Repository 'sklearn_feature_selection'
hg clone https://toolshed.g2.bx.psu.edu/repos/bgruening/sklearn_feature_selection

Changeset 10:96f9b73327f2 (2018-08-04)
Previous changeset 9:537c6763c018 (2018-07-13) Next changeset 11:9af844f24ef6 (2018-08-04)
Commit message:
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 76583c1fcd9d06a4679cc46ffaee44117b9e22cd
modified:
feature_selection.xml
main_macros.xml
test-data/feature_selection_result01
test-data/feature_selection_result08
test-data/feature_selection_result09
added:
test-data/feature_selection_result12
test-data/pipeline01
test-data/pipeline02
test-data/pipeline03
test-data/pipeline04
test-data/pipeline05
test-data/pipeline06
test-data/pipeline07
test-data/pipeline08
test-data/searchCV01
b
diff -r 537c6763c018 -r 96f9b73327f2 feature_selection.xml
--- a/feature_selection.xml Fri Jul 13 03:55:31 2018 -0400
+++ b/feature_selection.xml Sat Aug 04 12:35:10 2018 -0400
[
b'@@ -19,19 +19,28 @@\n import json\n import pandas\n import pickle\n+import ast\n import numpy as np\n+import xgboost\n import sklearn.feature_selection\n-from sklearn import svm, linear_model, ensemble\n+from sklearn import svm, linear_model, ensemble, naive_bayes, tree, neighbors\n \n @COLUMNS_FUNCTION@\n-\n+@GET_ESTIMATOR_FUNCTION@\n @FEATURE_SELECTOR_FUNCTION@\n \n input_json_path = sys.argv[1]\n with open(input_json_path, "r") as param_handler:\n     params = json.load(param_handler)\n \n-## Read features\n+#handle cheetah\n+#if $fs_algorithm_selector.selected_algorithm == "SelectFromModel"\\\n+        and $fs_algorithm_selector.model_inputter.input_mode == "prefitted":\n+params[\'fs_algorithm_selector\'][\'model_inputter\'][\'fitted_estimator\'] =\\\n+        "$fs_algorithm_selector.model_inputter.fitted_estimator"\n+#end if\n+\n+# Read features\n features_has_header = params["input_options"]["header1"]\n input_type = params["input_options"]["selected_input"]\n if input_type=="tabular":\n@@ -53,7 +62,7 @@\n else:\n     X = mmread("$input_options.infile1")\n \n-## Read labels\n+# Read labels\n header = \'infer\' if params["input_options"]["header2"] else None\n column_option = params["input_options"]["column_selector_options_2"]["selected_column_selector_option2"]\n if column_option in ["by_index_number", "all_but_by_index_number", "by_header_name", "all_but_by_header_name"]:\n@@ -70,21 +79,20 @@\n )\n y=y.ravel()\n \n-## Create feature selector\n-new_selector = feature_selector(params[\'feature_selection_algorithms\'])\n-if params[\'feature_selection_algorithms\'][\'selected_algorithm\'] != \'SelectFromModel\' or \\\n-        \'extra_estimator\' not in params[\'feature_selection_algorithms\'] or \\\n-        params[\'feature_selection_algorithms\'][\'extra_estimator\'][\'has_estimator\'] != \'no_load\' :\n+# Create feature selector\n+new_selector = feature_selector(params[\'fs_algorithm_selector\'])\n+if params[\'fs_algorithm_selector\'][\'selected_algorithm\'] != \'SelectFromModel\'\\\n+        or params[\'fs_algorithm_selector\'][\'model_inputter\'][\'input_mode\'] != \'prefitted\' :\n     new_selector.fit(X, y)\n \n ## Transform to select features\n selected_names = None\n-if "$select_methods.selected_method" == "fit_transform":\n+if "$output_method_selector.selected_method" == "fit_transform":\n     res = new_selector.transform(X)\n     if features_has_header:\n         