Commit message:
planemo upload for repository https://github.com/workflow4metabolomics/ascaw4m commit 7ea9b0f8abc5a60c2c04fd2098788497f14766b6 |
added:
ASCA.Calculate_w4m.R ASCA.PlotScoresPerLevel_w4m.R asca_w4m.R asca_wrapper.R asca_xml.xml ssq.R static/images/BDAGroup_ASCA_figure.png static/images/BDAGroup_ASCA_figure.tif static/images/Thumbs.db test-data/ASCA_choo_samplemetadata.tsv test-data/ASCA_choo_variablemetadata.tsv test-data/choo_datamatrix.txt test-data/choo_samplemetadata.txt test-data/choo_variablemetadata.txt |
b |
diff -r 000000000000 -r 93312041f1d5 ASCA.Calculate_w4m.R --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/ASCA.Calculate_w4m.R Fri Sep 21 05:51:14 2018 -0400 |
[ |
@@ -0,0 +1,84 @@ +ASCA.Calculate_w4m <- function (data, levels, equation.elements = "", scaling, only.means.matrix = FALSE, use.previous.asca = NULL) +{ + ASCA.GetEquationElement <- function(asca, evaluation, previous.asca) { + s <- list() + s$factors.evaluated <- evaluation + if (!is.null(previous.asca)) { + s$level.combinations <- previous.asca[[paste(evaluation, + collapse = "")]]$level.combinations + } + else { + s$level.combinations <- ASCA.GetRowRepeats(asca$levels[, + s$factors.evaluated, drop = FALSE]) + } + s$means.matrix <- matrix(nrow = dim(asca$data)[1], ncol = dim(asca$data)[2]) + for (p in 1:dim(s$level.combinations$row.patterns)[1]) { + mean.for.this.level.combination <- colMeans(asca$data[s$level.combinations$indices.per.pattern[[p]], + , drop = FALSE]) + for (i in s$level.combinations$indices.per.pattern[[p]]) { + s$means.matrix[i, ] <- mean.for.this.level.combination + } + } + s + } + s <- list() + dataAdjusted <- MetStaT.ScalePip(data, center = FALSE, scale = FALSE, + quietly = TRUE) + s$ssq.mean <- sum(rep(dataAdjusted$center.vector/dataAdjusted$scale.vector, + nrow(data))^2) + s$ssq <- sum(data^2) + s$data <- dataAdjusted$data + if (!is.numeric(levels)) { + stop("The supplied levels are not numeric.") + } + s$levels <- levels + if (!only.means.matrix) { + s$svd <- PCA.Calculate(s$data) + } + s$ee.names <- c() + if (identical(equation.elements, "")) { + equation.elements <- ASCA.GetPowerSet(c(1:dim(s$levels)[2]), + exclude.empty.set = TRUE) + } + if (is.character(equation.elements)) + equation.elements <- lapply(strsplit(strsplit(equation.elements, + split = ",")[[1]], split = ""), as.numeric) + for (ee in equation.elements) { + for (f in ee) if (f > dim(levels)[2] || f < 1) { + stop(paste("Factor ", f, " is beyond scope of study-design", + sep = "")) + } + } + if (dim(data)[1] != dim(levels)[1]) { + stop(paste("Number of rows in data (", dim(data)[1], + ") and study design (", dim(levels)[1], ") do not match", + sep = "")) + } + order.to.evaluate.ee <- sort(as.numeric(unlist(lapply(equation.elements, + paste, collapse = ""))), index.return = TRUE)$ix + s$remainder <- s$data + for (ee in order.to.evaluate.ee) { + new.equation.element <- ASCA.GetEquationElement(s, equation.elements[[ee]], + use.previous.asca) + reductions <- ASCA.GetPowerSet(equation.elements[[ee]], + exclude.empty.set = TRUE, exclude.complete.set = TRUE) + for (r in reductions) { + new.equation.element$means.matrix <- new.equation.element$means.matrix - + s[[c(paste(r, collapse = ""))]]$means.matrix + } + new.equation.element$ssq <- sum(new.equation.element$means.matrix^2) + if (!only.means.matrix) { + s$remainder <- s$remainder - new.equation.element$means.matrix + new.equation.element$reduced.matrix <- s$remainder + new.equation.element$svd <- PCA.Calculate(new.equation.element$means.matrix) + } + ee.name <- paste(equation.elements[[ee]], collapse = "") + s$ee.names <- c(s$ee.names, ee.name) + s[[ee.name]] <- new.equation.element + } + s$ssq.remainder <- sum(s$remainder^2) + if (!only.means.matrix) + asca.summary <- ASCA.GetSummary(s, quietly = TRUE) + return(list(s, asca.summary)) +} + \ No newline at end of file |
b |
diff -r 000000000000 -r 93312041f1d5 ASCA.PlotScoresPerLevel_w4m.R --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/ASCA.PlotScoresPerLevel_w4m.R Fri Sep 21 05:51:14 2018 -0400 |
[ |
@@ -0,0 +1,64 @@ +ASCA.PlotScoresPerLevel_w4m <- function (asca, ee, pcs="1,2", interaction=0, factorName="", factorModalite) +{ + pcs <- as.numeric(strsplit(pcs, split=",")[[1]]) + y <- (asca[[ee]]$means.matrix + asca$remainder) %*% asca[[ee]]$svd$v + t.list.x <- list() + t.list.y <- list() + list.color.pattern <- list() + color.per.variable <- rep(0, dim(asca$data)[1]) + pattern.per.variable <- rep(0, dim(asca$data)[1]) + kColOptions <- c(24, 552, 254, 26, 84, 51, 652, 68, 76, 96, + 10, 60, 33, 245, 147, 12, 26, 164, 181, 52, 512, 344, + 201, 111) + kPointOptions <- 1:30 + for (p in 1:dim(asca[[ee]]$level.combinations$row.pattern)[1]) { + if (length(asca[[ee]]$level.combinations$row.pattern[p, + ]) == 1) { + list.color.pattern[[p]] <- c(kColOptions[p], kPointOptions[p]) + } + else if (length(asca[[ee]]$level.combinations$row.pattern[p, + ]) == 2) { + list.color.pattern[[p]] <- c(kColOptions[asca[[ee]]$level.combinations$row.pattern[p, + 1]], kPointOptions[asca[[ee]]$level.combinations$row.pattern[p, + 2]]) + } + else { + list.color.pattern[[p]] <- c(kColOptions[asca[[ee]]$level.combinations$row.pattern[p, + 1]]%%9, floor(kPointOptions[asca[[ee]]$level.combinations$row.pattern[p, + 2]]/9)) + } + color.per.variable[asca[[ee]]$level.combinations$indices.per.pattern[[p]]] <- list.color.pattern[[p]][1] + pattern.per.variable[asca[[ee]]$level.combinations$indices.per.pattern[[p]]] <- list.color.pattern[[p]][2] + t.list.x[[p]] <- y[asca[[ee]]$level.combinations$indices.per.pattern[[p]], + pcs[1]] + t.list.y[[p]] <- y[asca[[ee]]$level.combinations$indices.per.pattern[[p]], + pcs[2]] + } + legend.colors.patterns <- do.call(rbind, list.color.pattern) + if (interaction != 1){ + titre <- paste("PC", pcs[1], " vs PC", pcs[2], " - Factor ", factorName, sep="") + }else { + titre <- paste("PC", pcs[1], " vs PC", pcs[2], " - Interaction", sep="") + } + plot(asca[[ee]]$svd$t[, pcs[1]], asca[[ee]]$svd$t[, pcs[2]], + xlim=range(c(min(unlist(t.list.x)), max(unlist(t.list.x)))), + ylim=range(c(min(unlist(t.list.y)), max(unlist(t.list.y)))), + main=titre, + xlab=paste("PC", pcs[1], " (", formatC(asca[[ee]]$svd$var.explained[pcs[1]] * 100, digits=2, format="f"), "%)", sep=""), + ylab=paste("PC", pcs[2], " (", formatC(asca[[ee]]$svd$var.explained[pcs[2]] * 100, digits=2, format="f"), "%)", sep=""), + cex=1.5, lwd=3, col=colors()[color.per.variable], + pch=pattern.per.variable) +# if (interaction != 1){ + legend(x="bottomright", legend=factorModalite, + cex=0.8, col=colors()[legend.colors.patterns[, 1]], pch=legend.colors.patterns[, 2]) +# } +# else { +# legend(x="bottomright", apply(asca[[ee]]$level.combinations$row.patterns, 1, paste, collapse=" "), +# cex=0.8, col=colors()[legend.colors.patterns[, 1]], pch=legend.colors.patterns[, 2]) +# } + + for (p in 1:length(t.list.x)) { + points(t.list.x[[p]], t.list.y[[p]], col=colors()[list.color.pattern[[p]][1]], + pch=list.color.pattern[[p]][2]) + } +} |
b |
diff -r 000000000000 -r 93312041f1d5 asca_w4m.R --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/asca_w4m.R Fri Sep 21 05:51:14 2018 -0400 |
[ |
