsample to a fraction of the number of observations, using `pp.subsample`
-  - `queries.gene_coordinates` (need to be added)
-  - `queries.mitochondrial_genes` (need to be added)
-
-2. Normalize in `normalize.xml`
-  - Normalize total counts per cell, using `pp.normalize_per_cell`
-  - Normalization and filtering as of Zheng et al. (2017), using `pp.recipe_zheng17`
-  - Normalization and filtering as of Weinreb et al (2017), using `pp.recipe_weinreb17`
-  - Normalization and filtering as of Seurat et al (2015), using `pp.recipe_seurat`
-  - Logarithmize the data matrix, using `pp.log1p`
-  - Scale data to unit variance and zero mean, using `pp.scale`
-  - Square root the data matrix, using `pp.sqrt`
-  - Downsample counts, using `pp.downsample_counts`
-
-3. Remove confounder in `remove_confounders.xml`
-  - Regress out unwanted sources of variation, using `pp.regress_out`
-  - `pp.mnn_correct` (need to be added)
-  - `pp.mnn_correct` (need to be added)
-  - `pp.magic` (need to be added)
-  - `tl.sim` (need to be added)
-  - `pp.calculate_qc_metrics` (need to be added)
-  - Score a set of genes, using `tl.score_genes`
-  - Score cell cycle genes, using `tl.score_genes_cell_cycle`
-  - `tl.cyclone` (need to be added)
-  - `tl.andbag` (need to be added)
-
-4. Cluster and reduce dimension in `cluster_reduce_dimension.xml`
-  - `tl.leiden` (need to be added)
-  - Cluster cells into subgroups, using `tl.louvain`
-  - Computes PCA (principal component analysis) coordinates, loadings and variance decomposition, using `pp.pca`
-  - Computes PCA (principal component analysis) coordinates, loadings and variance decomposition, using `tl.pca`
-  - Diffusion Maps, using `tl.diffmap`
-  - t-distributed stochastic neighborhood embedding (tSNE), using `tl.tsne`
-  - Embed the neighborhood graph using UMAP, using `tl.umap`
-  - `tl.phate` (need to be added)
-  - Compute a neighborhood graph of observations, using `pp.neighbors`
-  - Rank genes for characterizing groups, using `tl.rank_genes_groups`
-
-4. Inspect
-  - `tl.paga_compare_paths` (need to be added)
-  - `tl.paga_degrees` (need to be added)
-  - `tl.paga_expression_entropies` (need to be added)
-  - Generate cellular maps of differentiation manifolds with complex topologies, using `tl.paga`
-  - Infer progression of cells through geodesic distance along the graph, using `tl.dpt`
-
-5. Plot
-  1. Generic
-    - Scatter plot along observations or variables axes, using `pl.scatter`
-    - Heatmap of the expression values of set of genes, using `pl.heatmap`
-    - Makes a dot plot of the expression values, using `pl.dotplot`
-    - Violin plot, using `pl.violin`
-    - `pl.stacked_violin` (need to be added)
-    - Heatmap of the mean expression values per cluster, using `pl.matrixplot`
-    - Hierarchically-clustered heatmap, using `pl.clustermap`
-    - `pl.ranking` 
-
-  2. Preprocessing
-    - Plot the fraction of counts assigned to each gene over all cells, using `pl.highest_expr_genes`
-    - Plot dispersions versus means for genes, using `pl.filter_genes_dispersion`
-    - `pl.highly_variable_genes` (need to be added)
-    - `pl.calculate_qc_metrics` (need to be added)
-  
-  3. PCA
-    - Scatter plot in PCA coordinates, using `pl.pca`
-    - Rank genes according to contributions to PCs, using `pl.pca_loadings`
-    - Scatter plot in PCA coordinates, using `pl.pca_variance_ratio`
-    - Plot PCA results, using `pl.pca_overview`
-  
-  4. Embeddings
-    - Scatter plot in tSNE basis, using `pl.tsne`
-    - Scatter plot in UMAP basis, using `pl.umap`
-    - Scatter plot in Diffusion Map basis, using `pl.diffmap`
-    - `pl.draw_graph` (need to be added)
-
-  5. Branching trajectories and pseudotime, clustering
-    - Plot groups and pseudotime, using `pl.dpt_groups_pseudotime`
-    - Heatmap of pseudotime series, using `pl.dpt_timeseries`
-    - Plot the abstracted graph through thresholding low-connectivity edges, using `pl.paga`
-    - `pl.paga_compare` (need to be added)
-    - `pl.paga_path` (need to be added)
-
-  6. Marker genes: 
-    - Plot ranking of genes using dotplot plot, using `pl.rank_gene_groups`
-    - `pl.rank_genes_groups_dotplot` (need to be added)
-    - `pl.rank_genes_groups_heatmap` (need to be added)
-    - `pl.rank_genes_groups_matrixplot` (need to be added)
-    - `pl.rank_genes_groups_stacked_violin` (need to be added)
-    - `pl.rank_genes_groups_violin` (need to be added)
-
-  7. Misc
-    - `pl.phate` (need to be added)
-    - `pl.matrix` (need to be added)
-    - `pl.paga_adjacency` (need to be added)
-    - `pl.timeseries` (need to be added)
-    - `pl.timeseries_as_heatmap` (need to be added)
-    - `pl.timeseries_subplot` (need to be added)
-    
-  
\ No newline at end of file
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 filter.xml
--- a/filter.xml Mon Mar 04 10:15:02 2019 -0500
+++ b/filter.xml Wed Oct 16 06:32:33 2019 -0400
[
b'@@ -1,5 +1,5 @@\n-<tool id="scanpy_filter" name="Filter with scanpy" version="@galaxy_version@">\n-    <description></description>\n+<tool id="scanpy_filter" name="Filter" version="@galaxy_version@">\n+    <description>with scanpy</description>\n     <macros>\n         <import>macros.xml</import>\n     </macros>\n@@ -14,94 +14,74 @@\n @CMD_read_inputs@\n \n #if $method.method == \'pp.filter_cells\'\n-res = sc.pp.filter_cells(\n-    #if $modify_anndata.modify_anndata == \'true\'\n+sc.pp.filter_cells(\n     adata,\n-    #else\n-    adata.X,\n-    #end if\n     #if $method.filter.filter == \'min_counts\'\n     min_counts=$method.filter.min_counts,\n-    #elif $method.filter.filter == \'max_counts\'\n+    #else if $method.filter.filter == \'max_counts\'\n     max_counts=$method.filter.max_counts,\n-    #elif $method.filter.filter == \'min_genes\'\n+    #else if $method.filter.filter == \'min_genes\'\n     min_genes=$method.filter.min_genes,\n-    #elif $method.filter.filter == \'max_genes\'\n+    #else if $method.filter.filter == \'max_genes\'\n     max_genes=$method.filter.max_genes,\n     #end if\n     copy=False)\n \n-    #if $modify_anndata.modify_anndata == \'true\'\n-df = adata.obs\n-    #else\n-df = pd.DataFrame(data=dict(cell_subset=res[0], number_per_cell=res[1]))\n-    #end if\n-\n-    #if $method.filter.filter == \'min_counts\' or $method.filter.filter == \'max_counts\'\n-df.to_csv(\'$counts_per_cell\', sep=\'\\t\')\n-    #elif $method.filter.filter == \'min_genes\' or $method.filter.filter == \'max_genes\'\n-df.to_csv(\'$genes_per_cell\', sep=\'\\t\')\n-    #end if\n-\n-#elif $method.method == \'pp.filter_genes\'\n-res = sc.pp.filter_genes(\n-    #if $modify_anndata.modify_anndata == \'true\'\n+#else if $method.method == \'pp.filter_genes\'\n+sc.pp.filter_genes(\n     adata,\n-    #else\n-    adata.X,\n-    #end if\n     #if $method.filter.filter == \'min_counts\'\n     min_counts=$method.filter.min_counts,\n-    #elif $method.filter.filter == \'max_counts\'\n+    #else if $method.filter.filter == \'max_counts\'\n     max_counts=$method.filter.max_counts,\n-    #elif $method.filter.filter == \'min_cells\'\n+    #else if $method.filter.filter == \'min_cells\'\n     min_cells=$method.filter.min_cells,\n-    #elif $method.filter.filter == \'max_cells\'\n+    #else if $method.filter.filter == \'max_cells\'\n     max_cells=$method.filter.max_cells,\n     #end if\n     copy=False)\n \n-    #if $modify_anndata.modify_anndata == \'true\'\n-df = adata.var\n-    #else\n-df = pd.DataFrame(data=dict(gene_subset=res[0], number_per_gene=res[1]))\n+#else if $method.method == \'tl.filter_rank_genes_groups\'\n+sc.tl.filter_rank_genes_groups(\n+    adata,\n+    #if str($method.key) != \'\'\n+    key=\'$method.key\',\n     #end if\n-\n-    #if $method.filter.filter == \'min_counts\' or $method.filter.filter == \'max_counts\'\n-df.to_csv(\'$counts_per_gene\', sep=\'\\t\')\n-    #elif $method.filter.filter == \'min_cells\' or $method.filter.filter == \'max_cells\'\n-df.to_csv(\'$cells_per_gene\', sep=\'\\t\')\n+    #if str($method.groupby) != \'\'\n+    groupby=\'$method.groupby\',\n     #end if\n+    use_raw=$method.use_raw,\n+    log=$method.log,\n+    key_added=\'$method.key_added\',\n+    min_in_group_fraction=$method.min_in_group_fraction,\n+    max_out_group_fraction=$method.max_out_group_fraction,\n+    min_fold_change=$method.min_fold_change)\n \n-#elif $method.method == \'pp.filter_genes_dispersion\'\n-res = sc.pp.filter_genes_dispersion(\n-    #if $modify_anndata.modify_anndata == \'true\'\n-    adata,\n-    #else\n-    adata.X,\n-    #end if\n+#else if $method.method == "pp.highly_variable_genes"\n+sc.pp.highly_variable_genes(\n+    adata=adata,\n     flavor=\'$method.flavor.flavor\',\n-    #if $method.flavor.flavor==\'seurat\'\n+    #if $method.flavor.flavor == \'seurat\'\n+        #if str($method.flavor.min_mean) != \'\'\n     min_mean=$method.flavor.min_mean,\n+        #end if\n+        #if str($method.flavor.max_mean) != \'\'\n     max_mean=$method.flavor.max_mean,\n+        #end if\n+        #if str($method.flavor.min_disp) != \'\'\n     min_disp=$method.flavor.min_disp,\n-        #if $method.flavor.max_disp\n+        #end if\n+        #if '..b'  <has_text_matching expression="total_counts=20000"/>\n+                <has_text_matching expression="random_state=0"/>\n+                <has_text_matching expression="replace=False"/>\n+            </assert_stdout>\n+            <output name="anndata_out" file="pp.downsample_counts.random-randint.h5ad" ftype="h5ad" compare="sim_size"/>\n         </test>\n     </tests>\n     <help><![CDATA[\n@@ -487,12 +405,7 @@\n `max_counts`, `max_genes` per call.\n \n More details on the `scanpy documentation\n-<https://scanpy.readthedocs.io/en/latest/api/scanpy.api.pp.filter_cells.html#scanpy.api.pp.filter_cells>`__\n-\n-Return\n-------\n-\n-number_per_cell : Number per cell (either `n_counts` or `n_genes` per cell)\n+<https://icb-scanpy.readthedocs-hosted.com/en/stable/api/scanpy.pp.filter_cells.html>`__\n \n \n Filter genes based on number of cells or counts (`pp.filter_genes`)\n@@ -506,42 +419,38 @@\n `max_counts`, `max_cells` per call.\n \n More details on the `scanpy documentation\n-<https://scanpy.readthedocs.io/en/latest/api/scanpy.api.pp.filter_genes.html#scanpy.api.pp.filter_genes>`__\n-\n-Return\n-------\n-\n-number_per_gene : Number per genes (either `n_counts` or `n_genes` per cell)\n+<https://icb-scanpy.readthedocs-hosted.com/en/stable/api/scanpy.pp.filter_genes.html>`__\n \n \n-Extract highly variable genes (`pp.filter_genes_dispersion`)\n-============================================================\n-\n-If trying out parameters, pass the data matrix instead of AnnData.