Previous changeset 0:bdebdea5f6a7 (2017-06-12) Next changeset 2:a330ddf43861 (2017-09-07) |
Commit message:
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/limma_voom commit 58c05c0ce9334f8b9c800283cfd1f40573546edd |
modified:
limma_voom.R limma_voom.xml test-data/limma-voom_Mut-WT.tsv test-data/limma-voom_WT-Mut.tsv |
added:
test-data/factorinfo.txt test-data/limma-voom_Mut-WTmultifact.tsv test-data/limma-voom_normcounts.tsv |
b |
diff -r bdebdea5f6a7 -r 76d01fe0ec36 limma_voom.R --- a/limma_voom.R Mon Jun 12 07:41:02 2017 -0400 +++ b/limma_voom.R Wed Jul 05 04:39:42 2017 -0400 |
[ |
@@ -3,7 +3,7 @@ # expression analysis # # ARGS: 1.countPath -Path to RData input containing counts -# 2.annoPath -Path to RData input containing gene annotations +# 2.annoPath -Path to input containing gene annotations # 3.htmlPath -Path to html file linking to other outputs # 4.outPath -Path to folder to write all output to # 5.rdaOpt -String specifying if RData should be saved @@ -15,15 +15,18 @@ # 11.pAdjOpt -String specifying the p-value adjustment method # 12.pValReq -Float specifying the p-value requirement # 13.lfcReq -Float specifying the log-fold-change requirement -# 14.factorData -String containing factor names and values +# 14.normCounts -String specifying if normalised counts should be output +# 15.factPath -Path to factor information file +# 16.factorData -Strings containing factor names and values if manually input # # OUT: Voom Plot # BCV Plot # MA Plot -# Top Expression Table +# Expression Table # HTML file linking to the ouputs # # Author: Shian Su - registertonysu@gmail.com - Jan 2014 +# Modified by: Maria Doyle - Jun 2017 # Record starting time timeStart <- as.character(Sys.time()) @@ -148,13 +151,31 @@ pAdjOpt <- as.character(argv[11]) pValReq <- as.numeric(argv[12]) lfcReq <- as.numeric(argv[13]) -factorData <- list() -for (i in 14:length(argv)) { - newFact <- unlist(strsplit(as.character(argv[i]), split="::")) - factorData <- rbind(factorData, newFact) -} # Factors have the form: FACT_NAME::LEVEL,LEVEL,LEVEL,LEVEL,... +normCounts <- as.character(argv[14]) +factPath <- as.character(argv[15]) +# Process factors +if (as.character(argv[16])=="None") { + factorData <- read.table(factPath, header=TRUE, sep="\t") + factors <- factorData[,-1] +} else { + factorData <- list() + for (i in 16:length(argv)) { + newFact <- unlist(strsplit(as.character(argv[i]), split="::")) + factorData <- rbind(factorData, newFact) + } # Factors have the form: FACT_NAME::LEVEL,LEVEL,LEVEL,LEVEL,... The first factor is the Primary Factor. -# Process arguments + # Set the row names to be the name of the factor and delete first row + row.names(factorData) <- factorData[, 1] + factorData <- factorData[, -1] + factorData <- sapply(factorData, sanitiseGroups) + factorData <- sapply(factorData, strsplit, split=",") + factorData <- sapply(factorData, make.names) + # Transform factor data into data frame of R factor objects + factors <- data.frame(factorData) + +} + +# Process other arguments if (weightOpt=="yes") { wantWeight <- TRUE } else { @@ -173,15 +194,12 @@ haveAnno <- TRUE } -# Set the row names to be the name of the factor and delete first row -row.names(factorData) <- factorData[, 1] -factorData <- factorData[, -1] -factorData <- sapply(factorData, sanitiseGroups) -factorData <- sapply(factorData, strsplit, split=",") -factorData <- sapply(factorData, make.names) +if (normCounts=="yes") { + wantNorm <- TRUE +} else { + wantNorm <- FALSE +} -# Transform factor data into data frame of R factor objects -factors <- data.frame(factorData) #Create output directory dir.create(outPath, showWarnings=FALSE) @@ -205,6 +223,7 @@ maOutPng[i] <- makeOut(paste0("maplot_", contrastData[i], ".png")) topOut[i] <- makeOut(paste0("limma-voom_", contrastData[i], ".tsv")) } # Save output paths for each contrast as vectors +normOut <- makeOut("limma-voom_normcounts.tsv") rdaOut <- makeOut("RData.rda") sessionOut <- makeOut("session_info.txt") @@ -221,12 +240,12 @@ flatCount <- numeric() # Read in counts and geneanno data -counts <- read.table(countPath, header=TRUE, sep="\t") +counts <- read.table(countPath, header=TRUE, sep="\t", stringsAsFactors=FALSE) row.names(counts) <- counts[, 1] counts <- counts[ , -1] countsRows <- nrow(counts) if (haveAnno) { - geneanno <- read.table(annoPath, header=TRUE, sep="\t") + geneanno <- read.table(annoPath, header=TRUE, sep="\t", stringsAsFactors=FALSE) } ################################################################################ @@ -247,7 +266,7 @@ preFilterCount <- nrow(data$counts) sel <- rowSums(cpm(data$counts) > cpmReq) >= sampleReq data$counts <- data$counts[sel, ] -data$genes <- data$genes[sel, ] +data$genes <- data$genes[sel, ,drop = FALSE] postFilterCount <- nrow(data$counts) filteredCount <- preFilterCount-postFilterCount @@ -255,6 +274,7 @@ samplenames <- colnames(data$counts) sampleanno <- data.frame("sampleID"=samplenames, factors) + # Generating the DGEList object "data" data$samples <- sampleanno data$samples$lib.size <- colSums(data$counts) @@ -263,14 +283,17 @@ data <- new("DGEList", data) factorList <- sapply(names(factors), pasteListName) -formula <- "~0" + +formula <- "~0" for (i in 1:length(factorList)) { - formula <- paste(formula, factorList[i], sep="+") + formula <- paste(formula,factorList[i], sep="+") } + formula <- formula(formula) design <- model.matrix(formula) + for (i in 1:length(factorList)) { - colnames(design) <- gsub(factorList[i], "", colnames(design), fixed=TRUE) + colnames(design) <- gsub(factorList[i], "", colnames(design), fixed=TRUE) } # Calculating normalising factor, estimating dispersion @@ -330,6 +353,13 @@ } + # Save normalised counts (log2cpm) +if (wantNorm) { + norm_counts <- data.frame(vData$genes, vData$E) + write.table (norm_counts, file=normOut, row.names=FALSE, sep="\t") + linkData <- rbind(linkData, c("limma-voom_normcounts.tsv", "limma-voom_normcounts.tsv")) +} + # Fit linear model and estimate dispersion with eBayes voomFit <- contrasts.fit(voomFit, contrasts) voomFit <- eBayes(voomFit) @@ -368,12 +398,11 @@ top <- topTable(voomFit, coef=i, number=Inf, sort.by="P") write.table(top, file=topOut[i], row.names=FALSE, sep="\t") - linkName <- paste0("limma-voom_", contrastData[i], - ".tsv") + linkName <- paste0("limma-voom_", contrastData[i], ".tsv") linkAddr <- paste0("limma-voom_", contrastData[i], ".tsv") linkData <- rbind(linkData, c(linkName, linkAddr)) - # Plot MA (log ratios vs mean average) using limma package on weighted data + # Plot MA (log ratios vs mean average) using limma package on weighted pdf(maOutPdf[i]) limma::plotMA(voomFit, status=status, coef=i, main=paste("MA Plot:", unmake.names(contrastData[i])), @@ -534,12 +563,14 @@ cata("<h4>Summary of experimental data:</h4>\n") -cata("<p>*CHECK THAT SAMPLES ARE ASSOCIATED WITH CORRECT GROUP*</p>\n") +cata("<p>*CHECK THAT SAMPLES ARE ASSOCIATED WITH CORRECT GROUP(S)*</p>\n") cata("<table border=\"1\" cellpadding=\"3\">\n") cata("<tr>\n") -TableItem() -for (i in names(factors)) { +TableHeadItem("SampleID") +TableHeadItem(names(factors)[1]," (Primary Factor)") + +for (i in names(factors)[2:length(names(factors))]) { TableHeadItem(i) } cata("</tr>\n") @@ -547,7 +578,7 @@ for (i in 1:nrow(factors)) { cata("<tr>\n") TableHeadItem(row.names(factors)[i]) - for (j in ncol(factors)) { + for (j in 1:ncol(factors)) { TableItem(as.character(unmake.names(factors[i, j]))) } cata("</tr>\n") |