@@ -0,0 +1,82 @@ +asca_w4m <- function(datamatrix, samplemetadata, factors, variablemetadata, threshold, scaling="none", nPerm) +{ + ## Transpose +# datamatrix <- t(datamatrix) + + # Check sample ID's + rownames(datamatrix) <- make.names(rownames(datamatrix), unique = TRUE) + colnames(datamatrix) <- make.names(colnames(datamatrix), unique = TRUE) + rownames(samplemetadata) <- make.names(rownames(samplemetadata), unique = TRUE) + rownames(variablemetadata) <- make.names(rownames(variablemetadata), unique = TRUE) + + if(!identical(rownames(datamatrix), rownames(samplemetadata))) + { + if(identical(sort(rownames(datamatrix)), sort(rownames(samplemetadata)))) + { + cat("\n\nMessage: Re-ordering dataMatrix sample names to match sampleMetadata\n") + datamatrix <- datamatrix[rownames(samplemetadata), , drop = FALSE] + stopifnot(identical(sort(rownames(datamatrix)), sort(rownames(samplemetadata)))) + }else { + + cat("\n\nStop: The sample names of dataMatrix and sampleMetadata do not match:\n") + print(cbind.data.frame(indice = 1:nrow(datamatrix), + dataMatrix=rownames(datamatrix), + sampleMetadata=rownames(samplemetadata))[rownames(datamatrix) != rownames(samplemetadata), , drop = FALSE]) + } + } + + # Check feature ID's + if(!identical(colnames(datamatrix), rownames(variablemetadata))) + { + if(identical(sort(colnames(datamatrix)), sort(rownames(variablemetadata)))) + { + cat("\n\nMessage: Re-ordering dataMatrix variable names to match variableMetadata\n") + datamatrix <- datamatrix[, rownames(variablemetadata), drop = FALSE] + stopifnot(identical(sort(colnames(datamatrix)), sort(rownames(variablemetadata)))) + }else { + cat("\n\nStop: The variable names of dataMatrix and variableMetadata do not match:\n") + print(cbind.data.frame(indice = 1:ncol(datamatrix), + dataMatrix=colnames(datamatrix), + variableMetadata=rownames(variablemetadata))[colnames(datamatrix) != rownames(variablemetadata), , drop = FALSE]) + } + } + + # Design + design <- data.matrix(samplemetadata[, colnames(samplemetadata) %in% factors]) + + # Scaling if scaling!=none + datamatrix <- prep(datamatrix, scaling) + + # Computation of the A-SCA model + data.asca <- ASCA.Calculate_w4m(datamatrix, design, scaling=scaling) + + # Permutation test + data.asca.permutation <- ASCA.DoPermutationTest(data.asca[[1]], perm=nPerm) + p <- c(data.asca.permutation, 0) + + + # % of explained variance + ssq <- (data.asca[[2]]$summary.ssq) + ssq <- cbind(round(rbind(ssq[2], ssq[3],ssq[4],ssq[5])*100, 2), p) + rownames(ssq) <- c(factors[1], factors[2], "Interaction", "Residuals") + colnames(ssq) <- c("% of explained variance", "Permutation p-value") + + # Add Scores and loadings at the end of meatadata files + noms <- colnames(samplemetadata) + samplemetadata <- cbind(samplemetadata, (data.asca[[1]]$'1'$means.matrix + data.asca[[1]]$remainder) %*% data.asca[[1]]$'1'$svd$v[, 1:2], + (data.asca[[1]]$'2'$means.matrix + data.asca[[1]]$remainder) %*% data.asca[[1]]$'2'$svd$v[, 1:2], + (data.asca[[1]]$'12'$means.matrix + data.asca[[1]]$remainder) %*% data.asca[[1]]$'12'$svd$v[, 1:2]) + colnames(samplemetadata) <- c(noms, paste(factors[1],"XSCOR-p1", sep="_"), paste(factors[1],"XSCOR-p2", sep="_"), + paste(factors[2],"XSCOR-p1", sep="_"), paste(factors[2],"XSCOR-p2", sep="_"), + "Interact_XSCOR-p1", "Interact_XSCOR-p2") + + noms <- colnames(variablemetadata) + variablemetadata <- cbind(variablemetadata, data.asca[[1]]$'1'$svd$v[, 1:2], data.asca[[1]]$'2'$svd$v[, 1:2], data.asca[[1]]$'12'$svd$v[, 1:2]) + colnames(variablemetadata) <- c(noms, paste(factors[1],"XLOAD-p1", sep="_"), paste(factors[1],"XLOAD-p2", sep="_"), + paste(factors[2],"XLOAD-p1", sep="_"), paste(factors[2],"XLOAD-p2", sep="_"), + "Interact_XLOAD-p1", "Interact_XLOAD-p2") + + l <- list(data.asca[[1]], data.asca.permutation, ssq, samplemetadata, variablemetadata) + names(l) <- c("ASCA","p-values", "ssq", "samplemetadata", "variablemetadata") + return(l) +} |
b |
diff -r 000000000000 -r 93312041f1d5 asca_wrapper.R --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/asca_wrapper.R Fri Sep 21 05:51:14 2018 -0400 |
[ |
b'@@ -0,0 +1,237 @@\n+#!/usr/bin/env Rscript\n+\n+###################################################################################################\n+#\n+# MetStaT ASCA.calculate function\n+#\n+#\n+# R-Package: MetStaT\n+#\n+# Version: 1.0\n+#\n+# Author (asca.calculate): Tim Dorscheidt\n+# Author (wrapper & .r adaptation for workflow4metabolomics.org): M. Tremblay-Franco & Y. Guitton #\n+# \n+# Expected parameters from the commandline\n+# input files:\n+# dataMatrix\n+# sampleMetadata\n+# variableMetadata\n+# params:\n+# Factors (Factor1 & Factor2)\n+# scaling\n+# Number of permutations\n+# Significance threshold\n+# output files:\n+# sampleMetadata\n+# variableMetadata\n+#\t\t\t Graphical outputs\n+#\t\t\t Information text\n+###################################################################################################\n+pkgs=c("MetStaT","batch","pcaMethods")\n+for(pkg in pkgs) {\n+ suppressPackageStartupMessages( stopifnot( library(pkg, quietly=TRUE, logical.return=TRUE, character.only=TRUE)))\n+ cat(pkg,"\\t",as.character(packageVersion(pkg)),"\\n",sep="")\n+}\n+\n+\n+listArguments = parseCommandArgs(evaluate=FALSE) #interpretation of arguments given in command line as an R list of objects\n+\n+#Redirect all stdout to the log file\n+sink(listArguments$information)\n+\n+# ----- PACKAGE -----\n+cat("\\tPACKAGE INFO\\n")\n+sessionInfo()\n+\n+source_local <- function(fname) {\n+ argv <- commandArgs(trailingOnly = FALSE)\n+ base_dir <- dirname(substring(argv[grep("--file=", argv)], 8))\n+ source(paste(base_dir, fname, sep="/"))\n+}\n+\n+#load asca_w4m function\n+source_local("asca_w4m.R")\n+source_local("ASCA.Calculate_w4m.R")\n+source_local("ASCA.PlotScoresPerLevel_w4m.R")\n+print("first loadings OK")\n+\n+## libraries\n+##----------\n+\n+cat(\'\\n\\nRunning ASCA.calculate\\n\');\n+options(warn=-1);\n+#remove rgl warning\n+options(rgl.useNULL = TRUE);\n+\n+\n+## constants\n+##----------\n+\n+modNamC <- "asca" ## module name\n+\n+topEnvC <- environment()\n+flgC <- "\\n"\n+\n+## functions\n+##----------For manual input of function\n+##--end function\n+\n+flgF <- function(tesC,\n+ envC = topEnvC,\n+ txtC = NA) { ## management of warning and error messages\n+\n+ tesL <- eval(parse(text = tesC), envir = envC)\n+\n+ if(!tesL) {\n+\n+ sink(NULL)\n+ stpTxtC <- ifelse(is.na(txtC),\n+ paste0(tesC, " is FALSE"),\n+ txtC)\n+\n+ stop(stpTxtC,\n+ call. = FALSE)\n+\n+ }\n+\n+} ## flgF\n+\n+\n+## log file\n+##---------\n+cat("\\nStart of the \'", modNamC, "\' Galaxy module call: ",\n+ format(Sys.time(), "%a %d %b %Y %X"), "\\n", sep="")\n+\n+\n+## arguments\n+##----------\n+## loading files and checks\n+xMN <- t(as.matrix(read.table(listArguments[["dataMatrix_in"]],\n+ check.names = FALSE,\n+ header = TRUE,\n+ row.names = 1,\n+ sep = "\\t")))\n+varIdDM <- rownames(xMN)\n+\n+samDF <- read.table(listArguments[["sampleMetadata_in"]],\n+ check.names = FALSE,\n+ header = TRUE,\n+ row.names = 1,\n+\t\t\t\t\t sep = "\\t")\n+obsIdSMD <- rownames(samDF)\n+\n+varDF <- read.table(listArguments[["variableMetadata_in"]],\n+ check.names = FALSE,\n+ header = TRUE,\n+ row.names = 1,\n+\t\t\t\t\t sep = "\\t")\n+varIdVDM <- rownames(varDF)\n+\n+result <- asca_w4m(xMN, samDF, c(listArguments[["factor1"]],listArguments[["factor2"]]), varDF, as.numeric(listArguments[["threshold"]]), \n+ scaling=listArguments[["scaling"]], listArguments[["nPerm"]])\n+\n+\n+##saving\n+\n+if (exists("result")) {\n+\t## writing output files\n+\tcat("\\n\\nWriting output files\\n\\n");\n+\twrite.table(data.frame(cbind(obsIdSMD, result[[4]])),\n+ \t\t\tfile = listArguments$sampleMetadata_out,\n+ \t\t\tquote = FALSE,\n+ \t\t\trow.names = FALSE,\n'..b'"]])))\n+\t{\n+\t\tdata.asca.permutation <- result[[2]]\n+\t\tdesign <- data.matrix(samDF[, colnames(samDF) %in% c(listArguments[["factor1"]],listArguments[["factor2"]])])\n+\t\t\n+\t\tpdf(listArguments$figure, onefile=TRUE)\n+\t\tpar(mfrow=c(1,3))\n+\t\tif (data.asca.permutation[1] < as.numeric(listArguments[["threshold"]]))\n+\t\t{\n+\t\t\teigenvalues <- data.frame(1:length(unique(design[,1])), result[[1]]$\'1\'$svd$var.explained[1:length(unique(design[,1]))])\n+\t\t\tcolnames(eigenvalues) <- c("PC", "explainedVariance")\n+\t\t\tbarplot(eigenvalues[,2], names.arg=eigenvalues[,1], ylab="% of explained variance", xlab="Principal component")\n+\t\t\tnoms <- levels(as.factor(samDF[, listArguments$factor1]))\n+\t\t\tASCA.PlotScoresPerLevel_w4m(result[[1]], ee="1", interaction=0, factorName=listArguments$factor1, factorModalite=noms)\n+\n+\t\t\tv1 <- paste(listArguments[["factor1"]],"_XLOAD-p1", sep="")\n+\t\t\tv2 <- paste(listArguments[["factor1"]],"_XLOAD-p2", sep="")\n+\t\t\tf1.loadings <- data.matrix(result[[5]][,c(v1, v2)])\n+\t\t\tf1.loadings.leverage <- diag(f1.loadings%*%t(f1.loadings))\n+\t\t\tnames(f1.loadings.leverage) <- colnames(xMN)\n+\t\t\tf1.loadings.leverage <- sort(f1.loadings.leverage, decreasing=TRUE)\n+\t\t\tbarplot(f1.loadings.leverage[f1.loadings.leverage > 0.001], main="Leverage values")\n+\t\t}\n+\t\tif (data.asca.permutation[2] < as.numeric(listArguments[["threshold"]]))\n+\t\t{\n+\t\t\teigenvalues <- data.frame(1:length(unique(design[,2])), result[[1]]$\'2\'$svd$var.explained[1:length(unique(design[,2]))])\n+\t\t\tcolnames(eigenvalues) <- c("PC", "explainedVariance")\n+\t\t\tbarplot(eigenvalues[,2], names.arg=eigenvalues[,1], ylab="% of explained variance", xlab="Principal component") \n+\t\t\tnoms <- levels(as.factor(samDF[, listArguments$factor2]))\n+\t\t\tASCA.PlotScoresPerLevel_w4m(result[[1]], ee="2", interaction=0, factorName=listArguments$factor2, factorModalite=noms)\n+\n+\t\t\tv1 <- paste(listArguments[["factor2"]],"_XLOAD-p1", sep="")\n+\t\t\tv2 <- paste(listArguments[["factor2"]],"_XLOAD-p2", sep="")\n+\t\t\tf2.loadings <- data.matrix(result[[5]][,c(v1, v2)])\n+\t\t\tf2.loadings.leverage <- diag(f2.loadings%*%t(f2.loadings))\n+\t\t\tnames(f2.loadings.leverage) <- colnames(xMN)\n+\t\t\tf2.loadings.leverage <- sort(f2.loadings.leverage, decreasing=TRUE)\n+\t\t\tbarplot(f2.loadings.leverage[f2.loadings.leverage > 0.001], main="Leverage values")\n+\t\t}\n+ \tif (data.asca.permutation[3] < as.numeric(listArguments[["threshold"]]))\n+ \t{\n+ \t eigenvalues <- data.frame(1:(length(unique(design[,1]))*length(unique(design[,2]))), result[[1]]$\'12\'$svd$var.explained[1:(length(unique(design[,1]))*length(unique(design[,2])))])\n+ \t colnames(eigenvalues) <- c("PC", "explainedVariance")\n+ \t barplot(eigenvalues[,2], names.arg=eigenvalues[,1], ylab="% of explained variance", xlab="Principal component")\n+ \t noms1 <- data.matrix(levels(as.factor(samDF[, listArguments$factor1])))\n+ \t noms2 <- data.matrix(levels(as.factor(samDF[, listArguments$factor2])))\n+ \t noms <- apply(noms1, 1, FUN=function(x){paste(x, "-", noms2, sep="")})\n+ \t noms <- apply(noms, 1, FUN=function(x){c(noms)})\n+ \t ASCA.PlotScoresPerLevel_w4m(result[[1]], ee="12", interaction=1, factorModalite=noms[,1])\n+ \t \n+ \t v1 <- "Interact_XLOAD-p1"\n+ \t v2 <- "Interact_XLOAD-p2"\n+ \t f1f2.loadings <- data.matrix(result[[5]][, c(v1, v2)])\n+ \t f1f2.loadings.leverage <- diag(f1f2.loadings%*%t(f1f2.loadings))\n+ \t names(f1f2.loadings.leverage) <- colnames(xMN)\n+ \t f1f2.loadings.leverage <- sort(f1f2.loadings.leverage, decreasing=TRUE)\n+ \t barplot(f1f2.loadings.leverage[f1f2.loadings.leverage > 0.001], main="Leverage values")\n+ \t}\n+ dev.off()\n+\t}\n+\n+\ttryCatch({\n+\tsave(result, file="asca.RData");\n+\t}, warning = function(w) {\n+\tprint(paste("Warning: ", w));\n+\t}, error = function(err) {\n+\tstop(paste("ERROR saving result RData object:", err));\n+\t});\n+}\n+\n+## ending\n+##-------\n+\n+cat("\\nEnd of the \'", modNamC, "\' Galaxy module call: ",\n+ format(Sys.time(), "%a %d %b %Y %X"), "\\n", sep = "")\n+\n+sink()\n+\n+# options(stringsAsFactors = strAsFacL)\n+\n+\n+rm(list = ls())\n' |
b |
diff -r 000000000000 -r 93312041f1d5 asca_xml.xml --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/asca_xml.xml Fri Sep 21 05:51:14 2018 -0400 |
[ |
b'@@ -0,0 +1,330 @@\n+<tool id="asca" name="ASCA" version="1.0.0">\n+ <description>Splitting of the total variance into independent blocks according to the experimental factors and multivariate analysis (SCA) of each block</description>\n+ \n+ <requirements>\n+ <requirement type="package" version="1.1_4">r-batch</requirement>\n+ <requirement type="package" version="1.0">r-MetStaT</requirement>\n+ <requirement type="package" version="1.70.0">bioconductor-pcamethods</requirement>\n+ </requirements>\n+\n+ <stdio>\n+ <exit_code range="1:" level="fatal" />\n+ </stdio>\n+ \n+ <command><![CDATA[\n+ Rscript $__tool_directory__/asca_wrapper.R\n+ dataMatrix_in "$dataMatrix_in"\n+ sampleMetadata_in "$sampleMetadata_in"\n+ variableMetadata_in "$variableMetadata_in"\n+ factor1 "$factor1"\n+ factor2 "$factor2"\n+ scaling "$scaling"\n+ nPerm "$nPerm"\n+ threshold "$threshold"\n+\n+\n+ sampleMetadata_out "$sampleMetadata_out"\n+ variableMetadata_out "$variableMetadata_out"\n+ figure "$figure"\n+ information "$information"\n+ ]]></command> \n+ \n+ <inputs>\n+ <param name="dataMatrix_in" type="data" label="Data matrix file" help="" format="tabular" />\n+ <param name="sampleMetadata_in" type="data" label="Sample metadata file" help="" format="tabular" />\n+ <param name="variableMetadata_in" type="data" label="Variable metadata file" help="" format="tabular" />\n+ <param name="factor1" label="Name of the sampleMetadata column containing the 1st factor for A-SCA" type="text" value="none" help=""/>\n+ <param name="factor2" label="Name of the sampleMetadata column containing the 2nd factor for A-SCA" type="text" value="none" help=""/>\n+ <param name="scaling" label="Scaling to apply to dataMatrix" type="select" help="">\n+\t <option value="none" selected="true">None</option>\n+ <option value="pareto">pareto</option>\n+ <option value="uv">uv</option>\n+\t</param>\n+\t<param name="nPerm" label="Number of permutation to perform to compute factor significance" type="select" help="">\n+\t <option value="100" selected="true">100</option>\n+ <option value="500">500</option>\n+ <option value="1000">1000</option>\n+\t</param>\n+\t<param name="threshold" type="float" value="0.05" label="Threshold for factor significance (permutation test)" help="Must be between 0 and 1"/>\n+ </inputs>\n+ \n+ <outputs>\n+ <data name="sampleMetadata_out" label="${tool.name}_${sampleMetadata_in.name}" format="tabular" ></data>\n+ <data name="variableMetadata_out" label="${tool.name}_${variableMetadata_in.name}" format="tabular" ></data>\n+\t<data name="figure" label="${tool.name}_figure.pdf" format="pdf"/>\n+\t<data name="information" label="${tool.name}_information.txt" format="txt"/>\n+ </outputs>\n+\n+ <tests>\n+ <test>\n+ <param name="dataMatrix_in" value="choo_datamatrix.txt"/>\n+ <param name="sampleMetadata_in" value="choo_samplemetadata.txt"/>\n+ <param name="variableMetadata_in" value="choo_variablemetadata.txt"/>\n+\t <param name="factor1" value="Date"/>\n+ <param name="factor2" value="Treatment"/>\n+ <param name="scaling" value="pareto"/>\n+ <param name="threshold" value="0.05"/>\n+ <param name="nPerm" value="1000"/>\n+\t \n+ <output name="sampleMetadata_out" file="ASCA_choo_samplemetadata.tsv" lines_diff="6"/>\n+ </test>\n+ </tests>\n+\n+ \n+ <help>\n+ \n+.. class:: infomark\n+ \n+**Tool updates**\n+ \n+See the **NEWS** section at the bottom of this page\n+ \n+---------------------------------------------------\n+\n+.. class:: infomark\n+ \n+**Authors** Marie Tremblay-Franco (W4M Core Development Team, MetaboHUB Toulouse, AXIOM) and Yann Guitton (W4M Core Development Team, Laberca, UM1329)\n+ \n+---------------------------------------------------\n+ \n+.. class:: infomark\n+\n+**References**\n+| R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (http://www.r-project.org)\n+| Tim Dorscheidt (2013). MetStaT: Statistical metabolomics'..b'f a ASCA_BDAGroup_ASCA_samplemetadata.tsv: tsv file** including PC1 and PC2 scores from F1 PCA, F2 PCA and F1xF2 PCA \n+\n+\n+\t\n++--------------------+----------+----------+-------------+-------------+-------------+-------------+-------------------+-------------------+\n+| sampleMetadata | F1 | F2 | F1_XSCOR-p1 | F1_XSCOR-p2 | F2_XSCOR-p1 | F2_XSCOR-p2 | Interact_XSCOR-p1 | Interact_XSCOR-p1 |\n++====================+==========+==========+=============+=============+=============+=============+===================+===================+\n+| Ind1 | 1 | 1 | -2.66136390 | 0.307505352 | 0.986520075 | -0.25138715 | -0.31885686 | -0.77109078 |\n++--------------------+----------+----------+-------------+-------------+-------------+-------------+-------------------+-------------------+\n+| Ind2 | 1 | 1 | -0.74779084 | -0.30750535 | -0.99758505 | 0.070057773 | 0.719240017 | 0.950058502 |\n++--------------------+----------+----------+-------------+-------------+-------------+-------------+-------------------+-------------------+\n+| Ind3 | 1 | 2 | -1.22618411 | -0.15375267 | -0.24288670 | 0.124191016 | -0.00883820 | 0.465391498 |\n++--------------------+----------+----------+-------------+-------------+-------------+-------------+-------------------+-------------------+\n+\n+ \n+\n+ | **2) Example of a ASCA_BDAGroup_ASCA_variablemetadata.tsv: tsv file** including PC1 and PC2 loadings from F1 PCA, F2 PCA and F1xF2 PCA \n+\n+\t\n++--------------------+----------+-------------+-------------+-------------+-------------+-------------------+--------------------+\n+| variableMetadata | Number | F1_XLOAD-p1 | F1_XLOAD-p2 | F2_XLOAD-p1 | F2_XLOAD-p2 | Interact_XLOAD-p1 | Interact_XLOAD-p1 |\n++====================+==========+=============+=============+=============+=============+===================+====================+\n+| V1 | 1 | 0.977759467 | -0.20972940 | -0.99814337 | 0.060908126 | 0.428703939 | 0.903445035 |\n++--------------------+----------+-------------+-------------+-------------+-------------+-------------------+--------------------+\n+| V2 | 2 | 0.977759467 | -0.30750535 | -0.06090812 | -0.99814337 | -0.90344503 | 0.428703939 |\n++--------------------+----------+-------------+-------------+-------------+-------------+-------------------+--------------------+\n+\n+\n+\n+ | **3) Example of a ASCA_information.txt: txt file** including % of explained variance and p-value of permutation test \n+\n+\n++----------------------+-------------------------+---------------------+\n+| ASCA_information.txt | % of explained variance | Permutation p-value |\n++======================+=========================+=====================+\n+| F1 | 81.71 | 0.004 |\n++----------------------+-------------------------+---------------------+\n+| F2 | 1.29 | 0.880 |\n++----------------------+-------------------------+---------------------+\n+| Interaction | 1.33 | 0.962 |\n++----------------------+-------------------------+---------------------+\n+| Residuals | 15.67 | - |\n++----------------------+-------------------------+---------------------+\n+\n+\n+\t| **4) Example of ASCA_figure.pdf: pdf file** including Scree, Score plot and barplot of leverage values only for significant factor(s)/interaction**\n+\t| Leverage: importance of a variable in the PCA model (Nueda et al. 2007)\n+\t\n+\t\n+.. image:: BDAGroup_ASCA_figure.tif\n+ :width: 600\n+\n+----\n+NEWS\n+----\n+\n+ \n+</help>\n+ \n+ <citations>\n+ <citation type="doi">10.1093/bioinformatics/bti476</citation>\n+ <citation type="doi">10.1002/cem.952</citation>\n+ <citation type="doi">10.1093/bioinformatics/btm251</citation>\n+ </citations>\n+ \n+</tool>\n' |
b |
diff -r 000000000000 -r 93312041f1d5 ssq.R --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/ssq.R Fri Sep 21 05:51:14 2018 -0400 |
[ |
@@ -0,0 +1,58 @@ +library(lmdme) +library(MetStaT) + +## Data : attention standardiser au prealable +data <- read.table("E:/PROJETS/Asca_W4M/Test_Matlab_data.txt", sep="\t", dec=",", header=TRUE, row.names=1) +design <- read.table("E:/PROJETS/Asca_W4M/Test_Matlab_design.txt", sep="\t", dec=",", header=TRUE) +design[,1] <- as.factor(design[,1]) +design[,2] <- as.factor(design[,2]) + +## Verifier noms + + +fit <- lmdme(model=~F1 + F2 + F1:F2, data=data, design=design) + +permuted <- permutation(model=~F1*F2, data=data, design=design, NPermutations=100, nCpus=3) + +decomposition(fit, decomposition = "pca", scale="none", type="coefficient") + + + + +ssq <- function(fit) +{ + Overall_means <- sum(sum(fitted.values(fit)$'(Intercept)'^2))/sum(sum(data^2)) + Factors <- c(sum(sum(fitted.values(fit)$'F1'^2))/sum(sum(data^2)), sum(sum(fitted.values(fit)$'F2'^2))/sum(sum(data^2))) + Interactions <- sum(sum(fitted.values(fit)$'F1:F2'^2))/sum(sum(data^2)) + Residuals <- 1 - Overall_means - Factors[1] - Factors[2] - Interactions + + return(list(Overall_means, Factors, Interactions, Residuals)) +} + + +par(mfrow=c(2,2)) +biplot(fit, xlabs="o", mfcol=NULL) +##Just the term of interest +biplot(fit, xlabs="o", term="F1") +##In separate graphics +biplot(fit, xlabs="o", term=c("F1", "F2"), mfcol=c(1,1)) +##All terms in the same graphic +biplot(fit, xlabs="o", mfcol=c(1,3)) + +test <-lapply(permuted, FUN = ssq) +test1 <- matrix(unlist(test), ncol=5, byrow=TRUE) +test[2:101] + +apply(apply(test1, 2, FUN = function(x){x > x[1]})[-1,], 2 , sum) / (length(test)-1) + +score_moyen <- data.frame(fit@components$F1$rotation) + +score <- data.frame(cbind(design, t(fit@residuals$'F1:F2')%*%fit@components$F1$rotation)) + +pc <- fit@components$F1$sdev / sum(fit@components$F1$sdev) + +sp <- ggplot(score_moyen, aes(x=PC1, y=PC2)) +sp + geom_point(size=2) + xlab(paste("PC1", round(pc[1]*100,1), "%")) + ylab(paste("PC2", round(pc[2]*100,1), "%")) + + geom_text(data=score, aes(PC1, PC2, label=Ind, col=F1), size=4, hjust=0, nudge_x=0.05, vjust=0, nudge_y=0.5) + + |
b |
diff -r 000000000000 -r 93312041f1d5 static/images/BDAGroup_ASCA_figure.png |
b |
Binary file static/images/BDAGroup_ASCA_figure.png has changed |
b |
diff -r 000000000000 -r 93312041f1d5 static/images/BDAGroup_ASCA_figure.tif |
b |
Binary file static/images/BDAGroup_ASCA_figure.tif has changed |
b |
diff -r 000000000000 -r 93312041f1d5 static/images/Thumbs.db |
b |
Binary file static/images/Thumbs.db has changed |
b |
diff -r 000000000000 -r 93312041f1d5 test-data/ASCA_choo_samplemetadata.tsv --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/ASCA_choo_samplemetadata.tsv Fri Sep 21 05:51:14 2018 -0400 |
b |
@@ -0,0 +1,47 @@ +Individu Treatment Date Groupe Date_XSCOR-p1 Date_XSCOR-p2 Treatment_XSCOR-p1 Treatment_XSCOR-p2 Interact_XSCOR-p1 Interact_XSCOR-p2 +T1_G1R1 G1R1 Control 1 T1_Control -0.263776615764101 -0.0227162948089953 -0.352068615277719 0.0501951723654677 -0.0841900461426222 -0.138883652959945 +T1_G1R2 G1R2 Control 1 T1_Control -0.112700381563171 -0.0100902751699422 -0.427012056462084 -0.0742747720664629 -0.100149495758465 -0.0800527605007484 +T1_G1R3 G1R3 Control 1 T1_Control -0.135450434817638 0.00901692866615921 -0.36507151893165 -0.0399670319951867 -0.117942328419898 -0.121275176947659 +T1_G1R4 G1R4 Control 1 T1_Control -0.103492110974998 -0.00156421781950379 -0.18445388901378 -0.112974133305033 -0.294272186361302 -0.265918147170269 +T1_G1R5 G1R5 Control 1 T1_Control -0.247214981877366 -0.0222262447237016 -0.628807325586428 0.0913878072072312 0.00627742251172139 0.00694742305672699 +T1_G1R6 G1R6 Control 1 T1_Control -0.0414801312818897 0.0247316419539704 -0.484807214756766 -0.00587670295465007 -0.0162369740653528 -0.00526940835244719 +T1_G1R7 G1R7 Control 1 T1_Control -0.117483936569149 0.0271222965747283 -0.559089501755822 -0.01718165601941 0.0140537921432078 -0.168001306939547 +T1_G1R8 G1R8 Control 1 T1_Control -0.100117441294851 -0.00427383467271438 -0.292147579575381 -0.0641195966233711 -0.204587035271549 -0.134436423257723 +T1_G3R1 G3R1 Vanco-Imi 1 T1_Vancomycin 0.207632414681034 -0.00558069642413273 -0.361972725679242 -0.0290556556891379 0.0490330814847755 0.160890927117024 +T1_G3R2 G3R2 Vanco-Imi 1 T1_Vancomycin 0.111702541008661 0.00407471178967939 -0.242442758239047 -0.069308901844156 0.0292756738089185 -0.0219743090831489 +T1_G3R3 G3R3 Vanco-Imi 1 T1_Vancomycin 0.181865996862185 -0.00340611940953461 -0.226005498729343 0.0474548303398726 0.0439257010549963 0.0497408808137225 +T1_G3R4 G3R4 Vanco-Imi 1 T1_Vancomycin 0.313740853745976 0.0136318536068662 -0.431486609189272 -0.0102223842835381 0.105736347159205 0.1959043084753 +T1_G3R5 G3R5 Vanco-Imi 1 T1_Vancomycin 0.213591741115782 -0.00674876656602194 -0.3301390976278 -0.0716809079452157 0.0540499889724698 0.192749844228548 +T1_G3R6 G3R6 Vanco-Imi 1 T1_Vancomycin 0.114850645934237 -0.00994420827924761 -0.448122173193104 0.043205526427199 0.130318027270869 0.148273357071658 +T1_G3R7 G3R7 Vanco-Imi 1 T1_Vancomycin 0.0137695208363559 -0.00420685353229555 -0.542825525749072 -0.0382438795386586 0.178840693577092 0.0569055934074114 +T1_G3R8 G3R8 Vanco-Imi 1 T1_Vancomycin 0.0665365048810402 0.0121800788146848 -0.710463312952751 -0.0449595408577803 0.250711222093968 0.166485158282372 +T2_G1R1 G1R1 Control 2 T2_Control -0.11791287165745 0.0234060478147082 0.0207915964917011 -0.142203890112268 0.376276784557908 0.0432407395052124 +T2_G1R2 G1R2 Control 2 T2_Control -0.14706342371869 0.0201752048458604 0.279576491622367 -0.207604656638314 0.387148468266929 0.00033569331420482 +T2_G1R3 G1R3 Control 2 T2_Control -0.191231344886553 0.0168236862860295 0.0654811065928573 -0.29362095360222 0.39583073275468 -0.018293656047174 +T2_G1R4 G1R4 Control 2 T2_Control -0.167414454566213 0.000758843790372174 0.383356706826779 -0.273898802503071 0.294189823195077 0.0353933576827112 +T2_G1R5 G1R5 Control 2 T2_Control -0.0739889553965559 0.0230154641640148 0.131774358825217 -0.233970634845879 0.261220107532913 -0.019356532198424 +T2_G1R6 G1R6 Control 2 T2_Control -0.0188552646959605 -0.00616856186076241 0.336927125116385 -0.133058380230685 0.247824549912035 -0.0121154950141325 +T2_G1R7 G1R7 Control 2 T2_Control -0.167666414912584 -0.0504083049475882 0.48281679033623 -0.101932297787931 0.0576442721169115 0.0543613922471621 +T2_G1R8 G1R8 Control 2 T2_Control -0.237583304309157 -0.027602380092634 0.341345074247496 -0.151454116588796 0.146131098990804 0.062668131437162 +T2_G3R2 G3R2 Vanco-Imi 2 T2_Vancomycin 0.233980958791463 0.0281015766173231 0.189466024822911 -0.273962140308022 -0.30154329810821 -0.0214573936114664 +T2_G3R3 G3R3 Vanco-Imi 2 T2_Vancomycin 0.128133952583074 -0.0250334973610056 0.19992288581292 -0.206567745959379 -0.193928038486439 -0.0325919537180273 +T2_G3R4 G3R4 Vanco-Imi 2 T2_Vancomycin 0.235510061921675 0.0137986007269723 0.259056963507356 -0.25988568476301 -0.359255821127826 -0.07486984036718 +T2_G3R5 G3R5 Vanco-Imi 2 T2_Vancomycin 0.112545287653429 -0.0206585220717317 0.308344939822194 -0.151632144209085 -0.400497432808368 0.00500295086456895 +T2_G3R6 G3R6 Vanco-Imi 2 T2_Vancomycin 0.124239473021999 -0.0129696165790924 0.303917829209721 -0.164878664484114 -0.355347208138659 0.00150097469342654 +T2_G3R7 G3R7 Vanco-Imi 2 T2_Vancomycin 0.081052915460548 -0.00919259612377862 0.297498691625735 -0.142957177716538 -0.33482008264185 0.00625468766729662 +T2_G3R8 G3R8 Vanco-Imi 2 T2_Vancomycin 0.155266292249923 0.0259540547913112 0.228603259000817 -0.145642208330371 -0.243295898044924 -0.0511162100759775 +T3_G1R1 G1R1 Control 3 T3_Control -0.164364864760678 -0.0200729407459455 0.251932164953624 0.178467776811174 -0.247498539157728 0.127897278221848 +T3_G1R2 G1R2 Control 3 T3_Control -0.0983676788090374 0.0259287104462602 0.203193523597202 0.198209780205972 -0.154491907029615 0.0579935114802987 +T3_G1R3 G1R3 Control 3 T3_Control -0.129211355460194 0.0222651813416259 0.079700683525491 0.325718019549065 0.00427322401160234 0.130017268988483 +T3_G1R4 G1R4 Control 3 T3_Control -0.0511561485767939 0.035305218092631 -0.0108970815880194 0.0296656817125971 -0.161400899558209 0.0400905919795229 +T3_G1R5 G1R5 Control 3 T3_Control -0.138821464964014 0.0211235419842184 0.154397804185189 0.301394851523335 -0.0190060922081248 0.0683367042619386 +T3_G1R6 G1R6 Control 3 T3_Control -0.249473956080939 -0.0233288190419852 0.233896218849 0.282968521658481 -0.190931918046832 0.143684699664077 +T3_G1R7 G1R7 Control 3 T3_Control -0.0553810294785773 0.0066348955230046 0.196432876593008 0.145713526261075 -0.188138564991111 0.115155512113687 +T3_G1R8 G1R8 Control 3 T3_Control -0.234939536012931 -0.0678557875998089 0.362296107942414 0.259937215538307 -0.308739798540474 0.145624435578448 +T3_G3R1 G3R1 Vanco-Imi 3 T3_Vancomycin 0.114092897886039 0.00298675435180912 0.193385899651988 0.221587929382518 0.198849152389625 -0.149941602089303 +T3_G3R2 G3R2 Vanco-Imi 3 T3_Vancomycin 0.216806860284924 0.00767577362452252 0.182156610702705 0.285140408498848 0.227615504152754 -0.156753935999413 +T3_G3R3 G3R3 Vanco-Imi 3 T3_Vancomycin 0.205428214190469 0.00798770210985579 0.203464405078008 0.105420996421592 0.127853732721118 -0.119941910497864 +T3_G3R4 G3R4 Vanco-Imi 3 T3_Vancomycin 0.202812954111873 0.0410074697989515 0.0288388597085911 0.369708657910417 0.437950449487773 -0.225103150733399 +T3_G3R5 G3R5 Vanco-Imi 3 T3_Vancomycin 0.110942520215847 -0.00483886802464264 0.186235595144823 0.127799944218548 0.108910302075133 -0.0771223618550159 +T3_G3R7 G3R7 Vanco-Imi 3 T3_Vancomycin 0.156171112974063 0.00468985755059507 0.171102679222868 0.166832974247297 0.107949475579789 -0.0786993721217933 +T3_G3R8 G3R8 Vanco-Imi 3 T3_Vancomycin 0.0644743820188965 -0.059508689411093 0.321899211291687 0.230325040923284 0.0343839370852807 -0.0422808226121511 |
b |
diff -r 000000000000 -r 93312041f1d5 test-data/ASCA_choo_variablemetadata.tsv --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/ASCA_choo_variablemetadata.tsv Fri Sep 21 05:51:14 2018 -0400 |
b |
b'@@ -0,0 +1,1453 @@\n+Numero\tDate_XLOAD-p1\tDate_XLOAD-p2\tTreatment_XLOAD-p1\tTreatment_XLOAD-p2\tInteract_XLOAD-p1\tInteract_XLOAD-p2\n+B8.498\t1\t-0.00254579776355657\t0.481685863330956\t0.00215357282607672\t0.00147456288623412\t-0.00407899309915968\t0.00186975165112379\n+B8.493\t2\t-0.0113140918015287\t0.00425800940215621\t0.00347123010631607\t-0.00452580680443859\t0.00175099073607169\t-0.00104108665047675\n+B8.487\t3\t-0.00321087622144451\t0.000763797125829148\t0.00236064743875642\t-0.00310981793215343\t0.003789031822134\t0.00555946780132975\n+B8.482\t4\t0.000791068347156784\t0.0012817461388504\t0.00189847532941891\t-0.00196757911861553\t-0.00409743904409871\t0.00815323813851661\n+B8.477\t5\t-0.00301872215477541\t0.00513145123992649\t0.00667825510285005\t-0.00564065556679093\t-0.0177067537596329\t0.002020114990727\n+B8.471\t6\t3.21830139531664e-06\t0.00187777253406547\t0.00742220994446077\t0.0113474725143875\t-0.00169134875588462\t-0.00451177991209385\n+B8.466\t7\t-0.00283644355907697\t0.00319586903052011\t0.00511031497392135\t-0.0150491615800708\t0.00597138701818193\t-0.00204949361117712\n+B8.461\t8\t-0.00294111981164501\t0.000883865312460188\t0.00438633849632159\t-0.00486513560669982\t-0.000877737271577462\t-0.00379716901652427\n+B8.455\t9\t-0.00411828244971677\t0.000450743733624075\t0.00289453815203967\t-0.00178959622831114\t0.00129394684113032\t-0.00196467850993804\n+B8.45\t10\t-0.0120177378596307\t0.00365714256748698\t0.00179853300818473\t-0.00121103185727281\t0.00154422756786796\t-0.000244212433229968\n+B8.445\t11\t-0.00635607922293519\t0.0010265694582617\t0.00427215255699879\t0.000246606130704335\t0.00381141068204691\t0.00253246876367328\n+B8.439\t12\t-0.00701312153417327\t0.00231107720398334\t0.00299480971573825\t-0.00127065961543301\t0.00271801890067268\t0.00302144024028215\n+B8.434\t13\t-0.00421040242424699\t-0.000414057675859429\t0.00207748621747242\t-0.00776004851887494\t0.00264216776510985\t-0.00105118887084347\n+B8.429\t14\t0.00191066610189344\t-0.000638446818603615\t0.000990335629397353\t-0.00449866017380522\t0.00264805439031156\t-0.00298873237777612\n+B8.423\t15\t-0.00815800992485557\t-0.000954378510922294\t0.00367124108362297\t-0.00517114229272323\t0.00529555249749626\t0.000805322455626878\n+B8.418\t16\t-0.00025357034355613\t0.00096527752749244\t0.00341045521533727\t-0.00485218560544288\t-0.00114647212060675\t-0.00490577421333873\n+B8.413\t17\t-0.0054156531374219\t0.00201302448164829\t0.00332599563380164\t-0.00248712505517888\t-0.00327625054443817\t0.00161096304220606\n+B8.407\t18\t-0.00648060247013275\t-0.00126095806916433\t0.00357438995615238\t-0.00183105860527872\t-0.00231467696605522\t0.00220369328802673\n+B8.402\t19\t-0.00370075639276661\t0.00265725613908732\t0.00461098304201476\t-0.00519605871321946\t-0.0011224646973663\t0.00264080565109312\n+B8.396\t20\t-0.00344117489056138\t0.00275233208940019\t0.00273739201628898\t-0.00431357965153982\t0.00271818858446777\t0.00259546831489961\n+B8.391\t21\t-0.00332919715536833\t-0.00105723912113511\t0.00346538337820023\t-0.0036937907847254\t0.00220781743085345\t0.00288928407947204\n+B8.386\t22\t-0.0065597480523689\t0.000654953473799113\t0.00206092240463854\t-0.00502339581417265\t-0.000434497110310747\t0.000764940828074891\n+B8.38\t23\t-0.00540401367255776\t0.00197755125298661\t0.00443002552634243\t-0.00358040001015063\t0.00200878111669487\t-0.000272363182362161\n+B8.375\t24\t-0.00418427864467578\t0.00285968964702008\t0.00133612485294154\t0.00230397285450286\t-0.00109298797991666\t0.00512766227606164\n+B8.369\t25\t-0.00064961586672197\t0.000179807929760939\t0.00358402355297445\t-0.0035710105263675\t0.00324847267854979\t-0.00112726729396439\n+B8.363\t26\t-0.000730687254962366\t0.00144738665478618\t-0.000231793428954581\t0.00216246143746267\t0.000186232874955427\t0.000556442558538937\n+B8.357\t27\t0.00199326014925929\t-0.00255601522044261\t-0.0111943254854124\t0.00524125149704335\t-0.000336444681208603\t0.0214592900230105\n+B8.352\t28\t-0.000663188768571487\t-0.00116340067152993\t-0.00758111420293574\t-0.0123758219534857\t-0.0040108530939994\t-0.000704056410256083\n+B8.346\t29\t-0.000193590561863568\t-0.00120270181290027\t0.00180659226827467\t-0.00598643193712516\t-0.00165676957917286\t-0.0065945632'..b'842442\