\n-\n-Depending on `flavor`, this reproduces the R-implementations of Seurat and Cell Ranger.\n-\n-The normalized dispersion is obtained by scaling with the mean and standard\n-deviation of the dispersions for genes falling into a given bin for mean\n-expression of genes. This means that for each bin of mean expression, highly\n-variable genes are selected.\n-\n-Use `flavor=\'cell_ranger\'` with care and in the same way as in `pp.recipe_zheng17`.\n+Filters out genes based on fold change and fraction of genes expressing the gene within and outside the groupby categories (`tl.filter_rank_genes_groups`)\n+==========================================================================================================================================================\n \n More details on the `scanpy documentation\n-<https://scanpy.readthedocs.io/en/latest/api/scanpy.api.pp.filter_genes_dispersion.html#scanpy.api.pp.filter_genes_dispersion>`__\n+<https://icb-scanpy.readthedocs-hosted.com/en/stable/api/scanpy.tl.filter_rank_genes_groups.html>`__\n+\n \n-Returns\n--------\n-- The annotated matrix filtered, with the annotations\n-- A table with the means, dispersions, and normalized dispersions per gene, logarithmized when `log` is `True`.\n+Annotate highly variable genes (`pp.highly_variable_genes`)\n+===========================================================\n+\n+It expects logarithmized data.\n+\n+Depending on flavor, this reproduces the R-implementations of Seurat or Cell Ranger. The normalized dispersion is obtained by scaling with the mean and standard deviation of the dispersions for genes falling into a given bin for mean expression of genes. This means that for each bin of mean expression, highly variable genes are selected.\n \n \n Subsample to a fraction of the number of observations (`pp.subsample`)\n ======================================================================\n \n More details on the `scanpy documentation\n-<https://scanpy.readthedocs.io/en/latest/api/scanpy.api.pp.subsample.html#scanpy.api.pp.subsample>`__\n+<https://icb-scanpy.readthedocs-hosted.com/en/stable/api/scanpy.pp.subsample.html>`__\n+\n+Downsample counts (`pp.downsample_counts`)\n+==========================================\n+\n+Downsample counts so that each cell has no more than `target_counts`. Cells with fewer counts than `target_counts` are unaffected by this. This\n+has been implemented by M. D. Luecken.\n+\n+More details on the `scanpy documentation\n+<https://icb-scanpy.readthedocs-hosted.com/en/stable/api/scanpy.pp.downsample_counts.html>`__\n \n \n     ]]></help>\n'
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 macros.xml
--- a/macros.xml Mon Mar 04 10:15:02 2019 -0500
+++ b/macros.xml Wed Oct 16 06:32:33 2019 -0400
[
b'@@ -1,10 +1,12 @@\n <macros>\n-    <token name="@version@">1.4</token>\n+    <token name="@version@">1.4.4</token>\n     <token name="@galaxy_version@"><![CDATA[@version@+galaxy0]]></token>\n     <xml name="requirements">\n         <requirements>\n             <requirement type="package" version="@version@">scanpy</requirement>\n             <requirement type="package" version="2.0.17">loompy</requirement>\n+            <requirement type="package" version="2.9.0">h5py</requirement>\n+            <requirement type="package" version="0.7.0">leidenalg</requirement>\n             <yield />\n         </requirements>\n     </xml>\n@@ -14,102 +16,33 @@\n         </citations>\n     </xml>\n     <xml name="version_command">\n-        <version_command><![CDATA[python -c "import scanpy.api as sc;print(\'scanpy version: %s\' % sc.__version__)"]]></version_command>\n+        <version_command><![CDATA[python -c "import scanpy as sc;print(\'scanpy version: %s\' % sc.__version__)"]]></version_command>\n     </xml>\n     <token name="@CMD@"><![CDATA[\n+cp \'$adata\' \'anndata.h5ad\' &&\n cat \'$script_file\' &&\n-python \'$script_file\'\n+python \'$script_file\' &&\n+ls .\n     ]]>\n     </token>\n     <token name="@CMD_imports@"><![CDATA[\n-import scanpy.api as sc\n+import scanpy as sc\n import pandas as pd\n import numpy as np\n     ]]>\n     </token>\n     <xml name="inputs_anndata">\n-        <conditional name="input">\n-            <param name="format" type="select" label="Format for the annotated data matrix">\n-                <option value="loom">loom</option>\n-                <option value="h5ad">h5ad-formatted hdf5 (anndata)</option>\n-            </param>\n-            <when value="loom">\n-                <param name="adata" type="data" format="loom" label="Annotated data matrix"/>\n-                <param name="sparse" type="boolean" truevalue="True" falsevalue="False" checked="true" label="Is the data matrix to read sparse?"/>\n-                <param name="cleanup" type="boolean" truevalue="True" falsevalue="False" checked="false" label="Cleanup?"/>\n-                <param name="x_name" type="text" value="spliced" label="X_name"/>\n-                <param name="obs_names" type="text" value="CellID" label="obs_names"/>\n-                <param name="var_names" type="text" value="Gene" label="var_names"/>\n-            </when>\n-            <when value="h5ad">\n-                <param name="adata" type="data" format="h5" label="Annotated data matrix"/>\n-            </when>\n-        </conditional>\n+        <param name="adata" type="data" format="h5ad" label="Annotated data matrix"/>\n     </xml>\n     <token name="@CMD_read_inputs@"><![CDATA[\n-#if $input.format == \'loom\'\n-adata = sc.read_loom(\n-    \'$input.adata\',\n-    sparse=$input.sparse,\n-    cleanup=$input.cleanup,\n-    X_name=\'$input.x_name\',\n-    obs_names=\'$input.obs_names\',\n-    var_names=\'$input.var_names\')\n-#else if $input.format == \'h5ad\'\n-adata = sc.read_h5ad(\'$input.adata\')\n-#end if\n+adata = sc.read(\'anndata.h5ad\')\n ]]>\n     </token>\n-    <xml name="anndata_output_format">\n-        <param name="anndata_output_format" type="select" label="Format to write the annotated data matrix">\n-            <option value="loom">loom</option>\n-            <option value="h5ad">h5ad-formatted hdf5 (anndata)</option>\n-        </param>\n-    </xml>\n-    <xml name="anndata_modify_output_input">\n-        <conditional name="modify_anndata">\n-            <param name="modify_anndata" type="select" label="Return modify annotate data matrix?">\n-                <option value="true">Yes</option>\n-                <option value="false">No</option>\n-            </param>\n-            <when value="true">\n-                <expand macro="anndata_output_format"/>\n-            </when>\n-            <when value="false"/>\n-        </conditional>\n-    </xml>\n     <xml name="anndata_outputs">\n-        <data name="anndata_out_h5ad" format="h5" from_work_dir="anndata.h5ad" label="${tool.name} on ${on_string}: Annotated data matrix">\n-            <filter>anndata_output_format '..b'tegorical for which `tl.paga` has been computed."/>\n-        <param argument="layout" type="select" value="" label="Plotting layout" help="">\n-            <option value="fa">fa: ForceAtlas2</option>\n-            <option value="fr">fr: Fruchterman-Reingold</option>\n-            <option value="fr">rt: stands for Reingold Tilford</option>\n-            <option value="fr">eq_tree: equally spaced tree</option>\n-        </param>\n+        <expand macro="param_layout"/>\n         <param argument="init_pos" type="data" format="tabular,csv,tsv" optional="true" label="Two-column tabular file storing the x and y coordinates for initializing the layout" help=""/>\n-        <param argument="random_state" type="integer" value="0" label="Random state" help="For layouts with random initialization like \'fr\', change this to use different intial states for the optimization. If `None`, the initial state is not reproducible."/>\n-        <param argument="root" type="text" value="" label="Comma-separated roots" help="If choosing a tree layout, this is the index of the root node or a list of root node indices. If this is a non-empty vector then the supplied node IDs are used as the roots of the trees (or a single tree if the graph is connected). If this is `None` or an empty list, the root vertices are automatically calculated based on topological sorting."/>\n+        <expand macro="param_random_state"/>\n+        <expand macro="param_root"/>\n         <param argument="transitions" type="text" value="" label="Key corresponding to the matrix storing the arrows" help="Key for `.uns[\'paga\']`, e.g. \'transistions_confidence\'"/>\n-        <param argument="solid_edges" type="text" value="paga_connectivities" label="Key corresponding to the matrix storing the edges to be drawn solid black" help="Key for `.uns[\'paga\']`"/>\n-        <param argument="dashed_edges" type="text" value="" optional="true" label="Key corresponding to the matrix storing the edges to be drawn dashed grey" help="Key for `.uns[\'paga\']`. If not set, no dashed edges are drawn."/>\n+        <param argument="solid_edges" type="text" value="connectivities" label="Key corresponding to the matrix storing the edges to be drawn solid black" help="Key for uns/paga"/>\n+        <param argument="dashed_edges" type="text" value="" optional="true" label="Key corresponding to the matrix storing the edges to be drawn dashed grey" help="Key for uns/paga. If not set, no dashed edges are drawn."/>\n         <param argument="single_component" type="boolean" truevalue="True" falsevalue="False" checked="false" label="Restrict to largest connected component?" help=""/>\n         <param argument="fontsize" type="integer" min="0" value="1" label="Font size for node labels" help=""/>\n         <param argument="node_size_scale" type="float" min="0" value="1.0" label="Size of the nodes" help=""/>\n@@ -1031,10 +972,11 @@\n #if str($method.groups) != \'\'\n     #set $groups=([x.strip() for x in str($method.groups).split(\',\')])\n     groups=$groups,\n-#else\n-    groups=None,\n #end if\n-    color=\'$method.color\',\n+#if str($method.color) != \'\'\n+    #set $color=([x.strip() for x in str($method.color).split(\',\')])\n+    color=$color,\n+#end if\n #if $method.pos\n     pos=np.fromfile($method.pos, dtype=dt),\n #end if\n@@ -1081,4 +1023,10 @@\n     <xml name="param_swap_axes">\n         <param argument="swap_axes" type="boolean" truevalue="True" falsevalue="False" checked="false" label="Swap axes?" help="By default, the x axis contains `var_names` (e.g. genes) and the y axis the `groupby` categories (if any). By setting `swap_axes` then x are the `groupby` categories and y the `var_names`."/>\n     </xml>\n+    <xml name="gene_symbols">\n+        <param argument="gene_symbols" type="text" value="" optional="true" label="Key for field in `.var` that stores gene symbols"/>\n+    </xml>\n+    <xml name="n_genes">\n+        <param argument="n_genes" type="integer" min="0" value="20" label="Number of genes to show" help=""/>\n+    </xml>               \n </macros>\n'