selected_names = input_df.columns[new_selector.get_support(indices=True)]\n else:\n-    res = new_selector.get_support(params["select_methods"]["indices"])\n+    res = new_selector.get_support(params["output_method_selector"]["indices"])\n \n res = pandas.DataFrame(res, columns = selected_names)\n res.to_csv(path_or_buf="$outfile", sep=\'\\t\', index=False)\n@@ -94,8 +102,10 @@\n         </configfile>\n     </configfiles>\n     <inputs>\n-        <expand macro="feature_selection_all" />\n-        <expand macro="feature_selection_methods" />\n+        <expand macro="feature_selection_all">\n+            <expand macro="fs_selectfrommodel_prefitted"/>\n+        </expand>\n+        <expand macro="feature_selection_output_mothods" />\n         <expand macro="sl_mixed_input"/>\n     </inputs>\n     <outputs>\n@@ -104,14 +114,16 @@\n     <tests>\n         <test>\n             <param name="selected_algorithm" value="SelectFromModel"/>\n-            <param name="has_estimator" value="no"/>\n-            <param name="new_estimator" value="ensemble.RandomForestRegressor(n_estimators = 1000, random_state = 42)"/>\n-            <param name="infile1" value="regression_X.tabular" ftype="tabular"/>\n-            <param name="header1" value="True"/>\n-            <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/>\n-            <param name="infile2" value="regression_y.tabular" ftype="tabular"/>\n-            <param name="col2" value="1"/>\n-            <param name="header2" value="True"/>\n+            <param name="input_mode" value="new"/>\n+            <param name="selected_module" value="ensemble"/>\n+            <param name="selected_estimator" value="RandomForestRegressor"/>\n+            '..b'5"/>\n+            <param name="infile2" value="regression_train.tabular" ftype="tabular"/>\n+            <param name="col2" value="6"/>\n+            <param name="header2" value="false"/>\n             <output name="outfile" file="feature_selection_result01"/>\n         </test>\n         <test>\n@@ -180,26 +192,30 @@\n         </test>\n         <test>\n             <param name="selected_algorithm" value="RFE"/>\n-            <param name="has_estimator" value="no"/>\n-            <param name="new_estimator" value="ensemble.RandomForestRegressor(n_estimators = 1000, random_state = 42)"/>\n-            <param name="infile1" value="regression_X.tabular" ftype="tabular"/>\n-            <param name="header1" value="True"/>\n-            <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/>\n-            <param name="infile2" value="regression_y.tabular" ftype="tabular"/>\n-            <param name="col2" value="1"/>\n-            <param name="header2" value="True"/>\n+            <param name="input_mode" value="new"/>\n+            <param name="selected_module" value="ensemble"/>\n+            <param name="selected_estimator" value="RandomForestRegressor"/>\n+            <param name="text_params" value="\'n_estimators\': 10, \'random_state\':10"/>\n+            <param name="infile1" value="regression_train.tabular" ftype="tabular"/>\n+            <param name="header1" value="false"/>\n+            <param name="col1" value="1,2,3,4,5"/>\n+            <param name="infile2" value="regression_train.tabular" ftype="tabular"/>\n+            <param name="col2" value="6"/>\n+            <param name="header2" value="false"/>\n             <output name="outfile" file="feature_selection_result08"/>\n         </test>\n         <test>\n             <param name="selected_algorithm" value="RFECV"/>\n-            <param name="has_estimator" value="no"/>\n-            <param name="new_estimator" value="ensemble.RandomForestRegressor(n_estimators = 1000, random_state = 42)"/>\n-            <param name="infile1" value="regression_X.tabular" ftype="tabular"/>\n-            <param name="header1" value="True"/>\n-            <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/>\n-            <param name="infile2" value="regression_y.tabular" ftype="tabular"/>\n-            <param name="col2" value="1"/>\n-            <param name="header2" value="True"/>\n+            <param name="input_mode" value="new"/>\n+            <param name="selected_module" value="ensemble"/>\n+            <param name="selected_estimator" value="RandomForestRegressor"/>\n+            <param name="text_params" value="\'n_estimators\': 10, \'random_state\':10"/>\n+            <param name="infile1" value="regression_train.tabular" ftype="tabular"/>\n+            <param name="header1" value="false"/>\n+            <param name="col1" value="1,2,3,4,5"/>\n+            <param name="infile2" value="regression_train.tabular" ftype="tabular"/>\n+            <param name="col2" value="6"/>\n+            <param name="header2" value="false"/>\n             <output name="outfile" file="feature_selection_result09"/>\n         </test>\n         <test>\n@@ -226,6 +242,18 @@\n             <param name="col2" value="target"/>\n             <output name="outfile" file="feature_selection_result11"/>\n         </test>\n+        <test>\n+            <param name="selected_algorithm" value="SelectFromModel"/>\n+            <param name="input_mode" value="prefitted"/>\n+            <param name="fitted_estimator" value="rfr_model01" ftype="zip"/>\n+            <param name="infile1" value="regression_train.tabular" ftype="tabular"/>\n+            <param name="header1" value="false"/>\n+            <param name="col1" value="1,2,3,4,5"/>\n+            <param name="infile2" value="regression_train.tabular" ftype="tabular"/>\n+            <param name="col2" value="1"/>\n+            <param name="header2" value="false"/>\n+            <output name="outfile" file="feature_selection_result12"/>\n+        </test>\n     </tests>\n     <help>\n         <![CDATA[\n'
b
diff -r 537c6763c018 -r 96f9b73327f2 main_macros.xml
--- a/main_macros.xml Fri Jul 13 03:55:31 2018 -0400
+++ b/main_macros.xml Sat Aug 04 12:35:10 2018 -0400
[
b'@@ -34,24 +34,20 @@\n   if inputs[\'selected_algorithm\'] == \'SelectFromModel\':\n     if not options[\'threshold\'] or options[\'threshold\'] == \'None\':\n       options[\'threshold\'] = None\n-      if \'extra_estimator\' in inputs and inputs[\'extra_estimator\'][\'has_estimator\'] == \'no_load\':\n-        with open("inputs[\'extra_estimator\'][\'fitted_estimator\']", \'rb\') as model_handler:\n-          fitted_estimator = pickle.load(model_handler)\n-        new_selector = selector(fitted_estimator, prefit=True, **options)\n-      else:\n-        estimator=inputs["estimator"]\n-        if inputs["extra_estimator"]["has_estimator"]==\'no\':\n-          estimator=inputs["extra_estimator"]["new_estimator"]\n-        estimator=eval(estimator.replace(\'__dq__\', \'"\').replace("__sq__","\'"))\n-        