b |
diff -r bdebdea5f6a7 -r 76d01fe0ec36 limma_voom.xml --- a/limma_voom.xml Mon Jun 12 07:41:02 2017 -0400 +++ b/limma_voom.xml Wed Jul 05 04:39:42 2017 -0400 |
[ |
b'@@ -1,8 +1,8 @@\n-<tool id="limma_voom" name="limma-voom" version="1.1.1">\n+<tool id="limma_voom" name="limma-voom" version="1.2.0">\n <description>\n Differential expression with optional sample weights\n </description>\n- \n+\n <requirements>\n <requirement type="package" version="3.16.5">bioconductor-edger</requirement>\n <requirement type="package" version="3.30.13">bioconductor-limma</requirement>\n@@ -10,66 +10,71 @@\n <requirement type="package" version="0.4.1">r-scales</requirement>\n </requirements>\n \n- <version_command>\n- <![CDATA[\n+ <version_command><![CDATA[\n echo $(R --version | grep version | grep -v GNU)", limma version" $(R --vanilla --slave -e "library(limma); cat(sessionInfo()\\$otherPkgs\\$limma\\$Version)" 2> /dev/null | grep -v -i "WARNING: ")", edgeR version" $(R --vanilla --slave -e "library(edgeR); cat(sessionInfo()\\$otherPkgs\\$edgeR\\$Version)" 2> /dev/null | grep -v -i "WARNING: ")\n- ]]>\n- </version_command>\n- \n- <command detect_errors="exit_code">\n- <![CDATA[\n- Rscript \'$__tool_directory__/limma_voom.R\'\n- \'$counts\'\n- \n- #if $anno.annoOpt==\'yes\':\n- \'$geneanno\'\n- #else:\n- None\n- #end if\n- \n- \'$outReport\'\n- \'$outReport.files_path\'\n- $rdaOption\n- $normalisationOption\n- $weightOption\n- \'$contrast\'\n+ ]]></version_command>\n+\n+ <command detect_errors="exit_code"><![CDATA[\n+Rscript \'$__tool_directory__/limma_voom.R\'\n+\'$counts\'\n+\n+#if $anno.annoOpt==\'yes\':\n+ \'$geneanno\'\n+#else:\n+ None\n+#end if\n+\n+\'$outReport\'\n+\'$outReport.files_path\'\n+$rdaOption\n+$normalisationOption\n+$weightOption\n+\'$contrast\'\n+\n+#if $filterCPM.filterLowCPM==\'yes\':\n+ \'$filterCPM.cpmReq\'\n+ \'$filterCPM.sampleReq\'\n+#else:\n+ 0\n+ 0\n+#end if\n \n- #if $filterCPM.filterLowCPM==\'yes\':\n- \'$filterCPM.cpmReq\'\n- \'$filterCPM.sampleReq\'\n- #else:\n- 0\n- 0\n- #end if\n- \n- #if $testOpt.wantOpt==\'yes\':\n- \'$testOpt.pAdjust\'\n- \'$testOpt.pVal\'\n- \'$testOpt.lfc\'\n- #else:\n- "BH"\n- 0.05\n- 0\n- #end if\n- \n- \'$factName::$factLevel\'\n+#if $testOpt.wantOpt==\'yes\':\n+ \'$testOpt.pAdjust\'\n+ \'$testOpt.pVal\'\n+ \'$testOpt.lfc\'\n+#else:\n+ "BH"\n+ 0.05\n+ 0\n+#end if\n+\n+$normCounts\n \n- &&\n- mkdir ./output_dir\n+#if $fact.ffile==\'yes\':\n+ \'$finfo\'\n+ \'None\'\n+#else:\n+ \'None\'\n+ \'$fact.pfactName::$fact.pfactLevel\'\n+ #for $sfact in $fact.sfactors:\n+ \'$sfact.sfactName::$sfact.sfactLevel\'\n+ #end for\n+#end if\n \n- &&\n- mv \'$outReport.files_path\'/*.tsv output_dir/\n- \n- ]]> \n- </command>\n- \n+&&\n+mkdir ./output_dir\n+\n+&&\n+mv \'$outReport.files_path\'/*.tsv output_dir/\n+ ]]></command>\n+\n <inputs>\n <param name="counts" type="data" format="tabular" label="Counts Data"/>\n- \n+\n <conditional name="anno">\n- <param name="annoOpt" type="select"\n- label="Use Gene Annotations?" \n- help="If an annotation file is provided, annotations will be added to the table of differential expression results to provide descriptions for each gene.">\n+ <param name="annoOpt" type="select" label="Use Gene Annotations?"\n+ help="If an annotation file is provided, annotations will be added to the table of differential expression results to provide descriptions for each gene.">\n <option value="no">No</option>\n <option value="yes">Yes</option>\n </param>\n@@ -79,22 +84,45 @@\n <when value="no" />\n </conditional>\n \n- <!--*Code commented until solution for multiple factors is found*\n- <repeat name="factors'..b' highlighted \n+ greater than this threshold to be considered significant, thus highlighted\n in the MA plot.