t-0.00593224080327473\t0.00722539523702484\t0.00416820432592764\n+B0.64\t1424\t-0.00272803407490043\t0.00218989934550455\t0.00373443295782445\t-0.00465496098838775\t-0.00115225054557261\t0.00592712228096068\n+B0.635\t1425\t-0.00696288302789789\t-9.02977277204013e-05\t0.00440600107820604\t-0.00260576380225096\t-0.000554571735882949\t0.00996797591293668\n+B0.63\t1426\t-0.00616619536876534\t-0.000912666794182601\t0.00509429403952858\t-0.000920244164322347\t0.00375138011936334\t0.00460148707743233\n+B0.625\t1427\t-0.00687577758164286\t-0.000132148645826868\t0.00479014819178538\t-0.00530397219522073\t0.00209633700599715\t0.00466166390541646\n+B0.62\t1428\t-0.00483670298440795\t0.00223421268711955\t0.00511319421775267\t-0.00301429473950895\t0.00382016911201739\t0.00697784336880615\n+B0.615\t1429\t-0.0050659507595837\t-0.00144129329247438\t0.00451610161158936\t-0.00407416705127028\t0.00135533660155115\t0.0050778777779585\n+B0.61\t1430\t-0.00370853091923866\t-0.00159413073675952\t0.0030468688154367\t-0.00157340271190236\t-0.000344499386500974\t0.00249393394125218\n+B0.605\t1431\t-0.00862848224590104\t0.000150846613360256\t0.00265223604489437\t-0.00188375177868513\t0.00307215945541098\t0.00940512819066676\n+B0.6\t1432\t-0.0101154560361582\t0.00280292890158126\t0.00444222260085152\t-0.00426865447374964\t0.00255894507935389\t0.0113493104448039\n+B0.595\t1433\t-0.00585130761399735\t-0.00109383951572711\t0.00382911644474887\t-0.00455845591448439\t0.00379768697782595\t0.00883699318640083\n+B0.59\t1434\t-0.0116696229741611\t0.00442882887016587\t0.00266691971226364\t-0.00639574826819557\t0.00304300295676538\t0.00941707385139574\n+B0.585\t1435\t-0.00791958695687285\t-0.00106893185444722\t0.00364417124325854\t-0.00338808305585613\t0.000963029740590115\t0.00766930962771487\n+B0.58\t1436\t-0.00832667374444822\t0.00382137077023272\t0.0040430727886781\t-0.000750214590549631\t0.000556287667075583\t0.00175250063478707\n+B0.575\t1437\t-0.00494494639157349\t0.000847924925155617\t0.00466384405148854\t-0.0034062368649595\t-0.00156007485503349\t0.00429755059087788\n+B0.57\t1438\t-0.0123732689759992\t0.00288901948714782\t0.00446586980009451\t-0.00104771437364666\t0.00133187047234836\t0.00934150244412803\n+B0.564\t1439\t-0.00440160854015421\t0.00246475639534991\t0.00555877140062752\t-0.0050474200416817\t0.00105902831934788\t0.00665288940807864\n+B0.559\t1440\t-0.00707458440448964\t-0.000476219743195678\t0.00445332010908552\t-0.00384138715254062\t-0.000409019758578785\t0.00495573030914791\n+B0.554\t1441\t-0.0073399611600104\t-0.000408477909904538\t0.00463281879967984\t-0.000895374255937314\t-0.00025970265171709\t0.00360902647623529\n+B0.549\t1442\t-0.00969437455515656\t0.00347979567674592\t0.00498699390564311\t-0.00135270066342547\t0.00325373627690653\t0.00611329387344818\n+B0.544\t1443\t-0.00723977430210893\t-0.000396852158566829\t0.00354119175496282\t-0.00114979078125447\t0.00290303676226059\t0.00453029501027111\n+B0.539\t1444\t-0.00988238506320499\t0.00163248087106283\t0.00646684021296898\t-0.00437051793784264\t0.00225701556343936\t0.00707061482835997\n+B0.534\t1445\t-0.00968369353581556\t0.000657836281376322\t0.00462843534044351\t0.00179271995488926\t3.2643673527038e-05\t0.0100730596388162\n+B0.529\t1446\t-0.011130701704105\t0.00229201225770819\t0.00610428662801148\t-0.00516306835642758\t0.00468542524727831\t0.00999818965600566\n+B0.524\t1447\t-0.00639871034700774\t-0.000361361658633615\t0.00433087139983851\t8.83113950882864e-05\t-0.000131301414265908\t0.00563738978271143\n+B0.519\t1448\t-0.0112172090305369\t-0.00236113680503867\t0.00513359367268508\t-0.00107351498389713\t0.00210513126741888\t0.0072908263769941\n+B0.514\t1449\t-0.00962786126400558\t-0.00218581660677387\t0.00454652356939594\t-0.00166489150284927\t0.00188804301631203\t0.0094387603398122\n+B0.509\t1450\t-0.0119283416411949\t0.00261548669763471\t0.00408769919942446\t-5.3200925408725e-05\t0.00166910536792132\t0.00749513758913637\n+B0.504\t1451\t-0.00471042029250878\t-0.000673169900173855\t0.00453701496774436\t-0.00395879996748037\t-0.000964073253009593\t0.00528821451979543\n+B0.501\t1452\t-0.00509309773782835\t-4.97172998852797e-05\t0.00292175485139531\t-0.004406099644876\t0.000109609240877405\t0.00514797277435738\n' |
b |
diff -r 000000000000 -r 93312041f1d5 test-data/choo_datamatrix.txt --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/choo_datamatrix.txt Fri Sep 21 05:51:14 2018 -0400 |
b |
b'@@ -0,0 +1,1453 @@\n+Bucket\tT1_G1R1\tT1_G1R2\tT1_G1R3\tT1_G1R4\tT1_G1R5\tT1_G1R6\tT1_G1R7\tT1_G1R8\tT1_G3R1\tT1_G3R2\tT1_G3R3\tT1_G3R4\tT1_G3R5\tT1_G3R6\tT1_G3R7\tT1_G3R8\tT2_G1R1\tT2_G1R2\tT2_G1R3\tT2_G1R4\tT2_G1R5\tT2_G1R6\tT2_G1R7\tT2_G1R8\tT2_G3R2\tT2_G3R3\tT2_G3R4\tT2_G3R5\tT2_G3R6\tT2_G3R7\tT2_G3R8\tT3_G1R1\tT3_G1R2\tT3_G1R3\tT3_G1R4\tT3_G1R5\tT3_G1R6\tT3_G1R7\tT3_G1R8\tT3_G3R1\tT3_G3R2\tT3_G3R3\tT3_G3R4\tT3_G3R5\tT3_G3R7\tT3_G3R8\n+B8.498\t0.0000061\t0.00000623\t0.00000006\t0.00001744\t0.00000102\t0.00000981\t0.00001689\t0.00001291\t0.00000325\t0.00000638\t0.00001496\t0.00000479\t0.00000697\t0.00000059\t0.00000341\t0.00000281\t0.00000146\t0.00000713\t0.00001023\t0.00001638\t0.00000647\t0.00000224\t0.00001007\t0.00001372\t0.00001244\t0.00000113\t0.00000721\t0.00003496\t0.00000679\t0.0000007\t0.00002914\t0.00000063\t0.00002359\t0.00001895\t0.00000423\t0.00003169\t0.00003207\t0.000006\t0.00000735\t0.00000168\t0.00000981\t0.00001109\t0.00000621\t0.00000261\t0.00000255\t0.00002182\n+B8.493\t0.00000998\t0.00000095\t0.00003644\t0.00002526\t0.0000339\t0.00003724\t0.00004402\t0.00000088\t0.00000654\t0.00002208\t0.00000878\t0.00001703\t0.00000431\t0.00000083\t0.00000467\t0.00000022\t0.00001066\t0.00004092\t0.00003119\t0.00000075\t0.00004418\t0.0000509\t0.00012332\t0.00002537\t0.00000586\t0.00000308\t0.00004266\t0.00002435\t0.00000589\t0.0000296\t0.00002821\t0.00001125\t0.00003407\t0.00000442\t0.0000146\t0.00009706\t0.00000463\t0.00004475\t0.00000018\t0.00001287\t0.00000038\t0.00001059\t0.000012\t0.00002534\t0.00000041\t0.00003879\n+B8.487\t0.00002475\t0.00000082\t0.00001214\t0.00000876\t0.00000703\t0.00000167\t0.00000031\t0.00000487\t0.00000561\t0.00001711\t0.00000256\t0.0000137\t0.00000691\t0.00001574\t0.00002749\t0.00000166\t0.00000626\t0.00000535\t0.00001688\t0.00002762\t0.00002623\t0.00003185\t0.00003204\t0.00001857\t0.00000087\t0.00000836\t0.00000072\t0.00001391\t0.00000496\t0.00002574\t0.00001918\t0.00001021\t0.00000597\t0.0000116\t0.00000494\t0.00002493\t0.00000856\t0.00002574\t0.00000934\t0.00000941\t0.00000635\t0.00001756\t0.00000106\t0.00001785\t0.00000002\t0.00001894\n+B8.482\t0.00002094\t0.00000341\t0.0000071\t0.00000266\t0.00000586\t0.00000543\t0.00000185\t0.00000016\t0.00000297\t0.00001231\t0.00000207\t0.00001344\t0.00000261\t0.00002398\t0.00001208\t0.00001427\t0.00000161\t0.00000841\t0.0000094\t0.00000211\t0.00001963\t0.00002176\t0.00001554\t0.00000121\t0.00000055\t0.00003104\t0.00004729\t0.00003481\t0.00000081\t0.000002\t0.00000857\t0.00000625\t0.00000444\t0.00000979\t0.00001206\t0.00003043\t0.00000848\t0.00000326\t0.00004624\t0.00001202\t0.00000395\t0.0000027\t0.00000723\t0.0000062\t0.00000162\t0.00000221\n+B8.477\t0.00019225\t0.000007\t0.00010451\t0.00001042\t0.00010748\t0.00000267\t0.0000327\t0.00006859\t0.00004972\t0.00001628\t0.00006345\t0.00001599\t0.00003531\t0.00001676\t0.00001078\t0.00001363\t0.00013513\t0.00002885\t0.00000369\t0.00002181\t0.00006892\t0.00004414\t0.00013656\t0.00001363\t0.00002128\t0.00000511\t0.00001366\t0.00031075\t0.00028714\t0.00026217\t0.00010458\t0.00007024\t0.0003119\t0.00005604\t0.00010395\t0.00004559\t0.00021859\t0.00001291\t0.00000558\t0.00004441\t0.00000147\t0.00000448\t0.00001431\t0.00002225\t0.00015476\t0.00000328\n+B8.471\t0.00007472\t0.00005876\t0.00010243\t0.0001246\t0.00012455\t0.00002291\t0.00004773\t0.00002502\t0.00002523\t0.00007455\t0.00005554\t0.00006838\t0.00001989\t0.00009626\t0.00014147\t0.00000347\t0.00001872\t0.00000804\t0.00000032\t0.00002882\t0.00000762\t0.0002474\t0.00022066\t0.00018263\t0.0003422\t0.00002635\t0.00022562\t0.00002445\t0.00001987\t0.00001382\t0.00005712\t0.00019409\t0.0000057\t0.00009044\t0.00001315\t0.00021329\t0.00013106\t0.00018259\t0.00021709\t0.00008653\t0.00033078\t0.00010083\t0.00011378\t0.00013906\t0.00002707\t0.00015507\n+B8.466\t0.00001091\t0.00