new_selector = selector(estimator, **options)\n+    if inputs[\'model_inputter\'][\'input_mode\'] == \'prefitted\':\n+      model_file = inputs[\'model_inputter\'][\'fitted_estimator\']\n+      with open(model_file, \'rb\') as model_handler:\n+        fitted_estimator = pickle.load(model_handler)\n+      new_selector = selector(fitted_estimator, prefit=True, **options)\n+    else:\n+      estimator_json = inputs[\'model_inputter\']["estimator_selector"]\n+      estimator = get_estimator(estimator_json)\n+      new_selector = selector(estimator, **options)\n \n   elif inputs[\'selected_algorithm\'] in [\'RFE\', \'RFECV\']:\n     if \'scoring\' in options and (not options[\'scoring\'] or options[\'scoring\'] == \'None\'):\n       options[\'scoring\'] = None\n-    estimator=inputs["estimator"]\n-    if inputs["extra_estimator"]["has_estimator"]==\'no\':\n-      estimator=inputs["extra_estimator"]["new_estimator"]\n-    estimator=eval(estimator.replace(\'__dq__\', \'"\').replace("__sq__","\'"))\n+    estimator=get_estimator(inputs["estimator_selector"])\n     new_selector = selector(estimator, **options)\n \n   elif inputs[\'selected_algorithm\'] == "VarianceThreshold":\n@@ -104,11 +100,101 @@\n   return X, y\n   </token>\n \n+  <token name="@GET_SEARCH_PARAMS_FUNCTION@">\n+def get_search_params(params_builder):\n+  search_params = {}\n+\n+  def safe_eval(literal):\n+\n+    FROM_SCIPY_STATS = [  \'bernoulli\', \'binom\', \'boltzmann\', \'dlaplace\', \'geom\', \'hypergeom\',\n+                          \'logser\', \'nbinom\', \'planck\', \'poisson\', \'randint\', \'skellam\', \'zipf\' ]\n+\n+    FROM_NUMPY_RANDOM = [ \'beta\', \'binomial\', \'bytes\', \'chisquare\', \'choice\', \'dirichlet\', \'division\',\n+                          \'exponential\', \'f\', \'gamma\', \'geometric\', \'gumbel\', \'hypergeometric\',\n+                          \'laplace\', \'logistic\', \'lognormal\', \'logseries\', \'mtrand\', \'multinomial\',\n+                          \'multivariate_normal\', \'negative_binomial\', \'noncentral_chisquare\', \'noncentral_f\',\n+                          \'normal\', \'pareto\', \'permutation\', \'poisson\', \'power\', \'rand\', \'randint\',\n+                          \'randn\', \'random\', \'random_integers\', \'random_sample\', \'ranf\', \'rayleigh\',\n+                          \'sample\', \'seed\', \'set_state\', \'shuffle\', \'standard_cauchy\', \'standard_exponential\',\n+                          \'standard_gamma\', \'standard_normal\', \'standard_t\', \'triangular\', \'uniform\',\n+                          \'vonmises\', \'wald\', \'weibull\', \'zipf\' ]\n+\n+    # File opening and other unneeded functions could be dropped\n+    UNWANTED = [\'open\', \'type\', \'dir\', \'id\', \'str\', \'repr\']\n+\n+    # Allowed symbol table. Add more if needed.\n+    new_syms = {\n+      \'np_arange\': getattr(np, \'arange\'),\n+      \'ensemble_ExtraTreesClassifier\': getattr(ensemble, \'ExtraTreesClassifier\')\n+    }\n+\n+    syms = make_symbol_table(use_numpy=False, **new_syms)\n+\n+    for method in FROM_SCIPY_STATS:\n+      syms[\'scipy_stats_\' + method] = getattr(scipy.stats, method)\n+\n+    for func in FROM_NUMPY_RANDOM:\n+      syms[\'np_random_\' + func] = getattr(np.random, func)\n+\n+    for key in UNWANTED:\n+      syms.pop(key, None)\n+\n+    aeval = Interpreter(symtable=syms, use_numpy=False, minimal=False,\n+                      no_if=True, no_for=True, no_while=True, no_try=True,\n+                '..b'"Type in maxtrix decomposition parameters:"\n+              help="Parameters in dictionary without braces (\'{}\'), e.g., \'n_components\': 100, \'whiten\': False. No double quotes. Leave this box blank for class default."