Repository 'pyprophet_score'
hg clone https://toolshed.g2.bx.psu.edu/repos/galaxyp/pyprophet_score

Changeset 0:8b11789d8b95 (2020-02-26)
Next changeset 1:00816d9855fc (2020-04-02)
Commit message:
"planemo upload for repository https://github.com/galaxyproteomics/tools-galaxyp/tree/master/tools/pyprophet commit a83d231286a8df67483df46e76b4b3a2ef90b251"
added:
macros.xml
pyprophet_score.xml
test-data/merged.osw
test-data/open_swath_output1.osw
test-data/open_swath_output2.osw
test-data/output.tabular
test-data/patient_specific_OSW_optimized_decoys.pqp
test-data/peptide1.osw
test-data/peptide1.pdf
test-data/peptide2.osw
test-data/peptide2.pdf
test-data/protein1.osw
test-data/protein1.pdf
test-data/protein2.osw
test-data/protein2.pdf
test-data/score.osw
test-data/score_plots.pdf
test-data/score_report.pdf
test-data/study_design.tabular
test-data/subsample.tabular
test-data/test_data.osw
b
diff -r 000000000000 -r 8b11789d8b95 macros.xml
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/macros.xml Wed Feb 26 04:15:49 2020 -0500
b
@@ -0,0 +1,23 @@
+<macros>
+    <token name="@VERSION@">2.1.4</token>
+
+    <xml name="requirements">
+    <requirements>
+        <requirement type="package" version="2.1.4">pyprophet</requirement>
+        <yield/>
+    </requirements>
+    </xml>
+
+    <xml name="citations">
+    <citations>
+        <citation type="doi">10.1038/nmeth.4398</citation>
+        <citation type="doi">10.1038/nbt.3908</citation>
+        <citation type="doi">10.1093/bioinformatics/btu686</citation>
+        <citation type="doi">10.1038/nmeth.1584</citation>
+        <yield/>
+    </citations>
+    </xml>
+
+    <token name="@link@">http://openswath.org/en/latest/docs/pyprophet.html</token>
+
+</macros>
b
diff -r 000000000000 -r 8b11789d8b95 pyprophet_score.xml
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/pyprophet_score.xml Wed Feb 26 04:15:49 2020 -0500
[
b'@@ -0,0 +1,135 @@\n+<tool id="pyprophet_score" name="PyProphet score" version="@VERSION@.0">\n+    <description>\n+        Error-rate estimation for MS1, MS2 and transition-level data\n+    </description>\n+    <macros>\n+        <import>macros.xml</import>\n+    </macros>\n+    <expand macro="requirements"/>\n+    <command detect_errors="aggressive">\n+    <![CDATA[\n+        pyprophet score\n+        --in=\'$input\'\n+        --classifier=$conditional_classifier.classifier\n+\n+        #if str($conditional_classifier.classifier)==\'XGBoost\':\n+            $conditional_classifier.xgb_autotune\n+        #end if\n+        #if $apply_weights: \n+            --apply_weights\n+        #end if\n+        --xeval_fraction=$xeval_fraction\n+        --xeval_num_iter=$xeval_num_iter\n+        --level=$level\n+        --ss_initial_fdr=$ss_initial_fdr\n+        --ss_iteration_fdr=$ss_iteration_fdr\n+        --ss_num_iter=$ss_num_iter\n+        --ss_main_score=\'$ss_main_score\'\n+        --group_id=$group_id\n+        $parametric\n+        $pfdr\n+        --pi0_lambda=$pi0_lambda_start $pi0_lambda_end $pi0_lambda_steps\n+\n+        --pi0_method=$pi0_method\n+        --pi0_smooth_df=$pi0_smooth_df\n+        $pi0_smooth_log\n+        $lfdr_truncate\n+        $lfdr_monotone\n+        --lfdr_transformation=$lfdr_transformation\n+        --lfdr_adj=$lfdr_adj\n+        --lfdr_eps=$lfdr_eps\n+        --ipf_max_peakgroup_rank=$ipf_max_peakgroup_rank\n+        --ipf_max_peakgroup_pep=$ipf_max_peakgroup_pep\n+        $tric_chromprob\n+        $test_mode\n+        --out=\'./output.osw\' && mv *_report.pdf report.pdf\n+\n+\n+    ]]>\n+    </command>\n+    <inputs>\n+        <param name="input" type="data" format="osw" label="Input file" help="This file needs to be in OSW format (--in)" />\n+        <conditional name="conditional_classifier">\n+            <param argument="--classifier" type="select" label="Either a \'LDA\' or \'XGBoost\' classifier is used for semi-supervised learning" >\n+              <option value="LDA" selected="True" >LDA</option>\n+              <option value="XGBoost">XGBoost</option>\n+            </param>\n+            <when value="LDA"/>\n+            <when value="XGBoost">\n+                <param name="xgb_autotune" type="boolean" truevalue="--xgb_autotune" falsevalue="--no-xgb_autotune" label="XGBoost: Autotune hyperparameters" help="(--xgb_autotune / --no-xgb_autotune)"/>\n+            </when>\n+        </conditional>\n+        <param argument="apply_weights" type="data" format="txt" optional="True" label="Apply PyProphet score weights file instead of semi-supervised learning." />\n+        <param argument="--level" type="select" display="radio" label="The data level selected for scoring. \'ms1ms2\' integrates both MS1- and MS2-level scores and can be used instead of \'ms2\'-level results" >\n+          <option value="ms1" >MS1</option>\n+          <option value="ms2" >MS2</option>\n+          <option value="ms1ms2" selected="True" >MS1MS2</option>\n+          <option value="transition">transition</option>\n+        </param>\n+        <param argument="--xeval_fraction" type="float" value="0.5" label="Data fraction used for cross-validation of semi-supervised learning step" />\n+        <param argument="--xeval_num_iter" type="integer" value="10" label="Number of iterations for cross-validation of semi-supervised learning step" />\n+        <param argument="--ss_initial_fdr" type="float" value="0.15" label="Initial FDR cutoff for best scoring targets" />\n+        <param argument="--ss_iteration_fdr" type="float" value="0.05" label="Iteration FDR cutoff for best scoring targets" />\n+        <param argument="--ss_num_iter" type="integer" value="10" label="Number of iterations for semi-supervised learning step" />\n+        <param argument="--ss_main_score" type="text" value="var_xcorr_shape" label="Main score to start semi-supervised-learning" />\n+        <param argument="--group_id" type="text" value="group_id" label="Group identifier for calculation of statistics" />\n+        <param name="parametric" type'..b'(--pi0_smooth_log_pi0 / --no-pi0_smooth_log_pi0)"/>\n+        <param name="lfdr_truncate" type="boolean" checked="True" truevalue="--lfdr_truncate" falsevalue="--no-lfdr_truncate" label="If True, local FDR values >1 are set to 1" help="(--lfdr_truncate / --no-lfdr_truncate)"/>\n+        <param name="lfdr_monotone" type="boolean" checked="True" truevalue="--lfdr_monotone" falsevallUE="--no-lfdr_monotone" label="If True, local FDR values are non-decreasing with increasing p-values" help="(--lfdr_monotone / --no-lfdr_monotone)"/>\n+        <param argument="--lfdr_transformation" type="select" display="radio" label="Either a \'probit\' or \'logit\' transformation is applied to the p-values so that a local FDR estimate can be formed that does not involve edge effects of the [0,1] interval in which the p-values lie" >\n+          <option value="probit" selected="True" >probit</option>\n+          <option value="logit">logit</option>\n+        </param>\n+        <param argument="--lfdr_adj" type="float" value="1.5" label="Numeric value that is applied as a multiple of the smoothing bandwidth used in the density estimation" />\n+        <param argument="--lfdr_eps" type="float" value="1e-08" label="Numeric value that is threshold for the tails of the empirical p-value distribution" />\n+        <param argument="--ipf_max_peakgroup_rank" type="integer" value="1" label="Assess transitions only for candidate peak groups until maximum peak group rank" />\n+        <param argument="--ipf_max_peakgroup_pep" type="float" value="0.7" label="Assess transitions only for candidate peak groups until maximum posterior error probability" />\n+        <param argument="--ipf_max_transition_isotope_overlap" type="float" value="0.5" label="Maximum isotope overlap to consider transitions in IPF" />\n+        <param argument="--ipf_min_transition_sn" type="float" value="0" label="Minimum log signal-to-noise level to consider transitions in IPF. Set -1 to disable this filter" />\n+        <param name="tric_chromprob" type="boolean" truevalue="--tric_chromprob" falsevalue="--no-tric_chromprob" label="Whether chromatogram probabilities for TRIC should be computed" help="( --tric_chromprob / --no-tric_chromprob)"/>\n+        <param name="test_mode" type="boolean" truevalue="--test" falsevalue="--no-test" label="Run in test mode with fixed seed" />\n+    </inputs>\n+    <outputs>\n+        <data name="output" format="osw" label="${tool.name} on ${on_string}: score.osw" from_work_dir="output.osw"/>\n+        <data name="score_report" format="pdf" label="${tool.name} on ${on_string}: report.pdf" from_work_dir="report.pdf" />\n+    </outputs>\n+    <tests>\n+        <test>\n+            <param name="input" value="merged.osw" ftype="osw"/>\n+            <param name="level" value="ms2"/>\n+            <param name="xeval_num_iter" value="2" />\n+            <param name="ss_num_iter" value="2" />\n+            <param name="pi0_lambda_start" value="0.1" />\n+            <param name="pi0_lambda_end" value="0.3" />\n+            <param name="pi0_lambda_steps" value="0.01" />\n+            <param name="test_mode" value="True" />\n+            <output name="output" file="score.osw" compare="sim_size" />\n+            <output name="score_report" file="score_report.pdf" compare="sim_size" />\n+        </test>\n+    </tests>\n+    <help>\n+<![CDATA[\n+**What it does**\n+\n+PyProphet: Semi-supervised learning and scoring of OpenSWATH results.\n+\n+Conduct semi-supervised learning and error-rate estimation for MS1, MS2 and transition-level data.\n+\n+PyProphet is a Python re-implementation of the mProphet algorithm (Reiter 2010 Nature Methods) optimized for SWATH-MS data acquired by data-independent acquisition (DIA). The algorithm was originally published in (Telemann 2014 Bioinformatics) and has since been extended to support new data types and analysis modes (Rosenberger 2017, Nature biotechnology and Nature methods).\n+\n+For more information, visit @link@\n+\n+]]>\n+    </help>\n+    <expand macro="citations"/>\n+</tool>\n'
b
diff -r 000000000000 -r 8b11789d8b95 test-data/merged.osw
b
Binary file test-data/merged.osw has changed
b
diff -r 000000000000 -r 8b11789d8b95 test-data/open_swath_output1.osw
b
Binary file test-data/open_swath_output1.osw has changed
b
diff -r 000000000000 -r 8b11789d8b95 test-data/open_swath_output2.osw
b
Binary file test-data/open_swath_output2.osw has changed
b
diff -r 000000000000 -r 8b11789d8b95 test-data/output.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.tabular Wed Feb 26 04:15:49 2020 -0500
b
@@ -0,0 +1,1 @@
+transition_group_id decoy run_id filename RT assay_rt delta_rt iRT assay_iRT delta_iRT Sequence FullPeptideName Charge mz Intensity aggr_prec_Peak_Area aggr_prec_Peak_Apex leftWidth rightWidth peak_group_rank d_score m_score id aggr_Peak_Area aggr_Peak_Apex aggr_Fragment_Annotation ProteinName m_score_peptide_experiment_wide m_score_peptide_global m_score_protein_experiment_wide m_score_protein_global
b
diff -r 000000000000 -r 8b11789d8b95 test-data/patient_specific_OSW_optimized_decoys.pqp
b
Binary file test-data/patient_specific_OSW_optimized_decoys.pqp has changed
b
diff -r 000000000000 -r 8b11789d8b95 test-data/peptide1.osw
b
Binary file test-data/peptide1.osw has changed
b
diff -r 000000000000 -r 8b11789d8b95 test-data/peptide1.pdf
b
Binary file test-data/peptide1.pdf has changed
b
diff -r 000000000000 -r 8b11789d8b95 test-data/peptide2.osw
b
Binary file test-data/peptide2.osw has changed
b
diff -r 000000000000 -r 8b11789d8b95 test-data/peptide2.pdf
b
Binary file test-data/peptide2.pdf has changed
b
diff -r 000000000000 -r 8b11789d8b95 test-data/protein1.osw
b
Binary file test-data/protein1.osw has changed
b
diff -r 000000000000 -r 8b11789d8b95 test-data/protein1.pdf
b
Binary file test-data/protein1.pdf has changed
b
diff -r 000000000000 -r 8b11789d8b95 test-data/protein2.osw
b
Binary file test-data/protein2.osw has changed
b
diff -r 000000000000 -r 8b11789d8b95 test-data/protein2.pdf
b
Binary file test-data/protein2.pdf has changed
b
diff -r 000000000000 -r 8b11789d8b95 test-data/score.osw
b
Binary file test-data/score.osw has changed
b
diff -r 000000000000 -r 8b11789d8b95 test-data/score_plots.pdf
b
Binary file test-data/score_plots.pdf has changed
b
diff -r 000000000000 -r 8b11789d8b95 test-data/score_report.pdf
b
Binary file test-data/score_report.pdf has changed
b
diff -r 000000000000 -r 8b11789d8b95 test-data/study_design.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/study_design.tabular Wed Feb 26 04:15:49 2020 -0500
b
@@ -0,0 +1,3 @@
+Filename Condition BioReplicate Run
+./TN22.mzML late 1 1
+./TN23.mzML early 2 2
b
diff -r 000000000000 -r 8b11789d8b95 test-data/subsample.tabular
b
Binary file test-data/subsample.tabular has changed
b
diff -r 000000000000 -r 8b11789d8b95 test-data/test_data.osw
b
Binary file test-data/test_data.osw has changed