\n \n+**Outputs**\n+\n+This tool outputs a table of differentially expressed genes for each contrast of interest and a HTML report with plots and additional information. Optionally you can choose to output the normalised counts table and the RData file.\n+\n -----\n \n **Citations:**\n@@ -332,24 +414,24 @@\n \n limma\n \n-Please cite the paper below for the limma software itself. Please also try\n+Please cite the paper below for the limma software itself. Please also try\n to cite the appropriate methodology articles that describe the statistical\n methods implemented in limma, depending on which limma functions you are\n-using. The methodology articles are listed in Section 2.1 of the limma \n+using. The methodology articles are listed in Section 2.1 of the limma\n User\'s Guide.\n \n- * Smyth GK (2005). Limma: linear models for microarray data. In: \n- \'Bioinformatics and Computational Biology Solutions using R and \n- Bioconductor\'. R. Gentleman, V. Carey, S. Dudoit, R. Irizarry, \n+ * Smyth GK (2005). Limma: linear models for microarray data. In:\n+ \'Bioinformatics and Computational Biology Solutions using R and\n+ Bioconductor\'. R. Gentleman, V. Carey, S. Dudoit, R. Irizarry,\n W. Huber (eds), Springer, New York, pages 397-420.\n- \n+\n * Law CW, Chen Y, Shi W, and Smyth GK (2014). Voom:\n precision weights unlock linear model analysis tools for\n RNA-seq read counts. Genome Biology 15, R29.\n \n * Liu R, Holik AZ, Su S, Jansz N, Chen K, Leong HS, Blewitt ME, Asselin-Labat ML, Smyth GK, Ritchie ME (2015). Why weight? Modelling sample and observational level variability improves power in RNA-seq analyses. Nucleic Acids Research, 43(15), e97.\n \n- * Ritchie, M. E., Diyagama, D., Neilson, J., van Laar, R., Dobrovic, \n+ * Ritchie, M. E., Diyagama, D., Neilson, J., van Laar, R., Dobrovic,\n A., Holloway, A., and Smyth, G. K. (2006). Empirical array quality weights\n for microarray data. BMC Bioinformatics 7, Article 261.\n \n@@ -358,30 +440,29 @@\n edgeR\n \n Please cite the first paper for the software itself and the other papers for\n-the various original statistical methods implemented in edgeR. See \n+the various original statistical methods implemented in edgeR. See\n Section 1.2 in the User\'s Guide for more detail.\n \n- * Robinson MD, McCarthy DJ and Smyth GK (2010). edgeR: a Bioconductor \n- package for differential expression analysis of digital gene expression \n+ * Robinson MD, McCarthy DJ and Smyth GK (2010). edgeR: a Bioconductor\n+ package for differential expression analysis of digital gene expression\n data. Bioinformatics 26, 139-140\n- \n- * Robinson MD and Smyth GK (2007). Moderated statistical tests for assessing \n+\n+ * Robinson MD and Smyth GK (2007). Moderated statistical tests for assessing\n differences in tag abundance. Bioinformatics 23, 2881-2887\n- \n- * Robinson MD and Smyth GK (2008). Small-sample estimation of negative \n+\n+ * Robinson MD and Smyth GK (2008). Small-sample estimation of negative\n binomial dispersion, with applications to SAGE data.\n Biostatistics, 9, 321-332\n- \n- * McCarthy DJ, Chen Y and Smyth GK (2012). Differential expression analysis \n- of multifactor RNA-Seq experiments with respect to biological variation. \n+\n+ * McCarthy DJ, Chen Y and Smyth GK (2012). Differential expression analysis\n+ of multifactor RNA-Seq experiments with respect to biological variation.\n Nucleic Acids Research 40, 4288-4297\n- \n+\n Please report problems or suggestions to: su.s@wehi.edu.au\n \n .. _edgeR: http://www.bioconductor.org/packages/release/bioc/html/edgeR.html\n .. _limma: http://www.bioconductor.org/packages/release/bioc/html/limma.html\n-]]>\n- </help>\n+ ]]></help>\n <citations>\n <citation type="doi">10.1093/nar/gkv412</citation>\n </citations>\n' |