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/blobs.h5ad
b
Binary file test-data/blobs.h5ad has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/pl.clustermap.krumsiek11.png
b
Binary file test-data/pl.clustermap.krumsiek11.png has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/pl.dotplot.krumsiek11.png
b
Binary file test-data/pl.dotplot.krumsiek11.png has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/pl.draw_graph.png
b
Binary file test-data/pl.draw_graph.png has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/pl.highly_variable_genes.seurat.blobs.png
b
Binary file test-data/pl.highly_variable_genes.seurat.blobs.png has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/pl.pca_overview.pp.pca.krumsiek11.png
b
Binary file test-data/pl.pca_overview.pp.pca.krumsiek11.png has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/pl.rank_genes_groups.rank_genes_groups.krumsiek11.png
b
Binary file test-data/pl.rank_genes_groups.rank_genes_groups.krumsiek11.png has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/pl.rank_genes_groups_violin.Ery.png
b
Binary file test-data/pl.rank_genes_groups_violin.Ery.png has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/pl.rank_genes_groups_violin.Mk.png
b
Binary file test-data/pl.rank_genes_groups_violin.Mk.png has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/pl.rank_genes_groups_violin.Mo.png
b
Binary file test-data/pl.rank_genes_groups_violin.Mo.png has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/pl.rank_genes_groups_violin.Neu.png
b
Binary file test-data/pl.rank_genes_groups_violin.Neu.png has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/pl.rank_genes_groups_violin.progenitor.png
b
Binary file test-data/pl.rank_genes_groups_violin.progenitor.png has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/pl.scatter.krumsiek11.png
b
Binary file test-data/pl.scatter.krumsiek11.png has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/pl.scatter.umap.pbmc68k_reduced.png
b
Binary file test-data/pl.scatter.umap.pbmc68k_reduced.png has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/pl.stacked_violin.krumsiek11.png
b
Binary file test-data/pl.stacked_violin.krumsiek11.png has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/pp.calculate_qc_metrics.sparce_csr_matrix.h5ad
b
Binary file test-data/pp.calculate_qc_metrics.sparce_csr_matrix.h5ad has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/pp.combat.blobs.h5ad
b
Binary file test-data/pp.combat.blobs.h5ad has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/pp.downsample_counts.random-randint.h5ad
b
Binary file test-data/pp.downsample_counts.random-randint.h5ad has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/pp.filter_cells.krumsiek11-max_genes.h5ad
b
Binary file test-data/pp.filter_cells.krumsiek11-max_genes.h5ad has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/pp.filter_cells.krumsiek11-min_counts.h5ad
b
Binary file test-data/pp.filter_cells.krumsiek11-min_counts.h5ad has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/pp.filter_cells.number_per_cell.krumsiek11-max_genes.tabular
--- a/test-data/pp.filter_cells.number_per_cell.krumsiek11-max_genes.tabular Mon Mar 04 10:15:02 2019 -0500
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
b
b'@@ -1,641 +0,0 @@\n-\tcell_subset\tnumber_per_cell\n-0\tTrue\t9\n-1\tTrue\t9\n-2\tTrue\t9\n-3\tTrue\t8\n-4\tTrue\t8\n-5\tTrue\t8\n-6\tTrue\t8\n-7\tTrue\t7\n-8\tTrue\t8\n-9\tTrue\t8\n-10\tTrue\t7\n-11\tTrue\t7\n-12\tTrue\t7\n-13\tTrue\t7\n-14\tTrue\t8\n-15\tTrue\t10\n-16\tTrue\t10\n-17\tTrue\t10\n-18\tTrue\t11\n-19\tTrue\t11\n-20\tTrue\t11\n-21\tTrue\t11\n-22\tTrue\t11\n-23\tTrue\t11\n-24\tTrue\t11\n-25\tTrue\t11\n-26\tTrue\t11\n-27\tTrue\t11\n-28\tTrue\t11\n-29\tTrue\t11\n-30\tTrue\t11\n-31\tTrue\t11\n-32\tTrue\t11\n-33\tTrue\t11\n-34\tTrue\t11\n-35\tTrue\t11\n-36\tTrue\t11\n-37\tTrue\t11\n-38\tTrue\t11\n-39\tTrue\t11\n-40\tTrue\t11\n-41\tTrue\t11\n-42\tTrue\t11\n-43\tTrue\t11\n-44\tTrue\t11\n-45\tTrue\t11\n-46\tTrue\t11\n-47\tTrue\t11\n-48\tTrue\t10\n-49\tTrue\t10\n-50\tTrue\t10\n-51\tTrue\t10\n-52\tTrue\t10\n-53\tTrue\t10\n-54\tTrue\t10\n-55\tTrue\t10\n-56\tTrue\t11\n-57\tTrue\t11\n-58\tTrue\t11\n-59\tTrue\t10\n-60\tTrue\t10\n-61\tTrue\t11\n-62\tTrue\t10\n-63\tTrue\t11\n-64\tTrue\t10\n-65\tTrue\t10\n-66\tTrue\t11\n-67\tTrue\t11\n-68\tTrue\t11\n-69\tTrue\t10\n-70\tTrue\t10\n-71\tTrue\t10\n-72\tTrue\t10\n-73\tTrue\t10\n-74\tTrue\t11\n-75\tTrue\t10\n-76\tTrue\t10\n-77\tTrue\t10\n-78\tTrue\t9\n-79\tTrue\t10\n-80\tTrue\t9\n-81\tTrue\t9\n-82\tTrue\t10\n-83\tTrue\t9\n-84\tTrue\t9\n-85\tTrue\t9\n-86\tTrue\t9\n-87\tTrue\t9\n-88\tTrue\t9\n-89\tTrue\t9\n-90\tTrue\t9\n-91\tTrue\t10\n-92\tTrue\t10\n-93\tTrue\t9\n-94\tTrue\t9\n-95\tTrue\t9\n-96\tTrue\t9\n-97\tTrue\t7\n-98\tTrue\t7\n-99\tTrue\t6\n-100\tTrue\t6\n-101\tTrue\t7\n-102\tTrue\t8\n-103\tTrue\t8\n-104\tTrue\t8\n-105\tTrue\t8\n-106\tTrue\t9\n-107\tTrue\t9\n-108\tTrue\t9\n-109\tTrue\t8\n-110\tTrue\t8\n-111\tTrue\t10\n-112\tTrue\t9\n-113\tTrue\t8\n-114\tTrue\t9\n-115\tTrue\t10\n-116\tTrue\t9\n-117\tTrue\t8\n-118\tTrue\t7\n-119\tTrue\t7\n-120\tTrue\t7\n-121\tTrue\t7\n-122\tTrue\t9\n-123\tTrue\t9\n-124\tTrue\t9\n-125\tTrue\t8\n-126\tTrue\t7\n-127\tTrue\t6\n-128\tTrue\t6\n-129\tTrue\t8\n-130\tTrue\t8\n-131\tTrue\t8\n-132\tTrue\t8\n-133\tTrue\t10\n-134\tTrue\t10\n-135\tTrue\t8\n-136\tTrue\t6\n-137\tTrue\t6\n-138\tTrue\t8\n-139\tTrue\t9\n-140\tTrue\t8\n-141\tTrue\t7\n-142\tTrue\t7\n-143\tTrue\t8\n-144\tTrue\t7\n-145\tTrue\t7\n-146\tTrue\t7\n-147\tTrue\t5\n-148\tTrue\t6\n-149\tTrue\t8\n-150\tTrue\t9\n-151\tTrue\t6\n-152\tTrue\t6\n-153\tTrue\t6\n-154\tTrue\t7\n-155\tTrue\t8\n-156\tTrue\t7\n-157\tTrue\t7\n-158\tTrue\t7\n-159\tTrue\t8\n-160\tTrue\t9\n-161\tTrue\t8\n-162\tTrue\t8\n-163\tTrue\t9\n-164\tTrue\t9\n-165\tTrue\t9\n-166\tTrue\t8\n-167\tTrue\t8\n-168\tTrue\t9\n-169\tTrue\t9\n-170\tTrue\t8\n-171\tTrue\t9\n-172\tTrue\t9\n-173\tTrue\t10\n-174\tTrue\t10\n-175\tTrue\t10\n-176\tTrue\t10\n-177\tTrue\t10\n-178\tTrue\t10\n-179\tTrue\t10\n-180\tTrue\t10\n-181\tTrue\t10\n-182\tTrue\t10\n-183\tTrue\t10\n-184\tTrue\t10\n-185\tTrue\t10\n-186\tTrue\t10\n-187\tTrue\t10\n-188\tTrue\t11\n-189\tTrue\t11\n-190\tTrue\t11\n-191\tTrue\t11\n-192\tTrue\t11\n-193\tTrue\t11\n-194\tTrue\t11\n-195\tTrue\t11\n-196\tTrue\t11\n-197\tTrue\t11\n-198\tTrue\t11\n-199\tTrue\t11\n-200\tTrue\t11\n-201\tTrue\t11\n-202\tTrue\t11\n-203\tTrue\t11\n-204\tTrue\t11\n-205\tTrue\t11\n-206\tTrue\t11\n-207\tTrue\t11\n-208\tTrue\t11\n-209\tTrue\t11\n-210\tTrue\t11\n-211\tTrue\t11\n-212\tTrue\t11\n-213\tTrue\t11\n-214\tTrue\t11\n-215\tTrue\t11\n-216\tTrue\t11\n-217\tTrue\t11\n-218\tTrue\t11\n-219\tTrue\t11\n-220\tTrue\t11\n-221\tTrue\t11\n-222\tTrue\t11\n-223\tTrue\t11\n-224\tTrue\t11\n-225\tTrue\t11\n-226\tTrue\t11\n-227\tTrue\t11\n-228\tTrue\t11\n-229\tTrue\t11\n-230\tTrue\t11\n-231\tTrue\t11\n-232\tTrue\t11\n-233\tTrue\t11\n-234\tTrue\t11\n-235\tTrue\t11\n-236\tTrue\t11\n-237\tTrue\t11\n-238\tTrue\t11\n-239\tTrue\t11\n-240\tTrue\t11\n-241\tTrue\t11\n-242\tTrue\t11\n-243\tTrue\t11\n-244\tTrue\t11\n-245\tTrue\t11\n-246\tTrue\t11\n-247\tTrue\t11\n-248\tTrue\t11\n-249\tTrue\t11\n-250\tTrue\t11\n-251\tTrue\t11\n-252\tTrue\t11\n-253\tTrue\t11\n-254\tTrue\t11\n-255\tTrue\t11\n-256\tTrue\t11\n-257\tTrue\t11\n-258\tTrue\t11\n-259\tTrue\t11\n-260\tTrue\t11\n-261\tTrue\t11\n-262\tTrue\t11\n-263\tTrue\t11\n-264\tTrue\t11\n-265\tTrue\t11\n-266\tTrue\t11\n-267\tTrue\t11\n-268\tTrue\t11\n-269\tTrue\t11\n-270\tTrue\t11\n-271\tTrue\t11\n-272\tTrue\t10\n-273\tTrue\t11\n-274\tTrue\t11\n-275\tTrue\t11\n-276\tTrue\t11\n-277\tTrue\t11\n-278\tTrue\t11\n-279\tTrue\t10\n-280\tTrue\t11\n-281\tTrue\t9\n-282\tTrue\t9\n-283\tTrue\t8\n-284\tTrue\t9\n-285\tTrue\t9\n-286\tTrue\t10\n-287\tTrue\t9\n-288\tTrue\t9\n-289\tTrue\t9\n-290\tTrue\t9\n-291\tTrue\t9\n-292\tTrue\t9\n-293\tTrue\t10\n-294\tTrue\t10\n-295\tTrue\t10\n-296\tTrue\t10\n-297\tTrue\t9\n-298\tTrue\t10\n-299\tTrue\t9\n-300\tTrue\t8\n-301\tTrue\t8\n-302\tTrue\t8\n-303\tTrue\t8\n-304\tTrue\t8\n-305\tTrue\t9\n-306\tTrue\t8\n-307\tTrue\t8\n-308\tTrue\t8\n-309\tTrue\t8\n-310\tTrue\t9\n-311\tTrue\t8\n-312\tTrue\t9\n-313\tTrue\t9\n-314\tTrue\t10\n-315\tTrue\t10\n-316\tTrue\t10\n-317\tTrue\t10\n-318\tTrue\t10\n-319\tTrue\t10\n-320\tTrue\t4\n-321\tTrue\t8\n-322\tT'..b'\t8\n-324\tTrue\t8\n-325\tTrue\t7\n-326\tTrue\t8\n-327\tTrue\t8\n-328\tTrue\t7\n-329\tTrue\t9\n-330\tTrue\t8\n-331\tTrue\t9\n-332\tTrue\t8\n-333\tTrue\t8\n-334\tTrue\t8\n-335\tTrue\t10\n-336\tTrue\t10\n-337\tTrue\t9\n-338\tTrue\t10\n-339\tTrue\t10\n-340\tTrue\t10\n-341\tTrue\t10\n-342\tTrue\t10\n-343\tTrue\t10\n-344\tTrue\t10\n-345\tTrue\t11\n-346\tTrue\t11\n-347\tTrue\t11\n-348\tTrue\t11\n-349\tTrue\t11\n-350\tTrue\t11\n-351\tTrue\t11\n-352\tTrue\t11\n-353\tTrue\t11\n-354\tTrue\t11\n-355\tTrue\t11\n-356\tTrue\t11\n-357\tTrue\t11\n-358\tTrue\t11\n-359\tTrue\t11\n-360\tTrue\t11\n-361\tTrue\t11\n-362\tTrue\t11\n-363\tTrue\t11\n-364\tTrue\t11\n-365\tTrue\t11\n-366\tTrue\t11\n-367\tTrue\t11\n-368\tTrue\t11\n-369\tTrue\t11\n-370\tTrue\t11\n-371\tTrue\t11\n-372\tTrue\t11\n-373\tTrue\t11\n-374\tTrue\t11\n-375\tTrue\t11\n-376\tTrue\t11\n-377\tTrue\t11\n-378\tTrue\t11\n-379\tTrue\t11\n-380\tTrue\t11\n-381\tTrue\t11\n-382\tTrue\t11\n-383\tTrue\t11\n-384\tTrue\t11\n-385\tTrue\t11\n-386\tTrue\t11\n-387\tTrue\t11\n-388\tTrue\t11\n-389\tTrue\t11\n-390\tTrue\t11\n-391\tTrue\t11\n-392\tTrue\t11\n-393\tTrue\t11\n-394\tTrue\t11\n-395\tTrue\t11\n-396\tTrue\t11\n-397\tTrue\t11\n-398\tTrue\t11\n-399\tTrue\t11\n-400\tTrue\t11\n-401\tTrue\t11\n-402\tTrue\t11\n-403\tTrue\t11\n-404\tTrue\t11\n-405\tTrue\t11\n-406\tTrue\t11\n-407\tTrue\t11\n-408\tTrue\t11\n-409\tTrue\t11\n-410\tTrue\t11\n-411\tTrue\t11\n-412\tTrue\t11\n-413\tTrue\t11\n-414\tTrue\t11\n-415\tTrue\t11\n-416\tTrue\t11\n-417\tTrue\t11\n-418\tTrue\t11\n-419\tTrue\t11\n-420\tTrue\t11\n-421\tTrue\t11\n-422\tTrue\t11\n-423\tTrue\t11\n-424\tTrue\t11\n-425\tTrue\t11\n-426\tTrue\t11\n-427\tTrue\t11\n-428\tTrue\t11\n-429\tTrue\t11\n-430\tTrue\t11\n-431\tTrue\t11\n-432\tTrue\t11\n-433\tTrue\t11\n-434\tTrue\t11\n-435\tTrue\t11\n-436\tTrue\t11\n-437\tTrue\t11\n-438\tTrue\t11\n-439\tTrue\t11\n-440\tTrue\t11\n-441\tTrue\t11\n-442\tTrue\t11\n-443\tTrue\t11\n-444\tTrue\t11\n-445\tTrue\t11\n-446\tTrue\t10\n-447\tTrue\t10\n-448\tTrue\t10\n-449\tTrue\t10\n-450\tTrue\t10\n-451\tTrue\t11\n-452\tTrue\t11\n-453\tTrue\t11\n-454\tTrue\t10\n-455\tTrue\t10\n-456\tTrue\t11\n-457\tTrue\t10\n-458\tTrue\t10\n-459\tTrue\t11\n-460\tTrue\t11\n-461\tTrue\t10\n-462\tTrue\t9\n-463\tTrue\t10\n-464\tTrue\t10\n-465\tTrue\t10\n-466\tTrue\t10\n-467\tTrue\t9\n-468\tTrue\t10\n-469\tTrue\t10\n-470\tTrue\t11\n-471\tTrue\t11\n-472\tTrue\t9\n-473\tTrue\t9\n-474\tTrue\t9\n-475\tTrue\t9\n-476\tTrue\t9\n-477\tTrue\t10\n-478\tTrue\t10\n-479\tTrue\t9\n-480\tTrue\t8\n-481\tTrue\t10\n-482\tTrue\t10\n-483\tTrue\t10\n-484\tTrue\t8\n-485\tTrue\t8\n-486\tTrue\t9\n-487\tTrue\t8\n-488\tTrue\t9\n-489\tTrue\t10\n-490\tTrue\t11\n-491\tTrue\t11\n-492\tTrue\t11\n-493\tTrue\t9\n-494\tTrue\t10\n-495\tTrue\t10\n-496\tTrue\t10\n-497\tTrue\t10\n-498\tTrue\t11\n-499\tTrue\t11\n-500\tTrue\t11\n-501\tTrue\t11\n-502\tTrue\t11\n-503\tTrue\t11\n-504\tTrue\t11\n-505\tTrue\t11\n-506\tTrue\t11\n-507\tTrue\t11\n-508\tTrue\t11\n-509\tTrue\t11\n-510\tTrue\t11\n-511\tTrue\t11\n-512\tTrue\t11\n-513\tTrue\t11\n-514\tTrue\t11\n-515\tTrue\t11\n-516\tTrue\t11\n-517\tTrue\t11\n-518\tTrue\t11\n-519\tTrue\t11\n-520\tTrue\t11\n-521\tTrue\t11\n-522\tTrue\t11\n-523\tTrue\t11\n-524\tTrue\t11\n-525\tTrue\t11\n-526\tTrue\t11\n-527\tTrue\t11\n-528\tTrue\t11\n-529\tTrue\t11\n-530\tTrue\t11\n-531\tTrue\t11\n-532\tTrue\t11\n-533\tTrue\t11\n-534\tTrue\t11\n-535\tTrue\t11\n-536\tTrue\t10\n-537\tTrue\t10\n-538\tTrue\t10\n-539\tTrue\t10\n-540\tTrue\t10\n-541\tTrue\t10\n-542\tTrue\t11\n-543\tTrue\t11\n-544\tTrue\t11\n-545\tTrue\t11\n-546\tTrue\t11\n-547\tTrue\t10\n-548\tTrue\t9\n-549\tTrue\t9\n-550\tTrue\t10\n-551\tTrue\t11\n-552\tTrue\t10\n-553\tTrue\t9\n-554\tTrue\t9\n-555\tTrue\t9\n-556\tTrue\t8\n-557\tTrue\t9\n-558\tTrue\t7\n-559\tTrue\t8\n-560\tTrue\t8\n-561\tTrue\t10\n-562\tTrue\t9\n-563\tTrue\t8\n-564\tTrue\t8\n-565\tTrue\t8\n-566\tTrue\t8\n-567\tTrue\t8\n-568\tTrue\t6\n-569\tTrue\t6\n-570\tTrue\t6\n-571\tTrue\t6\n-572\tTrue\t8\n-573\tTrue\t8\n-574\tTrue\t7\n-575\tTrue\t9\n-576\tTrue\t7\n-577\tTrue\t7\n-578\tTrue\t8\n-579\tTrue\t8\n-580\tTrue\t6\n-581\tTrue\t7\n-582\tTrue\t7\n-583\tTrue\t8\n-584\tTrue\t6\n-585\tTrue\t5\n-586\tTrue\t5\n-587\tTrue\t5\n-588\tTrue\t6\n-589\tTrue\t7\n-590\tTrue\t6\n-591\tTrue\t8\n-592\tTrue\t7\n-593\tTrue\t7\n-594\tTrue\t8\n-595\tTrue\t7\n-596\tTrue\t7\n-597\tTrue\t8\n-598\tTrue\t5\n-599\tTrue\t4\n-600\tTrue\t5\n-601\tTrue\t6\n-602\tTrue\t5\n-603\tTrue\t6\n-604\tTrue\t7\n-605\tTrue\t7\n-606\tTrue\t9\n-607\tTrue\t10\n-608\tTrue\t8\n-609\tTrue\t8\n-610\tTrue\t10\n-611\tTrue\t10\n-612\tTrue\t9\n-613\tTrue\t8\n-614\tTrue\t8\n-615\tTrue\t8\n-616\tTrue\t7\n-617\tTrue\t8\n-618\tTrue\t7\n-619\tTrue\t6\n-620\tTrue\t6\n-621\tTrue\t7\n-622\tTrue\t7\n-623\tTrue\t7\n-624\tTrue\t8\n-625\tTrue\t6\n-626\tTrue\t7\n-627\tTrue\t7\n-628\tTrue\t7\n-629\tTrue\t6\n-630\tTrue\t5\n-631\tTrue\t7\n-632\tTrue\t6\n-633\tTrue\t6\n-634\tTrue\t7\n-635\tTrue\t6\n-636\tTrue\t8\n-637\tTrue\t8\n-638\tTrue\t6\n-639\tTrue\t8\n'
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/pp.filter_genes.krumsiek11-min_counts.h5ad
b
Binary file test-data/pp.filter_genes.krumsiek11-min_counts.h5ad has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/pp.filter_genes.number_per_gene.krumsiek11-min_counts.tabular
--- a/test-data/pp.filter_genes.number_per_gene.krumsiek11-min_counts.tabular Mon Mar 04 10:15:02 2019 -0500
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
b
@@ -1,12 +0,0 @@
-index n_counts
-Gata2 163.95355
-Gata1 203.95117
-Fog1 83.94181
-EKLF 70.69286
-Fli1 57.56072
-SCL 202.67444
-Cebpa 469.87094
-Pu.1 250.78569
-cJun 188.10158
-EgrNab 164.99693
-Gfi1 159.99155
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/pp.filter_genes.number_per_gene.pbmc68k_reduced-max_cells.tabular
--- a/test-data/pp.filter_genes.number_per_gene.pbmc68k_reduced-max_cells.tabular Mon Mar 04 10:15:02 2019 -0500
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
b
@@ -1,222 +0,0 @@
- gene_subset number_per_gene
-0 True 34
-1 True 123
-2 True 281
-3 True 54
-4 True 253
-5 True 63
-6 True 9
-7 True 266
-8 True 101
-9 True 233
-10 True 267
-11 True 285
-12 True 332
-13 True 197
-14 True 158
-15 True 64
-16 True 285
-17 True 229
-18 True 43
-19 True 199
-20 True 271
-21 True 318
-22 True 132
-23 True 83
-24 True 88
-25 True 87
-26 True 71
-27 True 258
-28 True 58
-29 True 348
-30 True 280
-31 True 150
-32 True 121
-33 True 237
-34 True 29
-35 True 220
-36 True 103
-37 True 87
-38 True 115
-39 True 100
-40 True 139
-41 True 23
-42 True 162
-43 True 76
-44 True 180
-45 True 51
-46 True 244
-47 True 132
-48 True 244
-49 True 82
-50 True 172
-51 True 27
-52 True 100
-53 True 327
-54 True 277
-55 True 282
-56 True 245
-57 True 21
-58 True 52
-59 True 19
-60 True 227
-61 True 288
-62 True 274
-63 True 301
-64 True 316
-65 True 314
-66 True 271
-67 True 270
-68 True 283
-69 True 245
-70 True 263
-71 True 312
-72 True 285
-73 True 228
-74 True 170
-75 True 11
-76 True 228
-77 True 192
-78 True 140
-79 True 15
-80 True 22
-81 True 10
-82 True 233
-83 True 129
-84 True 12
-85 True 297
-86 True 295
-87 True 127
-88 True 208
-89 True 281
-90 True 265
-91 True 254
-92 True 122
-93 True 76
-94 True 237
-95 True 74
-96 True 65
-97 True 45
-98 True 90
-99 True 147
-100 True 189
-101 True 170
-102 True 207
-103 True 14
-104 True 307
-105 True 267
-106 True 111
-107 True 94
-108 True 306
-109 True 126
-110 True 269
-111 True 116
-112 True 140
-113 True 260
-114 True 201
-115 True 198
-116 True 155
-117 True 256
-118 True 214
-119 True 70
-120 True 304
-121 True 336
-122 True 201
-123 True 305
-124 True 301
-125 True 301
-126 True 338
-127 True 81
-128 True 256
-129 True 277
-130 True 237
-131 True 173
-132 True 228
-133 True 64
-134 True 52
-135 True 34
-136 True 333
-137 True 285
-138 True 132
-139 True 32
-140 True 275
-141 True 31
-142 True 244
-143 True 15
-144 True 54
-145 True 289
-146 True 186
-147 True 283
-148 True 333
-149 True 53
-150 True 26
-151 True 173
-152 True 19
-153 True 109
-154 True 138
-155 True 264
-156 True 293
-157 True 225
-158 True 150
-159 True 62
-160 True 350
-161 True 13
-162 True 341
-163 True 223
-164 True 177
-165 True 15
-166 True 202
-167 True 101
-168 True 203
-169 True 271
-170 True 305
-171 True 45
-172 True 322
-173 True 164
-174 True 213
-175 True 55
-176 True 143
-177 True 112
-178 True 266
-179 True 168
-180 True 9
-181 True 300
-182 True 249
-183 True 101
-184 True 55
-185 True 312
-186 True 181
-187 True 256
-188 True 27
-189 True 242
-190 True 210
-191 True 12
-192 True 203
-193 True 41
-194 True 205
-195 True 315
-196 True 94
-197 True 262
-198 True 316
-199 True 13
-200 True 94
-201 True 204
-202 True 245
-203 True 11
-204 True 238
-205 True 301
-206 True 219
-207 True 106
-208 True 253
-209 True 134
-210 True 262
-211 True 222
-212 True 82
-213 True 153
-214 True 122
-215 True 211
-216 True 49
-217 True 211
-218 True 176
-219 True 329
-220 True 8
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/pp.filter_genes_dispersion.krumsiek11-seurat.h5ad
b
Binary file test-data/pp.filter_genes_dispersion.krumsiek11-seurat.h5ad has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/pp.filter_genes_dispersion.per_gene.krumsiek11-cell_ranger.tabular
--- a/test-data/pp.filter_genes_dispersion.per_gene.krumsiek11-cell_ranger.tabular Mon Mar 04 10:15:02 2019 -0500
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
b
@@ -1,12 +0,0 @@
- gene_subset means dispersions dispersions_norm
-0 False 0.22807331 -1.513815
-1 False 0.27662647 -0.6374868
-2 False 0.12324284 -1.1931922
-3 True 0.10477218 -0.8270577 0.67448974
-4 True 0.08612139 -0.880823 0.67448974
-5 False 0.2751125 -0.6042374
-6 False 0.55053085 -1.5924454
-7 False 0.3306357 -0.91260546
-8 False 0.25766766 -0.86990273
-9 False 0.22937028 -0.7354343
-10 False 0.223133 -0.96748924
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/pp.filter_genes_dispersion.per_gene.krumsiek11-seurat.tabular
--- a/test-data/pp.filter_genes_dispersion.per_gene.krumsiek11-seurat.tabular Mon Mar 04 10:15:02 2019 -0500
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
b
@@ -1,9 +0,0 @@
-index means dispersions dispersions_norm
-Fog1 0.12324284 -1.1931922 1.0
-EKLF 0.10477218 -0.8270577 0.70710677
-SCL 0.2751125 -0.6042374 0.707108
-Cebpa 0.55053085 -1.5924454 1.0
-Pu.1 0.3306357 -0.91260546 1.0
-cJun 0.25766766 -0.86990273 1.0
-EgrNab 0.22937028 -0.7354343 0.7071069
-Gfi1 0.223133 -0.96748924 1.0
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/pp.filter_rank_genes_groups.h5ad
b
Binary file test-data/pp.filter_rank_genes_groups.h5ad has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/pp.highly_variable_genes.krumsiek11-cell_ranger.h5ad
b
Binary file test-data/pp.highly_variable_genes.krumsiek11-cell_ranger.h5ad has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/pp.highly_variable_genes.seurat.blobs.h5ad
b
Binary file test-data/pp.highly_variable_genes.seurat.blobs.h5ad has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/pp.log1p.krumsiek11.h5ad
b
Binary file test-data/pp.log1p.krumsiek11.h5ad has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/pp.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad
b
Binary file test-data/pp.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/pp.neighbors_umap_euclidean.recipe_weinreb17.paul15_subsample.h5ad
b
Binary file test-data/pp.neighbors_umap_euclidean.recipe_weinreb17.paul15_subsample.h5ad has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/pp.normalize_per_cell.obs.krumsiek11.tabular
--- a/test-data/pp.normalize_per_cell.obs.krumsiek11.tabular Mon Mar 04 10:15:02 2019 -0500
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
b
@@ -1,641 +0,0 @@
-index cell_type
-0 progenitor
-1 progenitor
-2 progenitor
-3 progenitor
-4 progenitor
-5 progenitor
-6 progenitor
-7 progenitor
-8 progenitor
-9 progenitor