000884\t0.00001502\t0.00001885\t0.00000636\t0.00009238\t0.00001631\t0.00000651\t0.00000222\t0.00000582\t0.00000224\t0.00000218\t0.00001072\t0.00000406\t0.00000444\t0.00014656\t0.00001839\t0.00009698\t0.00032629\t0.00015151\t0.00003458\t0.00002307\t0.00003601\t0.00000889\t0.00000973\t0.00028275\t0.00000877\t0.0000556\t0.00000473\t0.00000253\t0.00000821\t0.00000499\t0.00000722\t0.00002009\t0.00000381\t0.00000638\t0.00001617\t0.00001101\t0.00001886\t0.00001546\t0.00007658\t0.00004417\t0.00000879\t0.00000093\t0.00000148\t0.00003115\n+B8.461\t0.00002301\t0.00001534\t0.0'..b'0001119\t0.00001418\t0.00000921\t0.00000288\t0.00000071\t0.00000775\t0.00000468\t0.00001502\t0.00000703\t0.00000984\t0.00000224\t0.00002068\t0.00004508\t0.00001301\t0.00003589\t0.00008654\t0.00000333\t0.00000525\t0.0000002\t0.0000185\t0.00000387\t0.00004222\t0.00000103\t0.00000097\t0.00001031\t0.00000743\t0.00001205\t0.00001976\t0.00000827\t0.00001059\t0.00001913\t0.00006175\t0.00002811\t0.00009535\t0.00001356\t0.00000721\t0.00000533\t0.00000709\t0.0000164\t0.00000832\t0.00000854\n+B0.529\t0.00000204\t0.0000202\t0.00000751\t0.00000263\t0.00001477\t0.00000792\t0.0000103\t0.00000202\t0.00000639\t0.00000121\t0.00000632\t0.00000093\t0.00000537\t0.00001324\t0.00004261\t0.00000114\t0.00004493\t0.00005634\t0.00003327\t0.00003793\t0.0001103\t0.00004045\t0.00004955\t0.00002408\t0.00000715\t0.00005666\t0.00000634\t0.00004307\t0.00000642\t0.00000187\t0.00000099\t0.00000062\t0.00000735\t0.0000095\t0.00001068\t0.00000671\t0.00003737\t0.00004878\t0.00012296\t0.00002352\t0.00000896\t0.00000975\t0.00000181\t0.00000313\t0.00002015\t0.00001124\n+B0.524\t0.00000741\t0.00001393\t0.00000504\t0.00000277\t0.00001453\t0.00000865\t0.00000742\t0.00002382\t0.00000052\t0.00001984\t0.0000047\t0.00000997\t0.00000211\t0.00000843\t0.00001694\t0.00000258\t0.00003227\t0.00001063\t0.00002642\t0.00002593\t0.00009133\t0.00000285\t0.00000707\t0.00002424\t0.00000459\t0.00003554\t0.00003056\t0.00000066\t0.00000787\t0.00001199\t0.00003651\t0.00000438\t0.0000071\t0.00002115\t0.00000441\t0.00002771\t0.00002283\t0.00000936\t0.00013401\t0.00003095\t0.00000572\t0.0000018\t0.00000995\t0.00003662\t0.00000336\t0.00000923\n+B0.519\t0.00000304\t0.00000243\t0.00001811\t0.00002004\t0.00000718\t0.00002692\t0.00000059\t0.00000855\t0.00000326\t0.00000328\t0.00000021\t0.00001231\t0.00000309\t0.0000114\t0.00000952\t0.00000342\t0.00001652\t0.0000335\t0.00002869\t0.00004677\t0.0000773\t0.00000676\t0.00005037\t0.00003981\t0.00001763\t0.00000859\t0.00000284\t0.00000685\t0.00000574\t0.00005289\t0.0000031\t0.00002553\t0.00001368\t0.0000077\t0.00000618\t0.00002563\t0.00002159\t0.00000793\t0.00014773\t0.00001456\t0.00001225\t0.00000386\t0.0000171\t0.00002774\t0.00000043\t0.00000475\n+B0.514\t0.00000556\t0.00002211\t0.00002672\t0.00000109\t0.00000171\t0.00000478\t0.00000598\t0.00000986\t0.00001\t0.00001722\t0.00000295\t0.00001243\t0.00000458\t0.00001486\t0.00000284\t0.00000925\t0.00001771\t0.00005091\t0.00003706\t0.00001564\t0.0001105\t0.00002908\t0.00003488\t0.00001528\t0.00001152\t0.00001943\t0.00000305\t0\t0.00004144\t0.00003276\t0.00000096\t0.00001003\t0.00000186\t0.00000787\t0.00001875\t0.00001598\t0.00001475\t0.00000945\t0.00018729\t0.00000806\t0.00001949\t0.00001155\t0.00000025\t0.00001036\t0.00000834\t0.00001218\n+B0.509\t0.00001511\t0.00000724\t0.00002063\t0.00001496\t0.00000173\t0.00001654\t0.00000541\t0.00001072\t0.00000531\t0.0000049\t0.00000702\t0.00000151\t0.00000123\t0.0000174\t0.00000262\t0.0000015\t0.00001406\t0.00000046\t0.00002044\t0.00005408\t0.00011529\t0.00003738\t0.00001055\t0.0000102\t0.00000934\t0.00000769\t0.00001572\t0.00000394\t0.00000784\t0.00000529\t0.00001753\t0.0000014\t0.00001159\t0.00001384\t0.00000608\t0.00003477\t0.00002439\t0.00002849\t0.00012631\t0.00000134\t0.0000082\t0.00000386\t0.00001378\t0.00001035\t0.00001062\t0.00001137\n+B0.504\t0.00000626\t0.00000841\t0.00001709\t0.00000662\t0.00001004\t0.00001693\t0.00001153\t0.00000401\t0.0000049\t0.0000109\t0.00000892\t0.0000142\t0.00000854\t0.000008\t0.00001048\t0.00000593\t0.00001487\t0.00001686\t0.00003003\t0.00000425\t0.00009689\t0.00003056\t0.00003422\t0.00000282\t0.00000309\t0.0000085\t0.00001946\t0.0000278\t0.00001202\t0.00003765\t0.00006254\t0.00001198\t0.00000919\t0.00001144\t0.00000562\t0.00001601\t0.00002613\t0.00000132\t0.00010886\t0.00000764\t0.00001277\t0.00000051\t0.00000757\t0.00001387\t0.00000659\t0.00002686\n+B0.501\t0.00000108\t0.0000035\t0.00000201\t0.00000429\t0.00000084\t0.00000549\t0.00000877\t0.00000433\t0.00000185\t0.00000159\t0.0000017\t0.00000093\t0.00000358\t0.00000337\t0.00000456\t0.00000862\t0.00002023\t0.00001035\t0.00000125\t0.00001928\t0.00002752\t0.00000638\t0.00000972\t0.00000874\t0.00000964\t0.00000063\t0.00000063\t0.00001278\t0.00000257\t0.00002004\t0.0000123\t0.00000881\t0.00000607\t0.00001011\t0.00000181\t0.00000012\t0.00000356\t0.0000058\t0.00003245\t0.00000312\t0.0000006\t0.00000385\t0.00000042\t0.00000178\t0.00000039\t0.00000222\n' |
b |
diff -r 000000000000 -r 93312041f1d5 test-data/choo_samplemetadata.txt --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/choo_samplemetadata.txt Fri Sep 21 05:51:14 2018 -0400 |
b |
@@ -0,0 +1,47 @@ +Sample Individu Treatment Date Groupe +T1_G1R1 G1R1 Control 1 T1_Control +T1_G1R2 G1R2 Control 1 T1_Control +T1_G1R3 G1R3 Control 1 T1_Control +T1_G1R4 G1R4 Control 1 T1_Control +T1_G1R5 G1R5 Control 1 T1_Control +T1_G1R6 G1R6 Control 1 T1_Control +T1_G1R7 G1R7 Control 1 T1_Control +T1_G1R8 G1R8 Control 1 T1_Control +T1_G3R1 G3R1 Vanco-Imi 1 T1_Vancomycin +T1_G3R2 G3R2 Vanco-Imi 1 T1_Vancomycin +T1_G3R3 G3R3 Vanco-Imi 1 T1_Vancomycin +T1_G3R4 G3R4 Vanco-Imi 1 T1_Vancomycin +T1_G3R5 G3R5 Vanco-Imi 1 T1_Vancomycin +T1_G3R6 G3R6 Vanco-Imi 1 T1_Vancomycin +T1_G3R7 G3R7 Vanco-Imi 1 T1_Vancomycin +T1_G3R8 G3R8 Vanco-Imi 1 T1_Vancomycin +T2_G1R1 G1R1 Control 2 T2_Control +T2_G1R2 G1R2 Control 2 T2_Control +T2_G1R3 G1R3 Control 2 T2_Control +T2_G1R4 G1R4 Control 2 T2_Control +T2_G1R5 G1R5 Control 2 T2_Control +T2_G1R6 G1R6 Control 2 T2_Control +T2_G1R7 G1R7 Control 2 T2_Control +T2_G1R8 G1R8 Control 2 T2_Control +T2_G3R2 G3R2 Vanco-Imi 2 T2_Vancomycin +T2_G3R3 G3R3 Vanco-Imi 2 T2_Vancomycin +T2_G3R4 G3R4 Vanco-Imi 2 T2_Vancomycin +T2_G3R5 G3R5 Vanco-Imi 2 T2_Vancomycin +T2_G3R6 G3R6 Vanco-Imi 2 T2_Vancomycin +T2_G3R7 G3R7 Vanco-Imi 2 T2_Vancomycin +T2_G3R8 G3R8 Vanco-Imi 2 T2_Vancomycin +T3_G1R1 G1R1 Control 3 T3_Control +T3_G1R2 G1R2 Control 3 T3_Control +T3_G1R3 G1R3 Control 3 T3_Control +T3_G1R4 G1R4 Control 3 T3_Control +T3_G1R5 G1R5 Control 3 T3_Control +T3_G1R6 G1R6 Control 3 T3_Control +T3_G1R7 G1R7 Control 3 T3_Control +T3_G1R8 G1R8 Control 3 T3_Control +T3_G3R1 G3R1 Vanco-Imi 3 T3_Vancomycin +T3_G3R2 G3R2 Vanco-Imi 3 T3_Vancomycin +T3_G3R3 G3R3 Vanco-Imi 3 T3_Vancomycin +T3_G3R4 G3R4 Vanco-Imi 3 T3_Vancomycin +T3_G3R5 G3R5 Vanco-Imi 3 T3_Vancomycin +T3_G3R7 G3R7 Vanco-Imi 3 T3_Vancomycin +T3_G3R8 G3R8 Vanco-Imi 3 T3_Vancomycin |
b |
diff -r 000000000000 -r 93312041f1d5 test-data/choo_variablemetadata.txt --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/choo_variablemetadata.txt Fri Sep 21 05:51:14 2018 -0400 |
b |