b |
diff -r bdebdea5f6a7 -r 76d01fe0ec36 test-data/factorinfo.txt --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/factorinfo.txt Wed Jul 05 04:39:42 2017 -0400 |
b |
@@ -0,0 +1,7 @@ +Sample Genotype Batch +WT1 WT b1 +WT2 WT b2 +WT3 WT b3 +Mut1 Mut b1 +Mut2 Mut b2 +Mut3 Mut b3 |
b |
diff -r bdebdea5f6a7 -r 76d01fe0ec36 test-data/limma-voom_Mut-WT.tsv --- a/test-data/limma-voom_Mut-WT.tsv Mon Jun 12 07:41:02 2017 -0400 +++ b/test-data/limma-voom_Mut-WT.tsv Wed Jul 05 04:39:42 2017 -0400 |
b |
@@ -1,4 +1,4 @@ -"ID" "logFC" "AveExpr" "t" "P.Value" "adj.P.Val" "B" +"GeneID" "logFC" "AveExpr" "t" "P.Value" "adj.P.Val" "B" "11304" 0.457332061341026 15.5254133001226 6.50459574633681 9.98720685006039e-07 5.99232411003624e-06 14.0741948485896 "11287" 0.190749727701785 17.6546448244617 5.09535410066402 3.26518807654125e-05 9.79556422962375e-05 5.46773893802392 "11298" -0.138014418336201 17.6747285193431 -3.33168485842331 0.00278753263633162 0.00557506527266324 -1.84301342041449 |
b |
diff -r bdebdea5f6a7 -r 76d01fe0ec36 test-data/limma-voom_Mut-WTmultifact.tsv --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/limma-voom_Mut-WTmultifact.tsv Wed Jul 05 04:39:42 2017 -0400 |
b |
@@ -0,0 +1,7 @@ +"GeneID" "logFC" "AveExpr" "t" "P.Value" "adj.P.Val" "B" +"11287" 0.190521683937291 17.6546448244617 14.4538942795625 5.93483727834149e-09 3.56090236700489e-08 96.5864491178815 +"11298" -0.139877413200757 17.6747285193431 -7.71901694642401 5.4113978311412e-06 1.62341934934236e-05 22.3495333961486 +"11304" 0.459011254726061 15.5254133001226 5.64083198409048 0.000108849060923731 0.000217698121847462 8.76657226635859 +"11303" -0.0641599901594212 17.886791401216 -2.99008181539252 0.0112725655419959 0.0169088483129939 -2.70089035288952 +"11305" -0.0651479753016204 18.1585474109909 -2.28935282063873 0.0409794711446019 0.0491753653735222 -4.27133526604488 +"11302" -0.035881713464434 9.78883119065989 -0.439436789626921 0.668154169055758 0.668154169055758 -5.75838315483926 |
b |
diff -r bdebdea5f6a7 -r 76d01fe0ec36 test-data/limma-voom_WT-Mut.tsv --- a/test-data/limma-voom_WT-Mut.tsv Mon Jun 12 07:41:02 2017 -0400 +++ b/test-data/limma-voom_WT-Mut.tsv Wed Jul 05 04:39:42 2017 -0400 |
b |
@@ -1,4 +1,4 @@ -"ID" "logFC" "AveExpr" "t" "P.Value" "adj.P.Val" "B" +"GeneID" "logFC" "AveExpr" "t" "P.Value" "adj.P.Val" "B" "11304" -0.457332061341026 15.5254133001226 -6.50459574633681 9.98720685006039e-07 5.99232411003624e-06 14.0741948485896 "11287" -0.190749727701785 17.6546448244617 -5.09535410066402 3.26518807654125e-05 9.79556422962375e-05 5.46773893802392 "11298" 0.138014418336201 17.6747285193431 3.33168485842331 0.00278753263633162 0.00557506527266324 -1.84301342041449 |
b |
diff -r bdebdea5f6a7 -r 76d01fe0ec36 test-data/limma-voom_normcounts.tsv --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/limma-voom_normcounts.tsv Wed Jul 05 04:39:42 2017 -0400 |
b |
@@ -0,0 +1,7 @@ +"GeneID" "WT1" "WT2" "WT3" "Mut1" "Mut2" "Mut3" +"11287" 17.6076545522668 17.5079905058358 17.5639197719462 17.7719335903598 17.7105244453357 17.7658460810258 +"11298" 17.7727137985373 17.6986875511432 17.7598828784201 17.6506532355915 17.5520012519588 17.6144324004081 +"11302" 9.57719962386619 10.0175525101992 9.82560228478005 9.71615817858834 9.91760904198188 9.67886550454371 +"11303" 17.9125899785601 17.8773613214092 17.955228759658 17.8774046020864 17.7865502833631 17.911613462219 +"11304" 15.354518172169 15.2178020484983 15.3174553811097 15.7545783969022 15.8519803740125 15.6561454280436 +"11305" 18.1808259688524 18.1818679259847 18.2026681768366 18.0401341021246 18.1408682071359 18.204920085011 |