-10 progenitor
-11 progenitor
-12 progenitor
-13 progenitor
-14 progenitor
-15 progenitor
-16 progenitor
-17 progenitor
-18 progenitor
-19 progenitor
-20 progenitor
-21 progenitor
-22 progenitor
-23 progenitor
-24 progenitor
-25 progenitor
-26 progenitor
-27 progenitor
-28 progenitor
-29 progenitor
-30 progenitor
-31 progenitor
-32 progenitor
-33 progenitor
-34 progenitor
-35 progenitor
-36 progenitor
-37 progenitor
-38 progenitor
-39 progenitor
-40 progenitor
-41 progenitor
-42 progenitor
-43 progenitor
-44 progenitor
-45 progenitor
-46 progenitor
-47 progenitor
-48 progenitor
-49 progenitor
-50 progenitor
-51 progenitor
-52 progenitor
-53 progenitor
-54 progenitor
-55 progenitor
-56 progenitor
-57 progenitor
-58 progenitor
-59 progenitor
-60 progenitor
-61 progenitor
-62 progenitor
-63 progenitor
-64 progenitor
-65 progenitor
-66 progenitor
-67 progenitor
-68 progenitor
-69 progenitor
-70 progenitor
-71 progenitor
-72 progenitor
-73 progenitor
-74 progenitor
-75 progenitor
-76 progenitor
-77 progenitor
-78 progenitor
-79 progenitor
-80 Mo
-81 Mo
-82 Mo
-83 Mo
-84 Mo
-85 Mo
-86 Mo
-87 Mo
-88 Mo
-89 Mo
-90 Mo
-91 Mo
-92 Mo
-93 Mo
-94 Mo
-95 Mo
-96 Mo
-97 Mo
-98 Mo
-99 Mo
-100 Mo
-101 Mo
-102 Mo
-103 Mo
-104 Mo
-105 Mo
-106 Mo
-107 Mo
-108 Mo
-109 Mo
-110 Mo
-111 Mo
-112 Mo
-113 Mo
-114 Mo
-115 Mo
-116 Mo
-117 Mo
-118 Mo
-119 Mo
-120 Mo
-121 Mo
-122 Mo
-123 Mo
-124 Mo
-125 Mo
-126 Mo
-127 Mo
-128 Mo
-129 Mo
-130 Mo
-131 Mo
-132 Mo
-133 Mo
-134 Mo
-135 Mo
-136 Mo
-137 Mo
-138 Mo
-139 Mo
-140 Mo
-141 Mo
-142 Mo
-143 Mo
-144 Mo
-145 Mo
-146 Mo
-147 Mo
-148 Mo
-149 Mo
-150 Mo
-151 Mo
-152 Mo
-153 Mo
-154 Mo
-155 Mo
-156 Mo
-157 Mo
-158 Mo
-159 Mo
-0 progenitor
-1 progenitor
-2 progenitor
-3 progenitor
-4 progenitor
-5 progenitor
-6 progenitor
-7 progenitor
-8 progenitor
-9 progenitor
-10 progenitor
-11 progenitor
-12 progenitor
-13 progenitor
-14 progenitor
-15 progenitor
-16 progenitor
-17 progenitor
-18 progenitor
-19 progenitor
-20 progenitor
-21 progenitor
-22 progenitor
-23 progenitor
-24 progenitor
-25 progenitor
-26 progenitor
-27 progenitor
-28 progenitor
-29 progenitor
-30 progenitor
-31 progenitor
-32 progenitor
-33 progenitor
-34 progenitor
-35 progenitor
-36 progenitor
-37 progenitor
-38 progenitor
-39 progenitor
-40 progenitor
-41 progenitor
-42 progenitor
-43 progenitor
-44 progenitor
-45 progenitor
-46 progenitor
-47 progenitor
-48 progenitor
-49 progenitor
-50 progenitor
-51 progenitor
-52 progenitor
-53 progenitor
-54 progenitor
-55 progenitor
-56 progenitor
-57 progenitor
-58 progenitor
-59 progenitor
-60 progenitor
-61 progenitor
-62 progenitor
-63 progenitor
-64 progenitor
-65 progenitor
-66 progenitor
-67 progenitor
-68 progenitor
-69 progenitor
-70 progenitor
-71 progenitor
-72 progenitor
-73 progenitor
-74 progenitor
-75 progenitor
-76 progenitor
-77 progenitor
-78 progenitor
-79 progenitor
-80 Ery
-81 Ery
-82 Ery
-83 Ery
-84 Ery
-85 Ery
-86 Ery
-87 Ery
-88 Ery
-89 Ery
-90 Ery
-91 Ery
-92 Ery
-93 Ery
-94 Ery
-95 Ery
-96 Ery
-97 Ery
-98 Ery
-99 Ery
-100 Ery
-101 Ery
-102 Ery
-103 Ery
-104 Ery
-105 Ery
-106 Ery
-107 Ery
-108 Ery
-109 Ery
-110 Ery
-111 Ery
-112 Ery
-113 Ery
-114 Ery
-115 Ery
-116 Ery
-117 Ery
-118 Ery
-119 Ery
-120 Ery
-121 Ery
-122 Ery
-123 Ery
-124 Ery
-125 Ery
-126 Ery
-127 Ery
-128 Ery
-129 Ery
-130 Ery
-131 Ery
-132 Ery
-133 Ery
-134 Ery
-135 Ery
-136 Ery
-137 Ery
-138 Ery
-139 Ery
-140 Ery
-141 Ery
-142 Ery
-143 Ery
-144 Ery
-145 Ery
-146 Ery
-147 Ery
-148 Ery
-149 Ery
-150 Ery
-151 Ery
-152 Ery
-153 Ery
-154 Ery
-155 Ery
-156 Ery
-157 Ery
-158 Ery
-159 Ery
-0 progenitor
-1 progenitor
-2 progenitor
-3 progenitor
-4 progenitor
-5 progenitor
-6 progenitor
-7 progenitor
-8 progenitor
-9 progenitor
-10 progenitor
-11 progenitor
-12 progenitor
-13 progenitor
-14 progenitor
-15 progenitor
-16 progenitor
-17 progenitor
-18 progenitor
-19 progenitor
-20 progenitor
-21 progenitor
-22 progenitor
-23 progenitor
-24 progenitor
-25 progenitor
-26 progenitor
-27 progenitor
-28 progenitor
-29 progenitor
-30 progenitor
-31 progenitor
-32 progenitor
-33 progenitor
-34 progenitor
-35 progenitor
-36 progenitor
-37 progenitor
-38 progenitor
-39 progenitor
-40 progenitor
-41 progenitor
-42 progenitor
-43 progenitor
-44 progenitor
-45 progenitor
-46 progenitor
-47 progenitor
-48 progenitor
-49 progenitor
-50 progenitor
-51 progenitor
-52 progenitor
-53 progenitor
-54 progenitor
-55 progenitor
-56 progenitor
-57 progenitor
-58 progenitor
-59 progenitor
-60 progenitor
-61 progenitor
-62 progenitor
-63 progenitor
-64 progenitor
-65 progenitor
-66 progenitor
-67 progenitor
-68 progenitor
-69 progenitor
-70 progenitor
-71 progenitor
-72 progenitor
-73 progenitor
-74 progenitor
-75 progenitor
-76 progenitor
-77 progenitor
-78 progenitor
-79 progenitor
-80 Mk
-81 Mk
-82 Mk
-83 Mk
-84 Mk
-85 Mk
-86 Mk
-87 Mk
-88 Mk
-89 Mk
-90 Mk
-91 Mk
-92 Mk
-93 Mk
-94 Mk
-95 Mk
-96 Mk
-97 Mk
-98 Mk
-99 Mk
-100 Mk
-101 Mk
-102 Mk
-103 Mk
-104 Mk
-105 Mk
-106 Mk
-107 Mk
-108 Mk
-109 Mk
-110 Mk
-111 Mk
-112 Mk
-113 Mk
-114 Mk
-115 Mk
-116 Mk
-117 Mk
-118 Mk
-119 Mk
-120 Mk
-121 Mk
-122 Mk
-123 Mk
-124 Mk
-125 Mk
-126 Mk
-127 Mk
-128 Mk
-129 Mk
-130 Mk
-131 Mk
-132 Mk
-133 Mk
-134 Mk
-135 Mk
-136 Mk
-137 Mk
-138 Mk
-139 Mk
-140 Mk
-141 Mk
-142 Mk
-143 Mk
-144 Mk
-145 Mk
-146 Mk
-147 Mk
-148 Mk
-149 Mk
-150 Mk
-151 Mk
-152 Mk
-153 Mk
-154 Mk
-155 Mk
-156 Mk
-157 Mk
-158 Mk
-159 Mk
-0 progenitor
-1 progenitor
-2 progenitor
-3 progenitor
-4 progenitor
-5 progenitor
-6 progenitor
-7 progenitor
-8 progenitor
-9 progenitor
-10 progenitor
-11 progenitor
-12 progenitor
-13 progenitor
-14 progenitor
-15 progenitor
-16 progenitor
-17 progenitor
-18 progenitor
-19 progenitor
-20 progenitor
-21 progenitor
-22 progenitor
-23 progenitor
-24 progenitor
-25 progenitor
-26 progenitor
-27 progenitor
-28 progenitor
-29 progenitor
-30 progenitor
-31 progenitor
-32 progenitor
-33 progenitor
-34 progenitor
-35 progenitor
-36 progenitor
-37 progenitor
-38 progenitor
-39 progenitor
-40 progenitor
-41 progenitor
-42 progenitor
-43 progenitor
-44 progenitor
-45 progenitor
-46 progenitor
-47 progenitor
-48 progenitor
-49 progenitor
-50 progenitor
-51 progenitor
-52 progenitor
-53 progenitor
-54 progenitor
-55 progenitor
-56 progenitor
-57 progenitor
-58 progenitor
-59 progenitor
-60 progenitor
-61 progenitor
-62 progenitor
-63 progenitor
-64 progenitor
-65 progenitor
-66 progenitor
-67 progenitor
-68 progenitor
-69 progenitor
-70 progenitor
-71 progenitor
-72 progenitor
-73 progenitor
-74 progenitor
-75 progenitor
-76 progenitor
-77 progenitor
-78 progenitor
-79 progenitor
-80 Neu
-81 Neu
-82 Neu
-83 Neu
-84 Neu
-85 Neu
-86 Neu
-87 Neu
-88 Neu
-89 Neu
-90 Neu
-91 Neu
-92 Neu
-93 Neu
-94 Neu
-95 Neu
-96 Neu
-97 Neu
-98 Neu
-99 Neu
-100 Neu
-101 Neu
-102 Neu
-103 Neu
-104 Neu
-105 Neu
-106 Neu
-107 Neu
-108 Neu
-109 Neu
-110 Neu
-111 Neu
-112 Neu
-113 Neu
-114 Neu
-115 Neu
-116 Neu
-117 Neu
-118 Neu
-119 Neu
-120 Neu
-121 Neu
-122 Neu
-123 Neu
-124 Neu
-125 Neu
-126 Neu
-127 Neu
-128 Neu
-129 Neu
-130 Neu
-131 Neu
-132 Neu
-133 Neu
-134 Neu
-135 Neu
-136 Neu
-137 Neu
-138 Neu
-139 Neu
-140 Neu
-141 Neu
-142 Neu
-143 Neu
-144 Neu
-145 Neu
-146 Neu
-147 Neu
-148 Neu
-149 Neu
-150 Neu
-151 Neu
-152 Neu
-153 Neu
-154 Neu
-155 Neu
-156 Neu
-157 Neu
-158 Neu
-159 Neu
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/pp.normalize_total.krumsiek11.h5ad
b
Binary file test-data/pp.normalize_total.krumsiek11.h5ad has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/pp.pca.krumsiek11.h5ad
b
Binary file test-data/pp.pca.krumsiek11.h5ad has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/pp.recipe_seurat.recipe_zheng17.h5ad
b
Binary file test-data/pp.recipe_seurat.recipe_zheng17.h5ad has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/pp.recipe_weinreb17.paul15_subsample.updated.h5ad
b
Binary file test-data/pp.recipe_weinreb17.paul15_subsample.updated.h5ad has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/pp.recipe_zheng17.random-randint.h5ad
b
Binary file test-data/pp.recipe_zheng17.random-randint.h5ad has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/pp.regress_out.krumsiek11.h5ad
b
Binary file test-data/pp.regress_out.krumsiek11.h5ad has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/pp.scale.krumsiek11.h5ad
b
Binary file test-data/pp.scale.krumsiek11.h5ad has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/pp.scale_max_value.krumsiek11.h5ad
b
Binary file test-data/pp.scale_max_value.krumsiek11.h5ad has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/pp.sqrt.krumsiek11.h5ad
b
Binary file test-data/pp.sqrt.krumsiek11.h5ad has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/pp.subsample.krumsiek11_fraction.h5ad
b
Binary file test-data/pp.subsample.krumsiek11_fraction.h5ad has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/sparce_csr_matrix.h5ad
b
Binary file test-data/sparce_csr_matrix.h5ad has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/tl.diffmap.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.X_diffmap.tabular
--- a/test-data/tl.diffmap.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.X_diffmap.tabular Mon Mar 04 10:15:02 2019 -0500
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
b