/>\n+      </when>\n+      <when value="KernelPCA">\n+        <expand macro="estimator_params_text" label="Type in maxtrix decomposition parameters:"\n+              help="Parameters in dictionary without braces (\'{}\'), e.g., \'n_components\': 100, \'random_state\': 42. No double quotes. Leave this box blank for class default."/>\n+      </when>\n+      <when value="LatentDirichletAllocation">\n+        <expand macro="estimator_params_text" label="Type in maxtrix decomposition parameters:"\n+              help="Parameters in dictionary without braces (\'{}\'), e.g., \'n_components\': 100, \'random_state\': 42. No double quotes. Leave this box blank for class default."/>\n+      </when>\n+      <when value="MiniBatchDictionaryLearning">\n+        <expand macro="estimator_params_text" label="Type in maxtrix decomposition parameters:"\n+              help="Parameters in dictionary without braces (\'{}\'), e.g., \'n_components\': 100, \'random_state\': 42. No double quotes. Leave this box blank for class default."/>\n+      </when>\n+      <when value="MiniBatchSparsePCA">\n+        <expand macro="estimator_params_text" label="Type in maxtrix decomposition parameters:"\n+              help="Parameters in dictionary without braces (\'{}\'), e.g., \'n_components\': 100, \'random_state\': 42. No double quotes. Leave this box blank for class default."/>\n+      </when>\n+      <when value="NMF">\n+        <expand macro="estimator_params_text" label="Type in maxtrix decomposition parameters:"\n+              help="Parameters in dictionary without braces (\'{}\'), e.g., \'n_components\': 100, \'init\': \'random\'. No double quotes. Leave this box blank for class default."/>\n+      </when>\n+      <when value="PCA">\n+        <expand macro="estimator_params_text" label="Type in maxtrix decomposition parameters:"\n+              help="Parameters in dictionary without braces (\'{}\'), e.g., \'n_components\': 100, \'random_state\': 42. No double quotes. Leave this box blank for class default."/>\n+      </when>\n+      <when value="SparsePCA">\n+        <expand macro="estimator_params_text" label="Type in maxtrix decomposition parameters:"\n+              help="Parameters in dictionary without braces (\'{}\'), e.g., \'n_components\': 100, \'random_state\': 42. No double quotes. Leave this box blank for class default."/>\n+      </when>\n+      <when value="SparseCoder">\n+        <expand macro="estimator_params_text" label="Type in maxtrix decomposition parameters:"\n+              help="Parameters in dictionary without braces (\'{}\'), e.g., \'transform_algorithm\': \'omp\', \'transform_alpha\': 1.0. No double quotes. Leave this box blank for class default."/>\n+      </when>\n+      <when value="TruncatedSVD">\n+        <expand macro="estimator_params_text" label="Type in maxtrix decomposition parameters:"\n+              help="Parameters in dictionary without braces (\'{}\'), e.g., \'n_components\': 2, \'algorithm\': \'randomized\'. No double quotes. Leave this box blank for default estimator."/>\n+      </when>\n+    </conditional>\n+  </xml>\n+\n+  <xml name="FeatureAgglomeration">\n+    <conditional name="FeatureAgglomeration_selector">\n+      <param name="select_algorithm" type="select" label="Choose the algorithm:">\n+        <option value="FeatureAgglomeration" selected="true">FeatureAgglomeration</option>\n+      </param>\n+      <when value="FeatureAgglomeration">\n+        <expand macro="estimator_params_text" label="Type in parameters:"\n+              help="Parameters in dictionary without braces (\'{}\'), e.g., \'n_clusters\': 2, \'affinity\': \'euclidean\'. No double quotes. Leave this box blank for class default."/>\n+      </when>\n+    </conditional>\n+  </xml>\n   <!-- Outputs -->\n \n   <xml name="output">\n@@ -1118,7 +1472,6 @@\n     </outputs>\n   </xml>\n \n-\n   <!--Citations-->\n   <xml name="eden_citation">\n     <citations>\n'
b
diff -r 537c6763c018 -r 96f9b73327f2 test-data/feature_selection_result01
--- a/test-data/feature_selection_result01 Fri Jul 13 03:55:31 2018 -0400
+++ b/test-data/feature_selection_result01 Sat Aug 04 12:35:10 2018 -0400
b
@@ -1,262 +1,11 @@
-temp_1 average
-69.0 69.7
-59.0 58.1
-88.0 77.3
-65.0 64.7
-50.0 47.5
-51.0 48.2
-52.0 48.6
-78.0 76.7
-35.0 45.2
-40.0 46.1
-47.0 45.3
-72.0 76.3
-76.0 74.4
-39.0 45.3
-78.0 72.2
-71.0 67.3
-48.0 47.7
-72.0 77.0
-57.0 54.7
-40.0 45.1
-54.0 47.6
-58.0 53.2
-68.0 58.6
-65.0 55.3
-47.0 48.8
-44.0 45.6
-64.0 67.1
-62.0 57.1
-66.0 65.7
-70.0 71.8
-57.0 54.2
-50.0 50.5
-55.0 51.8
-55.0 49.5
-42.0 45.2
-65.0 60.1
-63.0 65.6
-48.0 47.3
-42.0 46.3
-51.0 46.2
-64.0 68.0
-75.0 74.6
-52.0 46.7
-67.0 68.6
-68.0 68.7
-54.0 55.0
-62.0 56.8
-76.0 76.1
-73.0 73.1
-52.0 50.3
-70.0 73.9
-77.0 77.4
-60.0 56.6
-52.0 53.3
-79.0 75.0
-76.0 57.2
-66.0 66.5
-57.0 61.8
-66.0 57.4
-61.0 58.4
-55.0 53.1
-48.0 48.1
-49.0 49.2
-65.0 66.7
-60.0 62.5
-56.0 53.0
-59.0 57.4
-44.0 45.7
-82.0 63.2
-64.0 67.0
-43.0 45.5
-64.0 55.7
-63.0 52.7
-70.0 70.6
-71.0 52.4
-76.0 73.5
-68.0 62.1
-39.0 45.3
-71.0 70.7
-69.0 71.7
-74.0 71.5
-81.0 64.1
-51.0 49.3
-45.0 46.8
-87.0 76.8
-71.0 73.8
-55.0 60.3
-80.0 76.9
-67.0 69.0
-61.0 61.4
-46.0 46.6
-39.0 45.1
-67.0 68.3
-52.0 47.8
-67.0 69.8
-75.0 71.2
-68.0 73.3
-92.0 68.2
-67.0 72.8
-44.0 45.8
-61.0 61.0
-65.0 53.4
-68.0 73.0
-87.0 62.1
-117.0 54.8
-80.0 76.4
-57.0 51.0
-67.0 63.6
-58.0 54.0
-65.0 56.2
-52.0 48.6
-59.0 55.3
-57.0 53.9
-81.0 59.2
-75.0 77.1
-76.0 77.4
-57.0 64.8
-69.0 74.2
-77.0 66.8
-55.0 49.9
-49.0 46.8
-54.0 52.7
-55.0 51.2
-56.0 55.6
-68.0 74.6
-54.0 53.4
-67.0 69.0
-49.0 46.9
-49.0 49.1
-56.0 48.5
-73.0 71.0
-66.0 66.4
-69.0 66.5
-82.0 64.5
-90.0 76.7
-51.0 50.7
-77.0 57.1
-60.0 61.4
-74.0 72.8
-85.0 77.2
-68.0 62.8
-56.0 49.5
-71.0 56.2
-62.0 59.5
-83.0 77.3
-64.0 65.4
-56.0 48.4
-41.0 45.1
-65.0 66.2
-65.0 53.7
-40.0 46.0
-45.0 45.6
-52.0 48.4
-63.0 51.7
-52.0 47.6
-60.0 57.9
-81.0 75.7
-75.0 75.8
-59.0 51.4
-73.0 77.1
-75.0 77.3
-60.0 58.5
-75.0 71.3
-59.0 57.6
-53.0 49.1
-79.0 77.2
-57.0 52.1
-75.0 67.6
-71.0 69.4
-53.0 50.2
-46.0 48.8
-81.0 76.9
-49.0 48.9
-57.0 48.4
-60.0 58.8
-67.0 73.7
-61.0 64.1
-66.0 69.5
-64.0 51.9
-66.0 65.7
-64.0 52.2
-71.0 65.2
-75.0 63.8
-48.0 46.4
-53.0 52.5
-49.0 47.1
-85.0 68.5
-62.0 49.4
-50.0 47.0
-58.0 55.9
-72.0 77.2
-55.0 50.7
-74.0 72.3
-85.0 77.3
-73.0 77.3
-52.0 47.4
-67.0 67.6
-45.0 45.1
-46.0 47.2