b'@@ -0,0 +1,1453 @@\n+Bucket\tNumero\n+B8.498\t1\n+B8.493\t2\n+B8.487\t3\n+B8.482\t4\n+B8.477\t5\n+B8.471\t6\n+B8.466\t7\n+B8.461\t8\n+B8.455\t9\n+B8.45\t10\n+B8.445\t11\n+B8.439\t12\n+B8.434\t13\n+B8.429\t14\n+B8.423\t15\n+B8.418\t16\n+B8.413\t17\n+B8.407\t18\n+B8.402\t19\n+B8.396\t20\n+B8.391\t21\n+B8.386\t22\n+B8.38\t23\n+B8.375\t24\n+B8.369\t25\n+B8.363\t26\n+B8.357\t27\n+B8.352\t28\n+B8.346\t29\n+B8.341\t30\n+B8.336\t31\n+B8.33\t32\n+B8.325\t33\n+B8.32\t34\n+B8.314\t35\n+B8.309\t36\n+B8.304\t37\n+B8.298\t38\n+B8.293\t39\n+B8.288\t40\n+B8.282\t41\n+B8.277\t42\n+B8.272\t43\n+B8.266\t44\n+B8.261\t45\n+B8.256\t46\n+B8.25\t47\n+B8.244\t48\n+B8.238\t49\n+B8.232\t50\n+B8.227\t51\n+B8.221\t52\n+B8.216\t53\n+B8.211\t54\n+B8.205\t55\n+B8.2\t56\n+B8.195\t57\n+B8.189\t58\n+B8.184\t59\n+B8.179\t60\n+B8.173\t61\n+B8.168\t62\n+B8.163\t63\n+B8.157\t64\n+B8.152\t65\n+B8.147\t66\n+B8.141\t67\n+B8.136\t68\n+B8.131\t69\n+B8.125\t70\n+B8.119\t71\n+B8.113\t72\n+B8.107\t73\n+B8.102\t74\n+B8.096\t75\n+B8.091\t76\n+B8.086\t77\n+B8.08\t78\n+B8.075\t79\n+B8.07\t80\n+B8.064\t81\n+B8.059\t82\n+B8.054\t83\n+B8.048\t84\n+B8.043\t85\n+B8.038\t86\n+B8.032\t87\n+B8.027\t88\n+B8.022\t89\n+B8.016\t90\n+B8.011\t91\n+B8.006\t92\n+B8\t93\n+B7.995\t94\n+B7.99\t95\n+B7.985\t96\n+B7.98\t97\n+B7.975\t98\n+B7.97\t99\n+B7.965\t100\n+B7.96\t101\n+B7.955\t102\n+B7.95\t103\n+B7.945\t104\n+B7.94\t105\n+B7.935\t106\n+B7.93\t107\n+B7.925\t108\n+B7.92\t109\n+B7.915\t110\n+B7.91\t111\n+B7.905\t112\n+B7.9\t113\n+B7.895\t114\n+B7.89\t115\n+B7.885\t116\n+B7.88\t117\n+B7.875\t118\n+B7.87\t119\n+B7.865\t120\n+B7.86\t121\n+B7.855\t122\n+B7.85\t123\n+B7.845\t124\n+B7.84\t125\n+B7.835\t126\n+B7.83\t127\n+B7.825\t128\n+B7.82\t129\n+B7.815\t130\n+B7.81\t131\n+B7.805\t132\n+B7.8\t133\n+B7.795\t134\n+B7.79\t135\n+B7.785\t136\n+B7.78\t137\n+B7.775\t138\n+B7.77\t139\n+B7.765\t140\n+B7.76\t141\n+B7.755\t142\n+B7.75\t143\n+B7.745\t144\n+B7.74\t145\n+B7.735\t146\n+B7.73\t147\n+B7.725\t148\n+B7.72\t149\n+B7.715\t150\n+B7.71\t151\n+B7.705\t152\n+B7.7\t153\n+B7.695\t154\n+B7.69\t155\n+B7.685\t156\n+B7.68\t157\n+B7.675\t158\n+B7.67\t159\n+B7.665\t160\n+B7.66\t161\n+B7.655\t162\n+B7.65\t163\n+B7.645\t164\n+B7.64\t165\n+B7.635\t166\n+B7.63\t167\n+B7.625\t168\n+B7.62\t169\n+B7.615\t170\n+B7.61\t171\n+B7.605\t172\n+B7.6\t173\n+B7.595\t174\n+B7.59\t175\n+B7.585\t176\n+B7.58\t177\n+B7.575\t178\n+B7.57\t179\n+B7.565\t180\n+B7.56\t181\n+B7.555\t182\n+B7.55\t183\n+B7.545\t184\n+B7.54\t185\n+B7.535\t186\n+B7.53\t187\n+B7.525\t188\n+B7.52\t189\n+B7.515\t190\n+B7.51\t191\n+B7.505\t192\n+B7.5\t193\n+B7.495\t194\n+B7.49\t195\n+B7.485\t196\n+B7.48\t197\n+B7.475\t198\n+B7.47\t199\n+B7.465\t200\n+B7.46\t201\n+B7.455\t202\n+B7.45\t203\n+B7.445\t204\n+B7.44\t205\n+B7.435\t206\n+B7.43\t207\n+B7.425\t208\n+B7.42\t209\n+B7.415\t210\n+B7.41\t211\n+B7.405\t212\n+B7.4\t213\n+B7.395\t214\n+B7.39\t215\n+B7.385\t216\n+B7.38\t217\n+B7.375\t218\n+B7.37\t219\n+B7.365\t220\n+B7.36\t221\n+B7.355\t222\n+B7.35\t223\n+B7.345\t224\n+B7.34\t225\n+B7.335\t226\n+B7.33\t227\n+B7.325\t228\n+B7.32\t229\n+B7.315\t230\n+B7.31\t231\n+B7.305\t232\n+B7.3\t233\n+B7.295\t234\n+B7.29\t235\n+B7.285\t236\n+B7.28\t237\n+B7.275\t238\n+B7.27\t239\n+B7.265\t240\n+B7.26\t241\n+B7.255\t242\n+B7.25\t243\n+B7.245\t244\n+B7.24\t245\n+B7.235\t246\n+B7.23\t247\n+B7.225\t248\n+B7.22\t249\n+B7.215\t250\n+B7.21\t251\n+B7.205\t252\n+B7.2\t253\n+B7.195\t254\n+B7.19\t255\n+B7.185\t256\n+B7.18\t257\n+B7.175\t258\n+B7.17\t259\n+B7.165\t260\n+B7.16\t261\n+B7.155\t262\n+B7.15\t263\n+B7.145\t264\n+B7.14\t265\n+B7.135\t266\n+B7.13\t267\n+B7.125\t268\n+B7.12\t269\n+B7.115\t270\n+B7.11\t271\n+B7.105\t272\n+B7.1\t273\n+B7.095\t274\n+B7.09\t275\n+B7.085\t276\n+B7.08\t277\n+B7.075\t278\n+B7.07\t279\n+B7.065\t280\n+B7.06\t281\n+B7.055\t282\n+B7.05\t283\n+B7.045\t284\n+B7.04\t285\n+B7.035\t286\n+B7.03\t287\n+B7.025\t288\n+B7.02\t289\n+B7.015\t290\n+B7.01\t291\n+B7.005\t292\n+B7\t293\n+B6.995\t294\n+B6.99\t295\n+B6.985\t296\n+B6.98\t297\n+B6.975\t298\n+B6.97\t299\n+B6.965\t300\n+B6.96\t301\n+B6.955\t302\n+B6.95\t303\n+B6.945\t304\n+B6.94\t305\n+B6.935\t306\n+B6.93\t307\n+B6.925\t308\n+B6.92\t309\n+B6.915\t310\n+B6.91\t311\n+B6.905\t312\n+B6.9\t313\n+B6.895\t314\n+B6.89\t315\n+B6.885\t316\n+B6.88\t317\n+B6.875\t318\n+B6.87\t319\n+B6.865\t320\n+B6.86\t321\n+B6.855\t322\n+B6.85\t323\n+B6.845\t324\n+B6.84\t325\n+B6.835\t326\n+B6.83\t327\n+B6.825\t328\n+B6.82\t329\n+B6.815\t330\n+B6.81\t331\n+B6.805\t332\n+B6.8\t333\n+B6.795\t334\n+B6.79\t335\n+B6.785\t336\n+B6.78\t337\n+B6.775\t338\n+B6.77\t339\n+B6.765\t340\n+B6.76\t341\n+B6.755\t342\n+B6.75\t343\n+B6.745\t344\n+B6.74\t345\n+B6.735\t346\n+B6.73\t347\n+B6.725\t348\n+B6.72\t349\n+B6.715\t350\n+B6.71\t351\n+B6.705\t352\n+B6.7'..b'43\n+B2.045\t1144\n+B2.04\t1145\n+B2.035\t1146\n+B2.03\t1147\n+B2.025\t1148\n+B2.02\t1149\n+B2.015\t1150\n+B2.01\t1151\n+B2.005\t1152\n+B2\t1153\n+B1.994\t1154\n+B1.989\t1155\n+B1.984\t1156\n+B1.979\t1157\n+B1.974\t1158\n+B1.969\t1159\n+B1.964\t1160\n+B1.959\t1161\n+B1.954\t1162\n+B1.949\t1163\n+B1.944\t1164\n+B1.939\t1165\n+B1.934\t1166\n+B1.929\t1167\n+B1.924\t1168\n+B1.919\t1169\n+B1.914\t1170\n+B1.909\t1171\n+B1.904\t1172\n+B1.899\t1173\n+B1.894\t1174\n+B1.889\t1175\n+B1.884\t1176\n+B1.879\t1177\n+B1.874\t1178\n+B1.869\t1179\n+B1.864\t1180\n+B1.859\t1181\n+B1.854\t1182\n+B1.849\t1183\n+B1.844\t1184\n+B1.839\t1185\n+B1.834\t1186\n+B1.829\t1187\n+B1.824\t1188\n+B1.819\t1189\n+B1.814\t1190\n+B1.809\t1191\n+B1.804\t1192\n+B1.799\t1193\n+B1.794\t1194\n+B1.789\t1195\n+B1.784\t1196\n+B1.779\t1197\n+B1.774\t1198\n+B1.769\t1199\n+B1.764\t1200\n+B1.759\t1201\n+B1.754\t1202\n+B1.749\t1203\n+B1.744\t1204\n+B1.739\t1205\n+B1.734\t1206\n+B1.729\t1207\n+B1.724\t1208\n+B1.719\t1209\n+B1.714\t1210\n+B1.709\t1211\n+B1.704\t1212\n+B1.699\t1213\n+B1.694\t1214\n+B1.689\t1215\n+B1.684\t1216\n+B1.679\t1217\n+B1.674\t1218\n+B1.669\t1219\n+B1.664\t1220\n+B1.659\t1221\n+B1.654\t1222\n+B1.649\t1223\n+B1.644\t1224\n+B1.639\t1225\n+B1.634\t1226\n+B1.629\t1227\n+B1.624\t1228\n+B1.619\t1229\n+B1.614\t1230\n+B1.609\t1231\n+B1.604\t1232\n+B1.599\t1233\n+B1.594\t1234\n+B1.589\t1235\n+B1.584\t1236\n+B1.579\t1237\n+B1.574\t1238\n+B1.569\t1239\n+B1.564\t1240\n+B1.559\t1241\n+B1.554\t1242\n+B1.549\t1243\n+B1.544\t1244\n+B1.539\t1245\n+B1.534\t1246\n+B1.529\t1247\n+B1.524\t1248\n+B1.519\t1249\n+B1.514\t1250\n+B1.509\t1251\n+B1.504\t1252\n+B1.499\t1253\n+B1.494\t1254\n+B1.489\t1255\n+B1.484\t1256\n+B1.479\t1257\n+B1.474\t1258\n+B1.469\t1259\n+B1.464\t1260\n+B1.459\t1261\n+B1.454\t1262\n+B1.449\t1263\n+B1.444\t1264\n+B1.439\t1265\n+B1.434\t1266\n+B1.429\t1267\n+B1.424\t1268\n+B1.419\t1269\n+B1.414\t1270\n+B1.409\t1271\n+B1.404\t1272\n+B1.399\t1273\n+B1.394\t1274\n+B1.389\t1275\n+B1.384\t1276\n+B1.379\t1277\n+B1.374\t1278\n+B1.369\t1279\n+B1.364\t1280\n+B1.359\t1281\n+B1.354\t1282\n+B1.349\t1283\n+B1.344\t1284\n+B1.339\t1285\n+B1.334\t1286\n+B1.329\t1287\n+B1.324\t1288\n+B1.319\t1289\n+B1.314\t1290\n+B1.309\t1291\n+B1.304\t1292\n+B1.299\t1293\n+B1.294\t1294\n+B1.289\t1295\n+B1.284\t1296\n+B1.279\t1297\n+B1.274\t1298\n+B1.269\t1299\n+B1.264\t1300\n+B1.259\t1301\n+B1.254\t1302\n+B1.249\t1303\n+B1.244\t1304\n+B1.239\t1305\n+B1.234\t1306\n+B1.229\t1307\n+B1.224\t1308\n+B1.219\t1309\n+B1.214\t1310\n+B1.209\t1311\n+B1.204\t1312\n+B1.199\t1313\n+B1.194\t1314\n+B1.189\t1315\n+B1.184\t1316\n+B1.179\t1317\n+B1.174\t1318\n+B1.169\t1319\n+B1.164\t1320\n+B1.159\t1321\n+B1.154\t1322\n+B1.149\t1323\n+B1.144\t1324\n+B1.139\t1325\n+B1.134\t1326\n+B1.129\t1327\n+B1.124\t1328\n+B1.119\t1329\n+B1.114\t1330\n+B1.109\t1331\n+B1.104\t1332\n+B1.099\t1333\n+B1.094\t1334\n+B1.089\t1335\n+B1.084\t1336\n+B1.079\t1337\n+B1.074\t1338\n+B1.069\t1339\n+B1.064\t1340\n+B1.059\t1341\n+B1.054\t1342\n+B1.049\t1343\n+B1.044\t1344\n+B1.039\t1345\n+B1.034\t1346\n+B1.029\t1347\n+B1.024\t1348\n+B1.019\t1349\n+B1.014\t1350\n+B1.009\t1351\n+B1.004\t1352\n+B0.998\t1353\n+B0.993\t1354\n+B0.988\t1355\n+B0.983\t1356\n+B0.978\t1357\n+B0.973\t1358\n+B0.968\t1359\n+B0.963\t1360\n+B0.958\t1361\n+B0.953\t1362\n+B0.948\t1363\n+B0.943\t1364\n+B0.938\t1365\n+B0.932\t1366\n+B0.927\t1367\n+B0.922\t1368\n+B0.917\t1369\n+B0.912\t1370\n+B0.907\t1371\n+B0.902\t1372\n+B0.897\t1373\n+B0.892\t1374\n+B0.887\t1375\n+B0.882\t1376\n+B0.877\t1377\n+B0.872\t1378\n+B0.867\t1379\n+B0.862\t1380\n+B0.857\t1381\n+B0.852\t1382\n+B0.847\t1383\n+B0.842\t1384\n+B0.837\t1385\n+B0.832\t1386\n+B0.827\t1387\n+B0.822\t1388\n+B0.817\t1389\n+B0.812\t1390\n+B0.806\t1391\n+B0.801\t1392\n+B0.796\t1393\n+B0.791\t1394\n+B0.786\t1395\n+B0.781\t1396\n+B0.776\t1397\n+B0.771\t1398\n+B0.766\t1399\n+B0.761\t1400\n+B0.756\t1401\n+B0.751\t1402\n+B0.746\t1403\n+B0.741\t1404\n+B0.736\t1405\n+B0.731\t1406\n+B0.726\t1407\n+B0.721\t1408\n+B0.716\t1409\n+B0.711\t1410\n+B0.706\t1411\n+B0.701\t1412\n+B0.696\t1413\n+B0.691\t1414\n+B0.686\t1415\n+B0.68\t1416\n+B0.675\t1417\n+B0.67\t1418\n+B0.665\t1419\n+B0.66\t1420\n+B0.655\t1421\n+B0.65\t1422\n+B0.645\t1423\n+B0.64\t1424\n+B0.635\t1425\n+B0.63\t1426\n+B0.625\t1427\n+B0.62\t1428\n+B0.615\t1429\n+B0.61\t1430\n+B0.605\t1431\n+B0.6\t1432\n+B0.595\t1433\n+B0.59\t1434\n+B0.585\t1435\n+B0.58\t1436\n+B0.575\t1437\n+B0.57\t1438\n+B0.564\t1439\n+B0.559\t1440\n+B0.554\t1441\n+B0.549\t1442\n+B0.544\t1443\n+B0.539\t1444\n+B0.534\t1445\n+B0.529\t1446\n+B0.524\t1447\n+B0.519\t1448\n+B0.514\t1449\n+B0.509\t1450\n+B0.504\t1451\n+B0.501\t1452\n' |