b'@@ -1,100 +0,0 @@\n-1.006254479289054871e-01\t7.390013337135314941e-02\t5.162549763917922974e-02\t-6.088243797421455383e-02\t1.660361140966415405e-02\t2.669865079224109650e-02\t-1.013666391372680664e-01\t5.378784239292144775e-02\t2.008118629455566406e-01\t1.484276503324508667e-01\t1.083310469985008240e-01\t1.318635195493698120e-01\t1.997928470373153687e-01\t-7.899370044469833374e-02\t-2.425468564033508301e-01\n-9.916571527719497681e-02\t-6.192789599299430847e-02\t3.743748366832733154e-02\t5.766532197594642639e-02\t2.186784986406564713e-03\t-1.058542281389236450e-01\t5.377947166562080383e-02\t1.402157917618751526e-02\t1.486204266548156738e-01\t8.553525805473327637e-02\t2.134956121444702148e-01\t-9.449188411235809326e-02\t-9.736447781324386597e-02\t-6.411797553300857544e-02\t-3.109178543090820312e-01\n-1.063194051384925842e-01\t8.235514909029006958e-02\t9.153002500534057617e-02\t-1.288201361894607544e-01\t2.123118191957473755e-02\t-5.571385100483894348e-02\t4.388944245874881744e-03\t-1.907968819141387939e-01\t5.077145248651504517e-02\t-5.320586264133453369e-02\t-2.017502486705780029e-02\t2.888677455484867096e-02\t-3.507991880178451538e-02\t5.667190253734588623e-02\t7.913256995379924774e-03\n-9.840648621320724487e-02\t-4.607489332556724548e-02\t3.584916703402996063e-03\t1.064319070428609848e-02\t-1.083880066871643066e-01\t1.248296573758125305e-01\t6.351136416196823120e-02\t1.885401159524917603e-01\t-2.020059973001480103e-01\t3.631909489631652832e-01\t1.699842363595962524e-01\t1.017943695187568665e-01\t-1.385858207941055298e-01\t3.727469593286514282e-02\t8.702995628118515015e-02\n-1.002686843276023865e-01\t8.042127639055252075e-02\t-1.485065966844558716e-01\t-1.834145635366439819e-01\t1.185779422521591187e-01\t-4.452232271432876587e-03\t2.401492185890674591e-02\t1.709450007183477283e-04\t-1.044583246111869812e-01\t1.082587465643882751e-01\t8.498968929052352905e-02\t1.078867260366678238e-02\t1.678988523781299591e-02\t-4.863050952553749084e-02\t-8.437795564532279968e-03\n-1.039626300334930420e-01\t6.898555904626846313e-02\t-5.245065316557884216e-02\t-1.401370912790298462e-01\t1.724163144826889038e-01\t-9.417925775051116943e-02\t5.670287460088729858e-02\t-2.294020541012287140e-02\t-1.041278913617134094e-01\t-4.751206189393997192e-02\t-2.486055344343185425e-02\t1.906321793794631958e-01\t-1.133706346154212952e-01\t1.018952578306198120e-01\t-1.696813404560089111e-01\n-1.031595841050148010e-01\t6.644981354475021362e-02\t-3.434765338897705078e-02\t-8.121536672115325928e-02\t-2.303110063076019287e-01\t6.845026742666959763e-03\t-3.113305754959583282e-02\t3.572509065270423889e-02\t-2.340330332517623901e-01\t1.681309342384338379e-01\t2.042572945356369019e-01\t-2.152139544486999512e-01\t3.323959186673164368e-02\t-1.992796063423156738e-01\t1.612142026424407959e-01\n-1.063378602266311646e-01\t9.444754570722579956e-02\t1.147621273994445801e-01\t-1.788049340248107910e-01\t1.663699001073837280e-01\t-1.299377232789993286e-01\t9.099455177783966064e-02\t8.901253342628479004e-02\t-3.782828152179718018e-02\t1.340985000133514404e-01\t-1.110952645540237427e-01\t-1.353431493043899536e-01\t9.196916222572326660e-02\t-5.004190653562545776e-02\t1.283620446920394897e-01\n-1.019066423177719116e-01\t3.868932276964187622e-02\t-5.681320559233427048e-03\t2.885684370994567871e-02\t-1.618600785732269287e-01\t-7.793435454368591309e-02\t-6.321301311254501343e-02\t-7.030926644802093506e-02\t-8.451142162084579468e-02\t1.784774512052536011e-01\t-5.302700772881507874e-02\t2.233742922544479370e-02\t-8.568169549107551575e-03\t-3.328817337751388550e-02\t-2.190946601331233978e-02\n-1.055724918842315674e-01\t6.597422808408737183e-02\t1.207857206463813782e-01\t-1.769655644893646240e-01\t-1.941676251590251923e-02\t-2.537060342729091644e-02\t2.017348445951938629e-02\t2.019873559474945068e-01\t2.603957951068878174e-01\t-8.517616987228393555e-02\t1.920531690120697021e-01\t3.013696968555450439e-01\t1.285752207040786743e-01\t-6.937998533248901367e-02\t2.583270706236362457e-02\n-1.013405695557594299e-01\t7.315808534622192383e-02\t-4.366664588451385498e-02\t2.623320743441581726e-02\t-1.268581300973892212e-01\t-9.996589273214340210e-02\t3.80'..b'926277161e-02\t6.935269385576248169e-02\t5.418083444237709045e-02\t-2.927818335592746735e-02\t2.737504616379737854e-02\t6.675768643617630005e-03\t-4.358346015214920044e-02\n-1.045850887894630432e-01\t3.966004028916358948e-02\t7.888220995664596558e-02\t1.084793508052825928e-01\t-3.825098276138305664e-02\t5.556414648890495300e-02\t-2.386018633842468262e-03\t-1.735868491232395172e-02\t1.626232713460922241e-01\t-3.189559327438473701e-03\t-3.677500039339065552e-02\t-1.077032759785652161e-01\t-6.530553102493286133e-02\t-1.181415840983390808e-01\t2.054665982723236084e-01\n-1.013580858707427979e-01\t6.717060506343841553e-02\t-7.871925085783004761e-02\t-4.536754917353391647e-03\t-8.628232032060623169e-02\t-4.364237934350967407e-02\t5.463447421789169312e-02\t7.559294998645782471e-02\t1.829659007489681244e-02\t-3.810231760144233704e-02\t1.445978041738271713e-02\t-1.330154389142990112e-01\t7.491165399551391602e-02\t-5.850773304700851440e-02\t5.279816687107086182e-03\n-1.007874831557273865e-01\t-6.051312014460563660e-02\t-2.818964421749114990e-03\t1.158334836363792419e-01\t-6.604961305856704712e-02\t-6.636043637990951538e-02\t3.605647683143615723e-01\t6.230036914348602295e-02\t1.247871741652488708e-01\t4.024268593639135361e-03\t-4.460835456848144531e-02\t1.964040845632553101e-01\t1.187151372432708740e-01\t2.093635946512222290e-01\t2.515807449817657471e-01\n-1.040665134787559509e-01\t7.813188433647155762e-02\t1.352884173393249512e-01\t-9.691929072141647339e-02\t2.978404052555561066e-02\t-6.218590214848518372e-02\t3.118260763585567474e-02\t2.100257873535156250e-01\t5.309388414025306702e-02\t-3.683280944824218750e-02\t1.081678271293640137e-01\t1.159011572599411011e-01\t-9.071216732263565063e-02\t1.454317569732666016e-01\t1.560889184474945068e-02\n-9.596666693687438965e-02\t-1.235919669270515442e-01\t-6.143675185739994049e-03\t4.618058353662490845e-02\t-4.854806885123252869e-02\t-1.566148698329925537e-01\t1.086631417274475098e-01\t-5.864029750227928162e-02\t7.967603951692581177e-02\t-4.821031168103218079e-02\t-7.968238554894924164e-03\t-5.616628099232912064e-03\t-7.662835996598005295e-03\t-5.304025113582611084e-02\t-9.814745932817459106e-02\n-9.450878947973251343e-02\t-1.617153137922286987e-01\t-1.475114375352859497e-02\t-3.400534763932228088e-02\t3.202979266643524170e-02\t-7.523473352193832397e-03\t-7.037699967622756958e-02\t5.858044326305389404e-02\t-2.339935861527919769e-02\t6.765121361240744591e-05\t-7.621700875461101532e-03\t-2.569160657003521919e-03\t1.386285480111837387e-02\t-9.449950885027647018e-04\t-9.074879810214042664e-03\n-9.348812699317932129e-02\t-1.875597685575485229e-01\t-1.796119287610054016e-02\t-2.141974493861198425e-02\t2.915703505277633667e-02\t-5.883788317441940308e-02\t-1.005370840430259705e-01\t3.347435966134071350e-02\t2.262158133089542389e-02\t1.751536689698696136e-02\t3.964411094784736633e-02\t-3.229109104722738266e-03\t-1.950366050004959106e-02\t1.035222597420215607e-02\t-1.544480863958597183e-02\n-9.449574351310729980e-02\t-1.709264367818832397e-01\t4.125457257032394409e-03\t-6.873404979705810547e-02\t4.397033154964447021e-02\t1.867942214012145996e-01\t-1.137310042977333069e-01\t6.536182016134262085e-02\t-8.733030408620834351e-02\t4.486828297376632690e-02\t6.879048049449920654e-02\t3.395766764879226685e-02\t-1.334057748317718506e-01\t-3.880335018038749695e-02\t5.785062164068222046e-02\n-9.526924788951873779e-02\t-1.083553209900856018e-01\t1.990574225783348083e-02\t1.783852465450763702e-02\t-5.172537639737129211e-02\t-1.314793080091476440e-01\t-3.332496806979179382e-02\t-1.304124593734741211e-01\t7.114066183567047119e-02\t4.942291602492332458e-02\t1.143850944936275482e-02\t3.503248840570449829e-02\t8.114560507237911224e-03\t2.840096876025199890e-02\t6.378748267889022827e-02\n-1.035511195659637451e-01\t7.710250467061996460e-02\t5.883126333355903625e-02\t-1.181510612368583679e-01\t-1.791930794715881348e-01\t-2.050231397151947021e-02\t-4.374536871910095215e-02\t2.246104925870895386e-01\t1.195801421999931335e-02\t-1.478822380304336548e-01\t-9.886784851551055908e-02\t-9.984883666038513184e-02\t-6.099858880043029785e-02\t8.420736342668533325e-02\t-9.065923094749450684e-02\n'
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/tl.diffmap.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad
b
Binary file test-data/tl.diffmap.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/tl.dpt.diffmap.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad
b
Binary file test-data/tl.dpt.diffmap.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/tl.dpt.diffmap.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.obs.tabular
--- a/test-data/tl.dpt.diffmap.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.obs.tabular Mon Mar 04 10:15:02 2019 -0500
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
b
@@ -1,101 +0,0 @@
-index paul15_clusters dpt_groups dpt_order dpt_order_indices
-578 13Baso 2 53 27
-2242 3Ery 1 30 46
-2690 10GMP 2 66 45
-70 5Ery 1 32 65
-758 15Mo 2 67 8
-465 16Neu 2 68 80
-245 16Neu 2 69 87
-2172 10GMP 2 70 90
-2680 10GMP 0 4 36
-1790 7MEP 2 71 59
-855 11DC 2 72 82
-2721 10GMP 2 73 30
-104 2Ery 1 38 62
-1106 2Ery 1 40 32
-2367 15Mo 3 93 35
-124 2Ery 1 41 37
-2477 8Mk 2 74 31
-1968 2Ery 1 42 78
-563 1Ery 1 43 28
-276 2Ery 1 44 56
-192 16Neu 2 75 42
-2409 2Ery 1 45 44
-2054 15Mo 3 95 75
-720 8Mk 2 76 48
-2225 14Mo 3 97 98
-878 6Ery 1 29 54
-156 7MEP 2 77 79
-1244 8Mk 0 0 40
-10 2Ery 1 18 83
-1108 6Ery 2 65 25
-353 5Ery 1 11 1
-182 5Ery 1 16 97
-2053 3Ery 1 13 3
-2291 16Neu 3 92 96
-2056 10GMP 2 79 95
-1047 2Ery 1 14 94
-1947 14Mo 0 8 92
-1390 3Ery 1 15 60
-2317 14Mo 2 90 12
-2348 11DC 2 82 69
-953 5Ery 1 27 13
-628 9GMP 2 83 15
-2691 5Ery 1 20 17
-1499 16Neu 3 96 18
-1083 2Ery 1 21 19
-831 14Mo 0 2 21
-15 7MEP 0 1 86
-2005 7MEP 2 87 66
-1662 3Ery 1 23 84
-2457 7MEP 2 64 89
-757 7MEP 2 81 70
-1642 14Mo 2 91 68
-2520 10GMP 2 89 67
-1393 7MEP 2 88 0
-2170 6Ery 1 25 73
-988 14Mo 2 86 76
-1338 2Ery 1 19 77
-2189 16Neu 2 85 81
-446 13Baso 2 84 85
-2276 14Mo 0 9 88
-317 2Ery 1 37 91
-1540 16Neu 3 99 93
-2164 4Ery 1 12 72
-227 15Mo 2 78 64
-906 12Baso 2 63 49
-716 15Mo 0 3 29
-912 14Mo 1 47 2
-2688 11DC 2 52 4
-1678 7MEP 2 51 5
-1063 6Ery 1 39 6
-1041 5Ery 1 50 7
-2279 15Mo 3 98 9
-558 13Baso 2 62 10
-2196 14Mo 2 54 11
-1270 13Baso 3 94 16
-2259 3Ery 1 22 20
-2410 13Baso 2 55 23
-886 7MEP 2 56 26
-2072 13Baso 1 17 63
-443 5Ery 1 26 34
-910 13Baso 0 5 99
-2608 15Mo 2 57 50
-2645 1Ery 1 10 39
-616 6Ery 1 28 41
-1866 2Ery 1 48 58
-923 7MEP 2 58 57
-1716 4Ery 1 46 55
-2476 11DC 0 6 47
-1872 10GMP 2 59 53
-1009 4Ery 1 49 52
-1680 6Ery 0 7 38
-1490 14Mo 2 60 51
-1454 2Ery 1 36 33
-2580 9GMP 2 61 14
-958 1Ery 1 35 74
-2626 2Ery 1 34 22
-1677 3Ery 1 33 43
-982 4Ery 1 31 24
-202 2Ery 1 24 71
-891 10GMP 2 80 61
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/tl.draw_graph.pp.neighbors_umap_euclidean.recipe_weinreb17.paul15_subsample.h5ad
b
Binary file test-data/tl.draw_graph.pp.neighbors_umap_euclidean.recipe_weinreb17.paul15_subsample.h5ad has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/tl.leiden.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad
b
Binary file test-data/tl.leiden.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/tl.louvain.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad
b
Binary file test-data/tl.louvain.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/tl.paga.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad
b