-66.0 60.6
-71.0 77.0
-70.0 69.3
-58.0 49.9
-72.0 77.1
-74.0 75.4
-65.0 64.5
-77.0 58.8
-59.0 50.9
-45.0 45.7
-53.0 50.5
-53.0 54.9
-79.0 77.3
-49.0 49.0
-63.0 62.9
-69.0 56.5
-60.0 50.8
-64.0 62.5
-79.0 71.0
-55.0 47.0
-73.0 56.0
-60.0 59.1
-67.0 70.2
-42.0 45.2
-60.0 65.0
-57.0 49.8
-35.0 45.2
-75.0 70.3
-61.0 51.1
-51.0 50.6
-71.0 71.9
-74.0 75.3
-48.0 45.4
-74.0 74.9
-76.0 70.8
-58.0 51.6
-51.0 50.4
-72.0 72.6
-76.0 67.2
-52.0 47.9
-53.0 48.2
-65.0 69.1
-58.0 58.1
-77.0 75.6
-61.0 52.9
-67.0 65.3
-54.0 49.3
-79.0 67.4
-77.0 64.3
-71.0 67.7
-58.0 57.7
-68.0 55.9
-40.0 45.4
-80.0 77.3
-74.0 62.3
-57.0 45.5
-52.0 47.8
-71.0 75.1
-49.0 53.6
-89.0 59.0
-60.0 60.2
-59.0 58.3
+0 1
+143.762620712 -1.1796457192799998
+-88.5787166225 -2.5710918402200003
+-82.8452345578 -0.168636324107
+72.4951388149 0.991068834926
+11.805182128 -0.7096855607860001
+-63.9354970901 0.9841122108220001
+126.32584079600001 0.35353444883900004
+23.0341392692 1.03188231893
+67.6714937696 -0.8214378651719999
+47.39275848810001 -0.0942409319417
b
diff -r 537c6763c018 -r 96f9b73327f2 test-data/feature_selection_result08
--- a/test-data/feature_selection_result08 Fri Jul 13 03:55:31 2018 -0400
+++ b/test-data/feature_selection_result08 Sat Aug 04 12:35:10 2018 -0400
b
b'@@ -1,262 +1,11 @@\n-day\ttemp_2\ttemp_1\taverage\tforecast_noaa\tforecast_acc\tforecast_under\tfriend\n-19.0\t68.0\t69.0\t69.7\t65.0\t74.0\t71.0\t88.0\n-14.0\t60.0\t59.0\t58.1\t57.0\t63.0\t58.0\t66.0\n-30.0\t85.0\t88.0\t77.3\t75.0\t79.0\t77.0\t70.0\n-15.0\t82.0\t65.0\t64.7\t63.0\t69.0\t64.0\t58.0\n-18.0\t54.0\t50.0\t47.5\t44.0\t48.0\t49.0\t58.0\n-25.0\t48.0\t51.0\t48.2\t45.0\t51.0\t49.0\t63.0\n-25.0\t49.0\t52.0\t48.6\t45.0\t52.0\t47.0\t41.0\n-20.0\t73.0\t78.0\t76.7\t75.0\t78.0\t77.0\t66.0\n-17.0\t39.0\t35.0\t45.2\t43.0\t47.0\t46.0\t38.0\n-8.0\t42.0\t40.0\t46.1\t45.0\t51.0\t47.0\t36.0\n-28.0\t42.0\t47.0\t45.3\t41.0\t49.0\t44.0\t58.0\n-17.0\t76.0\t72.0\t76.3\t76.0\t78.0\t77.0\t88.0\n-7.0\t69.0\t76.0\t74.4\t73.0\t77.0\t74.0\t72.0\n-15.0\t40.0\t39.0\t45.3\t45.0\t49.0\t47.0\t46.0\n-27.0\t71.0\t78.0\t72.2\t70.0\t74.0\t72.0\t84.0\n-31.0\t64.0\t71.0\t67.3\t63.0\t72.0\t68.0\t85.0\n-20.0\t54.0\t48.0\t47.7\t44.0\t52.0\t49.0\t61.0\n-10.0\t73.0\t72.0\t77.0\t77.0\t78.0\t77.0\t68.0\n-23.0\t56.0\t57.0\t54.7\t50.0\t58.0\t55.0\t70.0\n-24.0\t45.0\t40.0\t45.1\t44.0\t47.0\t46.0\t39.0\n-19.0\t50.0\t54.0\t47.6\t47.0\t49.0\t48.0\t53.0\n-6.0\t65.0\t58.0\t53.2\t52.0\t57.0\t55.0\t71.0\n-17.0\t60.0\t68.0\t58.6\t58.0\t62.0\t59.0\t54.0\n-29.0\t60.0\t65.0\t55.3\t55.0\t59.0\t55.0\t65.0\n-1.0\t48.0\t47.0\t48.8\t46.0\t49.0\t49.0\t51.0\n-12.0\t44.0\t44.0\t45.6\t43.0\t50.0\t45.0\t42.0\n-30.0\t64.0\t64.0\t67.1\t64.0\t70.0\t66.0\t69.0\n-23.0\t59.0\t62.0\t57.1\t57.0\t58.0\t59.0\t67.0\n-30.0\t68.0\t66.0\t65.7\t64.0\t67.0\t65.0\t74.0\n-12.0\t77.0\t70.0\t71.8\t67.0\t73.0\t73.0\t90.0\n-2.0\t59.0\t57.0\t54.2\t54.0\t58.0\t55.0\t70.0\n-17.0\t55.0\t50.0\t50.5\t46.0\t51.0\t50.0\t57.0\n-3.0\t58.0\t55.0\t51.8\t49.0\t54.0\t50.0\t71.0\n-21.0\t57.0\t55.0\t49.5\t46.0\t51.0\t49.0\t67.0\n-27.0\t42.0\t42.0\t45.2\t41.0\t50.0\t47.0\t47.0\n-24.0\t64.0\t65.0\t60.1\t57.0\t61.0\t60.0\t41.0\n-20.0\t64.0\t63.0\t65.6\t63.0\t70.0\t64.0\t73.0\n-16.0\t49.0\t48.0\t47.3\t45.0\t52.0\t46.0\t28.0\n-7.0\t40.0\t42.0\t46.3\t44.0\t51.0\t46.0\t62.0\n-7.0\t44.0\t51.0\t46.2\t45.0\t49.0\t46.0\t38.0\n-24.0\t67.0\t64.0\t68.0\t65.0\t71.0\t66.0\t64.0