Binary file test-data/tl.paga.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/tl.pca.krumsiek11.h5ad
b
Binary file test-data/tl.pca.krumsiek11.h5ad has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/tl.rank_genes_groups.krumsiek11.h5ad
b
Binary file test-data/tl.rank_genes_groups.krumsiek11.h5ad has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/tl.rank_genes_groups.liblinear.krumsiek11.h5ad
b
Binary file test-data/tl.rank_genes_groups.liblinear.krumsiek11.h5ad has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/tl.rank_genes_groups.newton-cg.pbmc68k_reduced.h5ad
b
Binary file test-data/tl.rank_genes_groups.newton-cg.pbmc68k_reduced.h5ad has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/tl.score_genes.krumsiek11.h5ad
b
Binary file test-data/tl.score_genes.krumsiek11.h5ad has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/tl.score_genes.krumsiek11.obs.tabular
--- a/test-data/tl.score_genes.krumsiek11.obs.tabular Mon Mar 04 10:15:02 2019 -0500
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
b
b'@@ -1,641 +0,0 @@\n-index\tcell_type\tscore\n-0\tprogenitor\t\n-1\tprogenitor\t\n-2\tprogenitor\t\n-3\tprogenitor\t\n-4\tprogenitor\t\n-5\tprogenitor\t\n-6\tprogenitor\t\n-7\tprogenitor\t\n-8\tprogenitor\t\n-9\tprogenitor\t\n-10\tprogenitor\t\n-11\tprogenitor\t\n-12\tprogenitor\t\n-13\tprogenitor\t\n-14\tprogenitor\t\n-15\tprogenitor\t\n-16\tprogenitor\t\n-17\tprogenitor\t\n-18\tprogenitor\t\n-19\tprogenitor\t\n-20\tprogenitor\t\n-21\tprogenitor\t\n-22\tprogenitor\t\n-23\tprogenitor\t\n-24\tprogenitor\t\n-25\tprogenitor\t\n-26\tprogenitor\t\n-27\tprogenitor\t\n-28\tprogenitor\t\n-29\tprogenitor\t\n-30\tprogenitor\t\n-31\tprogenitor\t\n-32\tprogenitor\t\n-33\tprogenitor\t\n-34\tprogenitor\t\n-35\tprogenitor\t\n-36\tprogenitor\t\n-37\tprogenitor\t\n-38\tprogenitor\t\n-39\tprogenitor\t\n-40\tprogenitor\t\n-41\tprogenitor\t\n-42\tprogenitor\t\n-43\tprogenitor\t\n-44\tprogenitor\t\n-45\tprogenitor\t\n-46\tprogenitor\t\n-47\tprogenitor\t\n-48\tprogenitor\t\n-49\tprogenitor\t\n-50\tprogenitor\t\n-51\tprogenitor\t\n-52\tprogenitor\t\n-53\tprogenitor\t\n-54\tprogenitor\t\n-55\tprogenitor\t\n-56\tprogenitor\t\n-57\tprogenitor\t\n-58\tprogenitor\t\n-59\tprogenitor\t\n-60\tprogenitor\t\n-61\tprogenitor\t\n-62\tprogenitor\t\n-63\tprogenitor\t\n-64\tprogenitor\t\n-65\tprogenitor\t\n-66\tprogenitor\t\n-67\tprogenitor\t\n-68\tprogenitor\t\n-69\tprogenitor\t\n-70\tprogenitor\t\n-71\tprogenitor\t\n-72\tprogenitor\t\n-73\tprogenitor\t\n-74\tprogenitor\t\n-75\tprogenitor\t\n-76\tprogenitor\t\n-77\tprogenitor\t\n-78\tprogenitor\t\n-79\tprogenitor\t\n-80\tMo\t\n-81\tMo\t\n-82\tMo\t\n-83\tMo\t\n-84\tMo\t\n-85\tMo\t\n-86\tMo\t\n-87\tMo\t\n-88\tMo\t\n-89\tMo\t\n-90\tMo\t\n-91\tMo\t\n-92\tMo\t\n-93\tMo\t\n-94\tMo\t\n-95\tMo\t\n-96\tMo\t\n-97\tMo\t\n-98\tMo\t\n-99\tMo\t\n-100\tMo\t\n-101\tMo\t\n-102\tMo\t\n-103\tMo\t\n-104\tMo\t\n-105\tMo\t\n-106\tMo\t\n-107\tMo\t\n-108\tMo\t\n-109\tMo\t\n-110\tMo\t\n-111\tMo\t\n-112\tMo\t\n-113\tMo\t\n-114\tMo\t\n-115\tMo\t\n-116\tMo\t\n-117\tMo\t\n-118\tMo\t\n-119\tMo\t\n-120\tMo\t\n-121\tMo\t\n-122\tMo\t\n-123\tMo\t\n-124\tMo\t\n-125\tMo\t\n-126\tMo\t\n-127\tMo\t\n-128\tMo\t\n-129\tMo\t\n-130\tMo\t\n-131\tMo\t\n-132\tMo\t\n-133\tMo\t\n-134\tMo\t\n-135\tMo\t\n-136\tMo\t\n-137\tMo\t\n-138\tMo\t\n-139\tMo\t\n-140\tMo\t\n-141\tMo\t\n-142\tMo\t\n-143\tMo\t\n-144\tMo\t\n-145\tMo\t\n-146\tMo\t\n-147\tMo\t\n-148\tMo\t\n-149\tMo\t\n-150\tMo\t\n-151\tMo\t\n-152\tMo\t\n-153\tMo\t\n-154\tMo\t\n-155\tMo\t\n-156\tMo\t\n-157\tMo\t\n-158\tMo\t\n-159\tMo\t\n-0\tprogenitor\t\n-1\tprogenitor\t\n-2\tprogenitor\t\n-3\tprogenitor\t\n-4\tprogenitor\t\n-5\tprogenitor\t\n-6\tprogenitor\t\n-7\tprogenitor\t\n-8\tprogenitor\t\n-9\tprogenitor\t\n-10\tprogenitor\t\n-11\tprogenitor\t\n-12\tprogenitor\t\n-13\tprogenitor\t\n-14\tprogenitor\t\n-15\tprogenitor\t\n-16\tprogenitor\t\n-17\tprogenitor\t\n-18\tprogenitor\t\n-19\tprogenitor\t\n-20\tprogenitor\t\n-21\tprogenitor\t\n-22\tprogenitor\t\n-23\tprogenitor\t\n-24\tprogenitor\t\n-25\tprogenitor\t\n-26\tprogenitor\t\n-27\tprogenitor\t\n-28\tprogenitor\t\n-29\tprogenitor\t\n-30\tprogenitor\t\n-31\tprogenitor\t\n-32\tprogenitor\t\n-33\tprogenitor\t\n-34\tprogenitor\t\n-35\tprogenitor\t\n-36\tprogenitor\t\n-37\tprogenitor\t\n-38\tprogenitor\t\n-39\tprogenitor\t\n-40\tprogenitor\t\n-41\tprogenitor\t\n-42\tprogenitor\t\n-43\tprogenitor\t\n-44\tprogenitor\t\n-45\tprogenitor\t\n-46\tprogenitor\t\n-47\tprogenitor\t\n-48\tprogenitor\t\n-49\tprogenitor\t\n-50\tprogenitor\t\n-51\tprogenitor\t\n-52\tprogenitor\t\n-53\tprogenitor\t\n-54\tprogenitor\t\n-55\tprogenitor\t\n-56\tprogenitor\t\n-57\tprogenitor\t\n-58\tprogenitor\t\n-59\tprogenitor\t\n-60\tprogenitor\t\n-61\tprogenitor\t\n-62\tprogenitor\t\n-63\tprogenitor\t\n-64\tprogenitor\t\n-65\tprogenitor\t\n-66\tprogenitor\t\n-67\tprogenitor\t\n-68\tprogenitor\t\n-69\tprogenitor\t\n-70\tprogenitor\t\n-71\tprogenitor\t\n-72\tprogenitor\t\n-73\tprogenitor\t\n-74\tprogenitor\t\n-75\tprogenitor\t\n-76\tprogenitor\t\n-77\tprogenitor\t\n-78\tprogenitor\t\n-79\tprogenitor\t\n-80\tEry\t\n-81\tEry\t\n-82\tEry\t\n-83\tEry\t\n-84\tEry\t\n-85\tEry\t\n-86\tEry\t\n-87\tEry\t\n-88\tEry\t\n-89\tEry\t\n-90\tEry\t\n-91\tEry\t\n-92\tEry\t\n-93\tEry\t\n-94\tEry\t\n-95\tEry\t\n-96\tEry\t\n-97\tEry\t\n-98\tEry\t\n-99\tEry\t\n-100\tEry\t\n-101\tEry\t\n-102\tEry\t\n-103\tEry\t\n-104\tEry\t\n-105\tEry\t\n-106\tEry\t\n-107\tEry\t\n-108\tEry\t\n-109\tEry\t\n-110\tEry\t\n-111\tEry\t\n-112\tEry\t\n-113\tEry\t\n-114\tEry\t\n-115\tEry\t\n-116\tEry\t\n-117\tEry\t\n-118\tEry\t\n-119\tEry\t\n-120\tEry\t\n-121\tEry\t\n-122\tEry\t\n-123\tEry\t\n-124\tEry\t\n-125\tEry\t\n-126\tEry\t\n-127\tEry\t\n-128\tEry\t\n-129\tEry\t\n-130\tEry\t\n-131\tEry\t\n-132\tEry\t\n-133\tEry\t\n-134\tEry\t\n-135\tEry\t\n-136\tEry\t\n-137\tEry\t\n-138\tEry\t\n-139\tEry\t\n-140\tEry\t\n-141\tEry\t\n-142\tEry\t\n-143\tEry\t\n-144\tEry\t\n-145\tEry\t\n-146\tEry\t\n-147\tEry\t\n-148\tEry\t\n-149\tEry\t\n-150\tEry\t\n-151\tEry\t\n-152\tEry\t\n-153\tEry'..b'genitor\t\n-2\tprogenitor\t\n-3\tprogenitor\t\n-4\tprogenitor\t\n-5\tprogenitor\t\n-6\tprogenitor\t\n-7\tprogenitor\t\n-8\tprogenitor\t\n-9\tprogenitor\t\n-10\tprogenitor\t\n-11\tprogenitor\t\n-12\tprogenitor\t\n-13\tprogenitor\t\n-14\tprogenitor\t\n-15\tprogenitor\t\n-16\tprogenitor\t\n-17\tprogenitor\t\n-18\tprogenitor\t\n-19\tprogenitor\t\n-20\tprogenitor\t\n-21\tprogenitor\t\n-22\tprogenitor\t\n-23\tprogenitor\t\n-24\tprogenitor\t\n-25\tprogenitor\t\n-26\tprogenitor\t\n-27\tprogenitor\t\n-28\tprogenitor\t\n-29\tprogenitor\t\n-30\tprogenitor\t\n-31\tprogenitor\t\n-32\tprogenitor\t\n-33\tprogenitor\t\n-34\tprogenitor\t\n-35\tprogenitor\t\n-36\tprogenitor\t\n-37\tprogenitor\t\n-38\tprogenitor\t\n-39\tprogenitor\t\n-40\tprogenitor\t\n-41\tprogenitor\t\n-42\tprogenitor\t\n-43\tprogenitor\t\n-44\tprogenitor\t\n-45\tprogenitor\t\n-46\tprogenitor\t\n-47\tprogenitor\t\n-48\tprogenitor\t\n-49\tprogenitor\t\n-50\tprogenitor\t\n-51\tprogenitor\t\n-52\tprogenitor\t\n-53\tprogenitor\t\n-54\tprogenitor\t\n-55\tprogenitor\t\n-56\tprogenitor\t\n-57\tprogenitor\t\n-58\tprogenitor\t\n-59\tprogenitor\t\n-60\tprogenitor\t\n-61\tprogenitor\t\n-62\tprogenitor\t\n-63\tprogenitor\t\n-64\tprogenitor\t\n-65\tprogenitor\t\n-66\tprogenitor\t\n-67\tprogenitor\t\n-68\tprogenitor\t\n-69\tprogenitor\t\n-70\tprogenitor\t\n-71\tprogenitor\t\n-72\tprogenitor\t\n-73\tprogenitor\t\n-74\tprogenitor\t\n-75\tprogenitor\t\n-76\tprogenitor\t\n-77\tprogenitor\t\n-78\tprogenitor\t\n-79\tprogenitor\t\n-80\tMk\t\n-81\tMk\t\n-82\tMk\t\n-83\tMk\t\n-84\tMk\t\n-85\tMk\t\n-86\tMk\t\n-87\tMk\t\n-88\tMk\t\n-89\tMk\t\n-90\tMk\t\n-91\tMk\t\n-92\tMk\t\n-93\tMk\t\n-94\tMk\t\n-95\tMk\t\n-96\tMk\t\n-97\tMk\t\n-98\tMk\t\n-99\tMk\t\n-100\tMk\t\n-101\tMk\t\n-102\tMk\t\n-103\tMk\t\n-104\tMk\t\n-105\tMk\t\n-106\tMk\t\n-107\tMk\t\n-108\tMk\t\n-109\tMk\t\n-110\tMk\t\n-111\tMk\t\n-112\tMk\t\n-113\tMk\t\n-114\tMk\t\n-115\tMk\t\n-116\tMk\t\n-117\tMk\t\n-118\tMk\t\n-119\tMk\t\n-120\tMk\t\n-121\tMk\t\n-122\tMk\t\n-123\tMk\t\n-124\tMk\t\n-125\tMk\t\n-126\tMk\t\n-127\tMk\t\n-128\tMk\t\n-129\tMk\t\n-130\tMk\t\n-131\tMk\t\n-132\tMk\t\n-133\tMk\t\n-134\tMk\t\n-135\tMk\t\n-136\tMk\t\n-137\tMk\t\n-138\tMk\t\n-139\tMk\t\n-140\tMk\t\n-141\tMk\t\n-142\tMk\t\n-143\tMk\t\n-144\tMk\t\n-145\tMk\t\n-146\tMk\t\n-147\tMk\t\n-148\tMk\t\n-149\tMk\t\n-150\tMk\t\n-151\tMk\t\n-152\tMk\t\n-153\tMk\t\n-154\tMk\t\n-155\tMk\t\n-156\tMk\t\n-157\tMk\t\n-158\tMk\t\n-159\tMk\t\n-0\tprogenitor\t\n-1\tprogenitor\t\n-2\tprogenitor\t\n-3\tprogenitor\t\n-4\tprogenitor\t\n-5\tprogenitor\t\n-6\tprogenitor\t\n-7\tprogenitor\t\n-8\tprogenitor\t\n-9\tprogenitor\t\n-10\tprogenitor\t\n-11\tprogenitor\t\n-12\tprogenitor\t\n-13\tprogenitor\t\n-14\tprogenitor\t\n-15\tprogenitor\t\n-16\tprogenitor\t\n-17\tprogenitor\t\n-18\tprogenitor\t\n-19\tprogenitor\t\n-20\tprogenitor\t\n-21\tprogenitor\t\n-22\tprogenitor\t\n-23\tprogenitor\t\n-24\tprogenitor\t\n-25\tprogenitor\t\n-26\tprogenitor\t\n-27\tprogenitor\t\n-28\tprogenitor\t\n-29\tprogenitor\t\n-30\tprogenitor\t\n-31\tprogenitor\t\n-32\tprogenitor\t\n-33\tprogenitor\t\n-34\tprogenitor\t\n-35\tprogenitor\t\n-36\tprogenitor\t\n-37\tprogenitor\t\n-38\tprogenitor\t\n-39\tprogenitor\t\n-40\tprogenitor\t\n-41\tprogenitor\t\n-42\tprogenitor\t\n-43\tprogenitor\t\n-44\tprogenitor\t\n-45\tprogenitor\t\n-46\tprogenitor\t\n-47\tprogenitor\t\n-48\tprogenitor\t\n-49\tprogenitor\t\n-50\tprogenitor\t\n-51\tprogenitor\t\n-52\tprogenitor\t\n-53\tprogenitor\t\n-54\tprogenitor\t\n-55\tprogenitor\t\n-56\tprogenitor\t\n-57\tprogenitor\t\n-58\tprogenitor\t\n-59\tprogenitor\t\n-60\tprogenitor\t\n-61\tprogenitor\t\n-62\tprogenitor\t\n-63\tprogenitor\t\n-64\tprogenitor\t\n-65\tprogenitor\t\n-66\tprogenitor\t\n-67\tprogenitor\t\n-68\tprogenitor\t\n-69\tprogenitor\t\n-70\tprogenitor\t\n-71\tprogenitor\t\n-72\tprogenitor\t\n-73\tprogenitor\t\n-74\tprogenitor\t\n-75\tprogenitor\t\n-76\tprogenitor\t\n-77\tprogenitor\t\n-78\tprogenitor\t\n-79\tprogenitor\t\n-80\tNeu\t\n-81\tNeu\t\n-82\tNeu\t\n-83\tNeu\t\n-84\tNeu\t\n-85\tNeu\t\n-86\tNeu\t\n-87\tNeu\t\n-88\tNeu\t\n-89\tNeu\t\n-90\tNeu\t\n-91\tNeu\t\n-92\tNeu\t\n-93\tNeu\t\n-94\tNeu\t\n-95\tNeu\t\n-96\tNeu\t\n-97\tNeu\t\n-98\tNeu\t\n-99\tNeu\t\n-100\tNeu\t\n-101\tNeu\t\n-102\tNeu\t\n-103\tNeu\t\n-104\tNeu\t\n-105\tNeu\t\n-106\tNeu\t\n-107\tNeu\t\n-108\tNeu\t\n-109\tNeu\t\n-110\tNeu\t\n-111\tNeu\t\n-112\tNeu\t\n-113\tNeu\t\n-114\tNeu\t\n-115\tNeu\t\n-116\tNeu\t\n-117\tNeu\t\n-118\tNeu\t\n-119\tNeu\t\n-120\tNeu\t\n-121\tNeu\t\n-122\tNeu\t\n-123\tNeu\t\n-124\tNeu\t\n-125\tNeu\t\n-126\tNeu\t\n-127\tNeu\t\n-128\tNeu\t\n-129\tNeu\t\n-130\tNeu\t\n-131\tNeu\t\n-132\tNeu\t\n-133\tNeu\t\n-134\tNeu\t\n-135\tNeu\t\n-136\tNeu\t\n-137\tNeu\t\n-138\tNeu\t\n-139\tNeu\t\n-140\tNeu\t\n-141\tNeu\t\n-142\tNeu\t\n-143\tNeu\t\n-144\tNeu\t\n-145\tNeu\t\n-146\tNeu\t\n-147\tNeu\t\n-148\tNeu\t\n-149\tNeu\t\n-150\tNeu\t\n-151\tNeu\t\n-152\tNeu\t\n-153\tNeu\t\n-154\tNeu\t\n-155\tNeu\t\n-156\tNeu\t\n-157\tNeu\t\n-158\tNeu\t\n-159\tNeu\t\n'
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/tl.score_genes_cell_cycle.krumsiek11.h5ad
b
Binary file test-data/tl.score_genes_cell_cycle.krumsiek11.h5ad has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/tl.score_genes_cell_cycle.krumsiek11.obs.tabular
--- a/test-data/tl.score_genes_cell_cycle.krumsiek11.obs.tabular Mon Mar 04 10:15:02 2019 -0500
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
b
b'@@ -1,641 +0,0 @@\n-index\tcell_type\tS_score\tG2M_score\tphase\n-0\tprogenitor\t0.2681\t0.20055\tS\n-1\tprogenitor\t0.24346666\t0.15855001\tS\n-2\tprogenitor\t0.2276\t0.13482499\tS\n-3\tprogenitor\t0.21043333\t0.12637499\tS\n-4\tprogenitor\t0.19113334\t0.1272\tS\n-5\tprogenitor\t0.17531666\t0.13072497\tS\n-6\tprogenitor\t0.16073334\t0.13242501\tS\n-7\tprogenitor\t0.15353334\t0.13672501\tS\n-8\tprogenitor\t0.14314999\t0.1399\tS\n-9\tprogenitor\t0.1337\t0.14515\tG2M\n-10\tprogenitor\t0.12695001\t0.15165001\tG2M\n-11\tprogenitor\t0.11726667\t0.16077498\tG2M\n-12\tprogenitor\t0.11081667\t0.16735\tG2M\n-13\tprogenitor\t0.104849994\t0.17429999\tG2M\n-14\tprogenitor\t0.09816667\t0.18152499\tG2M\n-15\tprogenitor\t0.095350005\t0.186625\tG2M\n-16\tprogenitor\t0.09528333\t0.19447501\tG2M\n-17\tprogenitor\t0.09463333\t0.199675\tG2M\n-18\tprogenitor\t0.0947\t0.205275\tG2M\n-19\tprogenitor\t0.0947\t0.20802501\tG2M\n-20\tprogenitor\t0.097733326\t0.21100001\tG2M\n-21\tprogenitor\t0.09881667\t0.21964999\tG2M\n-22\tprogenitor\t0.10131666\t0.22662501\tG2M\n-23\tprogenitor\t0.104849994\t0.23022501\tG2M\n-24\tprogenitor\t0.112266675\t0.23387499\tG2M\n-25\tprogenitor\t0.120283335\t0.2393\tG2M\n-26\tprogenitor\t0.12826668\t0.24174997\tG2M\n-27\tprogenitor\t0.13323334\t0.24710001\tG2M\n-28\tprogenitor\t0.13971666\t0.25280002\tG2M\n-29\tprogenitor\t0.14393334\t0.256775\tG2M\n-30\tprogenitor\t0.15066667\t0.259775\tG2M\n-31\tprogenitor\t0.15316668\t0.26244998\tG2M\n-32\tprogenitor\t0.15993333\t0.26487502\tG2M\n-33\tprogenitor\t0.16430001\t0.266275\tG2M\n-34\tprogenitor\t0.16598332\t0.270625\tG2M\n-35\tprogenitor\t0.17068332\t0.2715\tG2M\n-36\tprogenitor\t0.17713334\t0.276475\tG2M\n-37\tprogenitor\t0.17893334\t0.27514997\tG2M\n-38\tprogenitor\t0.18013333\t0.278025\tG2M\n-39\tprogenitor\t0.18251666\t0.279675\tG2M\n-40\tprogenitor\t0.18876666\t0.27925\tG2M\n-41\tprogenitor\t0.19041668\t0.281775\tG2M\n-42\tprogenitor\t0.19083333\t0.2824\tG2M\n-43\tprogenitor\t0.19411668\t0.281725\tG2M\n-44\tprogenitor\t0.19639999\t0.2844\tG2M\n-45\tprogenitor\t0.19843334\t0.285375\tG2M\n-46\tprogenitor\t0.20406666\t0.284075\tG2M\n-47\tprogenitor\t0.20673332\t0.28625\tG2M\n-48\tprogenitor\t0.20769998\t0.2885\tG2M\n-49\tprogenitor\t0.21186668\t0.28935\tG2M\n-50\tprogenitor\t0.21285\t0.28867498\tG2M\n-51\tprogenitor\t0.21443334\t0.28855002\tG2M\n-52\tprogenitor\t0.21568334\t0.28705\tG2M\n-53\tprogenitor\t0.21788335\t0.29035\tG2M\n-54\tprogenitor\t0.22551665\t0.28815\tG2M\n-55\tprogenitor\t0.22586668\t0.28689998\tG2M\n-56\tprogenitor\t0.23069999\t0.2816\tG2M\n-57\tprogenitor\t0.23118332\t0.282375\tG2M\n-58\tprogenitor\t0.23160002\t0.28230003\tG2M\n-59\tprogenitor\t0.23546667\t0.28329998\tG2M\n-60\tprogenitor\t0.23661667\t0.28195\tG2M\n-61\tprogenitor\t0.24134998\t0.27899998\tG2M\n-62\tprogenitor\t0.24546666\t0.27855\tG2M\n-63\tprogenitor\t0.24836665\t0.27609998\tG2M\n-64\tprogenitor\t0.25375\t0.27562502\tG2M\n-65\tprogenitor\t0.25834998\t0.273525\tG2M\n-66\tprogenitor\t0.26393333\t0.27015\tG2M\n-67\tprogenitor\t0.26746666\t0.26622498\tS\n-68\tprogenitor\t0.2706333\t0.267025\tS\n-69\tprogenitor\t0.27618334\t0.2651\tS\n-70\tprogenitor\t0.28033334\t0.263975\tS\n-71\tprogenitor\t0.2868167\t0.2622\tS\n-72\tprogenitor\t0.29141667\t0.26174998\tS\n-73\tprogenitor\t0.29198334\t0.26385\tS\n-74\tprogenitor\t0.29348332\t0.26275003\tS\n-75\tprogenitor\t0.29788333\t0.263575\tS\n-76\tprogenitor\t0.30125\t0.26232502\tS\n-77\tprogenitor\t0.29955\t0.261825\tS\n-78\tprogenitor\t0.30065\t0.2623\tS\n-79\tprogenitor\t0.30573332\t0.2588\tS\n-80\tMo\t0.30818334\t0.25555003\tS\n-81\tMo\t0.31073332\t0.25422502\tS\n-82\tMo\t0.31378332\t0.25410002\tS\n-83\tMo\t0.31268334\t0.25304997\tS\n-84\tMo\t0.31355\t0.25059998\tS\n-85\tMo\t0.3157\t0.251275\tS\n-86\tMo\t0.3139333\t0.25072497\tS\n-87\tMo\t0.3151833\t0.25165\tS\n-88\tMo\t0.3149333\t0.25079998\tS\n-89\tMo\t0.31440002\t0.25172502\tS\n-90\tMo\t0.31251666\t0.254725\tS\n-91\tMo\t0.31613332\t0.25347498\tS\n-92\tMo\t0.31813332\t0.25372502\tS\n-93\tMo\t0.31543335\t0.25340003\tS\n-94\tMo\t0.31663334\t0.257025\tS\n-95\tMo\t0.31793332\t0.25435\tS\n-96\tMo\t0.3184333\t0.2527\tS\n-97\tMo\t0.31743336\t0.25052497\tS\n-98\tMo\t0.3164667\t0.24747501\tS\n-99\tMo\t0.31841668\t0.2466\tS\n-100\tMo\t0.31648335\t0.24679999\tS\n-101\tMo\t0.31504998\t0.2501\tS\n-102\tMo\t0.31489998\t0.250375\tS\n-103\tMo\t0.31256667\t0.25195\tS\n-104\tMo\t0.31425\t0.250675\tS\n-105\tMo\t0.31441668\t0.248675\tS\n-106\tMo\t0.31828332\t0.24724999\tS\n-107\tMo\t0.32236665\t0.25105\tS\n-108\tMo\t0.32341668\t0.2527\tS\n-109\tMo\t0.32334998\t'..b'25013\tG2M\n-51\tprogenitor\t9.999983e-05\t-0.0017999709\tS\n-52\tprogenitor\t0.0018333336\t-0.01987499\tS\n-53\tprogenitor\t0.00090000033\t-0.032900006\tS\n-54\tprogenitor\t0.0029999996\t-0.05064997\tS\n-55\tprogenitor\t0.003983334\t-0.068574995\tS\n-56\tprogenitor\t-0.0008500004\t-0.08140004\tG1\n-57\tprogenitor\t-0.0029833335\t-0.09470001\tG1\n-58\tprogenitor\t-0.0021333336\t-0.106824994\tG1\n-59\tprogenitor\t-0.0015000002\t-0.11555001\tG1\n-60\tprogenitor\t-0.0022999998\t-0.12255001\tG1\n-61\tprogenitor\t-0.0017666668\t-0.13125\tG1\n-62\tprogenitor\t0.0033999998\t-0.14297503\tS\n-63\tprogenitor\t0.006316666\t-0.15117502\tS\n-64\tprogenitor\t0.005033333\t-0.15187496\tS\n-65\tprogenitor\t0.0031333338\t-0.15367502\tS\n-66\tprogenitor\t0.0035666667\t-0.15197498\tS\n-67\tprogenitor\t0.005016666\t-0.14580002\tS\n-68\tprogenitor\t0.0061\t-0.142575\tS\n-69\tprogenitor\t0.00515\t-0.13665\tS\n-70\tprogenitor\t0.0028499998\t-0.12865001\tS\n-71\tprogenitor\t0.0030833331\t-0.12112501\tS\n-72\tprogenitor\t0.0032833333\t-0.11669999\tS\n-73\tprogenitor\t0.0006166666\t-0.11475003\tS\n-74\tprogenitor\t-0.0006833335\t-0.11412498\tG1\n-75\tprogenitor\t-2.3283064e-10\t-0.11702502\tG1\n-76\tprogenitor\t0.0007333332\t-0.121425\tS\n-77\tprogenitor\t0.0005833333\t-0.12972501\tS\n-78\tprogenitor\t-0.0015333334\t-0.13869998\tG1\n-79\tprogenitor\t-0.0023\t-0.14877501\tG1\n-80\tNeu\t-0.0046166666\t-0.157125\tG1\n-81\tNeu\t-0.0035666665\t-0.16639996\tG1\n-82\tNeu\t-0.0011666667\t-0.17409998\tG1\n-83\tNeu\t-0.0026166667\t-0.180325\tG1\n-84\tNeu\t-0.0001833333\t-0.18502498\tG1\n-85\tNeu\t0.0035666665\t-0.18762502\tS\n-86\tNeu\t0.0024333335\t-0.19062501\tS\n-87\tNeu\t0.0023\t-0.19277498\tS\n-88\tNeu\t0.0014833333\t-0.19762498\tS\n-89\tNeu\t0.0024333335\t-0.201725\tS\n-90\tNeu\t0.003866667\t-0.20430002\tS\n-91\tNeu\t0.0067999996\t-0.20865002\tS\n-92\tNeu\t0.0079333335\t-0.21332502\tS\n-93\tNeu\t0.0068\t-0.21907501\tS\n-94\tNeu\t0.0058\t-0.22292498\tS\n-95\tNeu\t0.0069666663\t-0.22795\tS\n-96\tNeu\t0.0023833334\t-0.22915001\tS\n-97\tNeu\t0.0056166667\t-0.230375\tS\n-98\tNeu\t0.0051666666\t-0.23027502\tS\n-99\tNeu\t0.001966667\t-0.23169999\tS\n-100\tNeu\t0.0033666668\t-0.23169999\tS\n-101\tNeu\t0.0047333334\t-0.233675\tS\n-102\tNeu\t0.0045666667\t-0.23272496\tS\n-103\tNeu\t0.00060000026\t-0.23024999\tS\n-104\tNeu\t0.0036833333\t-0.22662503\tS\n-105\tNeu\t0.0025166667\t-0.22107498\tS\n-106\tNeu\t0.0038833334\t-0.22109997\tS\n-107\tNeu\t0.0033666666\t-0.21907501\tS\n-108\tNeu\t0.0042666667\t-0.218675\tS\n-109\tNeu\t0.0038\t-0.2165\tS\n-110\tNeu\t0.004633333\t-0.21385\tS\n-111\tNeu\t0.003266667\t-0.21305001\tS\n-112\tNeu\t0.0034166668\t-0.21077499\tS\n-113\tNeu\t0.0017166669\t-0.21184999\tS\n-114\tNeu\t0.0012666667\t-0.21437502\tS\n-115\tNeu\t-0.0016333334\t-0.2153\tG1\n-116\tNeu\t-0.00043333336\t-0.215675\tG1\n-117\tNeu\t0.0018833333\t-0.21865001\tS\n-118\tNeu\t0.0014666667\t-0.22187501\tS\n-119\tNeu\t-0.0020833332\t-0.21787499\tG1\n-120\tNeu\t-0.0039000001\t-0.21329997\tG1\n-121\tNeu\t-0.0023\t-0.20820004\tG1\n-122\tNeu\t-0.00195\t-0.21035\tG1\n-123\tNeu\t-0.0058833333\t-0.20732501\tG1\n-124\tNeu\t-0.0070166667\t-0.20714998\tG1\n-125\tNeu\t-0.008633333\t-0.20389998\tG1\n-126\tNeu\t-0.006616667\t-0.20832503\tG1\n-127\tNeu\t-0.003116667\t-0.21047503\tG1\n-128\tNeu\t-0.0055833333\t-0.21289998\tG1\n-129\tNeu\t-0.0042333333\t-0.216575\tG1\n-130\tNeu\t-0.005016667\t-0.21945003\tG1\n-131\tNeu\t-0.0020833334\t-0.21799998\tG1\n-132\tNeu\t-0.0032\t-0.21150002\tG1\n-133\tNeu\t-0.0033333339\t-0.20989999\tG1\n-134\tNeu\t-0.0011666667\t-0.21257499\tG1\n-135\tNeu\t-0.0023\t-0.21222499\tG1\n-136\tNeu\t-0.0034666667\t-0.2146\tG1\n-137\tNeu\t-0.0011833335\t-0.21350002\tG1\n-138\tNeu\t-0.00325\t-0.21377501\tG1\n-139\tNeu\t-0.0040166667\t-0.213925\tG1\n-140\tNeu\t-0.0024666665\t-0.21455\tG1\n-141\tNeu\t0.0028333336\t-0.21975\tS\n-142\tNeu\t0.0032833333\t-0.220325\tS\n-143\tNeu\t0.004766667\t-0.22119999\tS\n-144\tNeu\t0.00705\t-0.22362499\tS\n-145\tNeu\t0.0036\t-0.22555003\tS\n-146\tNeu\t0.006733333\t-0.22377498\tS\n-147\tNeu\t0.0025000002\t-0.22509998\tS\n-148\tNeu\t0.0018\t-0.221075\tS\n-149\tNeu\t6.666663e-05\t-0.22125\tS\n-150\tNeu\t-0.0014499999\t-0.219875\tG1\n-151\tNeu\t-0.0012833332\t-0.21900001\tG1\n-152\tNeu\t-0.0001999999\t-0.21767499\tG1\n-153\tNeu\t-0.0032666668\t-0.21407498\tG1\n-154\tNeu\t-0.0017\t-0.2116\tG1\n-155\tNeu\t-0.0028166666\t-0.2077\tG1\n-156\tNeu\t-0.00245\t-0.2053\tG1\n-157\tNeu\t-0.0011166666\t-0.203825\tG1\n-158\tNeu\t-0.001966667\t-0.20535001\tG1\n-159\tNeu\t-0.0027\t-0.20725003\tG1\n'
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/tl.tsne.krumsiek11.h5ad
b
Binary file test-data/tl.tsne.krumsiek11.h5ad has changed
b
diff -r 6ea5a05a260a -r 6a76b60e05f5 test-data/tl.umap.neighbors_umap_euclidean.recipe_weinreb17.paul15_subsample.h5ad
b
Binary file test-data/tl.umap.neighbors_umap_euclidean.recipe_weinreb17.paul15_subsample.h5ad has changed