\n-30.0\t79.0\t75.0\t74.6\t74.0\t76.0\t75.0\t63.0\n-11.0\t50.0\t52.0\t46.7\t42.0\t48.0\t48.0\t39.0\n-9.0\t85.0\t67.0\t68.6\t66.0\t73.0\t69.0\t80.0\n-22.0\t67.0\t68.0\t68.7\t65.0\t70.0\t69.0\t56.0\n-25.0\t53.0\t54.0\t55.0\t53.0\t57.0\t57.0\t42.0\n-24.0\t62.0\t62.0\t56.8\t52.0\t61.0\t57.0\t70.0\n-16.0\t77.0\t76.0\t76.1\t76.0\t78.0\t75.0\t61.0\n-1.0\t74.0\t73.0\t73.1\t71.0\t75.0\t72.0\t93.0\n-18.0\t50.0\t52.0\t50.3\t50.0\t53.0\t50.0\t35.0\n-3.0\t75.0\t70.0\t73.9\t71.0\t75.0\t73.0\t68.0\n-2.0\t73.0\t77.0\t77.4\t75.0\t80.0\t79.0\t62.0\n-5.0\t69.0\t60.0\t56.6\t52.0\t58.0\t56.0\t72.0\n-13.0\t55.0\t52.0\t53.3\t50.0\t55.0\t53.0\t54.0\n-28.0\t81.0\t79.0\t75.0\t71.0\t77.0\t76.0\t85.0\n-9.0\t77.0\t76.0\t57.2\t53.0\t61.0\t57.0\t74.0\n-26.0\t66.0\t66.0\t66.5\t64.0\t70.0\t65.0\t85.0\n-10.0\t68.0\t57.0\t61.8\t58.0\t64.0\t61.0\t62.0\n-10.0\t76.0\t66.0\t57.4\t57.0\t60.0\t57.0\t60.0\n-19.0\t60.0\t61.0\t58.4\t58.0\t60.0\t57.0\t41.0\n-12.0\t56.0\t55.0\t53.1\t52.0\t58.0\t53.0\t65.0\n-24.0\t57.0\t48.0\t48.1\t46.0\t50.0\t48.0\t54.0\n-7.0\t53.0\t49.0\t49.2\t46.0\t51.0\t48.0\t63.0\n-27.0\t66.0\t65.0\t66.7\t64.0\t67.0\t68.0\t73.0\n-5.0\t74.0\t60.0\t62.5\t58.0\t66.0\t62.0\t56.0\n-11.0\t55.0\t56.0\t53.0\t53.0\t53.0\t51.0\t36.0\n-22.0\t62.0\t59.0\t57.4\t56.0\t59.0\t58.0\t44.0\n-11.0\t36.0\t44.0\t45.7\t41.0\t46.0\t47.0\t35.0\n-8.0\t77.0\t82.0\t63.2\t62.0\t65.0\t63.0\t83.0\n-29.0\t64.0\t64.0\t67.0\t65.0\t71.0\t65.0\t76.0\n-13.0\t44.0\t43.0\t45.5\t41.0\t47.0\t46.0\t46.0\n-30.0\t56.0\t64.0\t55.7\t51.0\t57.0\t56.0\t57.0\n-8.0\t61.0\t63.0\t52.7\t49.0\t57.0\t52.0\t49.0\n-20.0\t65.0\t70.0\t70.6\t67.0\t71.0\t70.0\t79.0\n-9.0\t63.0\t71.0\t52.4\t48.0\t56.0\t52.0\t42.0\n-3.0\t76.0\t76.0\t73.5\t69.0\t76.0\t75.0\t85.0\n-9.0\t64.0\t68.0\t62.1\t58.0\t65.0\t63.0\t55.0\n-16.0\t39.0\t39.0\t45.3\t44.0\t49.0\t44.0\t39.0\n-16.0\t79.0\t71.0\t70.7\t70.0\t74.0\t71.0\t52.0\n-25.0\t68.0\t69.0\t71.7\t68.0\t73.0\t73.0\t89.0\n-13.0\t70.0\t74.0\t71.5\t71.0\t75.0\t70.0\t82.0\n-12.0\t75.0\t81.0\t64.1\t62.0\t67.0\t63.0\t81.0\n-8.0\t49.0\t51.0\t49.3\t49.0\t52.0\t50.0\t34.0\n-12.0\t52.0\t45.0\t46.8\t44.0\t50.0\t45.0\t61.0\n-13.0\t80.0\t87.0\t76.8\t73.0\t79.0\t78.0\t73.0\n-4.0\t76.0\t71.0\t73.8\t71.0\t76.0\t73.0\t86.0\n-25.0\t65.0\t55.0\t60.3\t56.0\t64.0\t61.0\t77.0\n-12.0\t76.0\t80.0\t76.9\t72.0\t79.0\t77.0\t81.0\n-21.0\t71.0\t67.0\t69.0\t65.0\t70.0\t70.0\t76.0\n-30.0\t64.0\t61.0\t61.4\t60.0\t65.0\t62.0\t78.0\n-5.0\t49.0\t46.0\t46.6\t43.0\t50.0\t45.0\t65.0\n-19.0\t35.0\t39.0\t45.1\t42.0\t46.0\t45.0\t51.0\n-23.0\t68.0\t67.0\t68.3\t67.0\t69.0\t67.0\t61.0\n-29.0\t48.0\t52.0\t47.8\t43.0\t48.0\t47.0\t50.0\n-16.0\t60.0\t67.0\t69.8\t68.0\t72.0\t71.0\t87.0\n-14.0\t74.0\t75.0\t71.2\t67.0\t75.0\t73'..b'82.0\t81.0\t76.9\t72.0\t77.0\t76.0\t70.0\n-24.0\t54.0\t49.0\t48.9\t47.0\t53.0\t48.0\t29.0\n-28.0\t56.0\t57.0\t48.4\t44.0\t52.0\t48.0\t34.0\n-18.0\t60.0\t60.0\t58.8\t54.0\t60.0\t57.0\t53.0\n-4.0\t70.0\t67.0\t73.7\t72.0\t77.0\t75.0\t64.0\n-4.0\t65.0\t61.0\t64.1\t62.0\t69.0\t65.0\t60.0\n-14.0\t70.0\t66.0\t69.5\t66.0\t71.0\t69.0\t85.0\n-11.0\t65.0\t64.0\t51.9\t50.0\t53.0\t52.0\t55.0\n-21.0\t63.0\t66.0\t65.7\t62.0\t67.0\t65.0\t49.0\n-6.0\t57.0\t64.0\t52.2\t52.0\t53.0\t51.0\t49.0\n-18.0\t60.0\t71.0\t65.2\t61.0\t68.0\t65.0\t56.0\n-11.0\t67.0\t75.0\t63.8\t62.0\t68.0\t63.0\t60.0\n-9.0\t45.0\t48.0\t46.4\t46.0\t50.0\t45.0\t47.0\n-8.0\t60.0\t53.0\t52.5\t48.0\t56.0\t51.0\t70.0\n-15.0\t55.0\t49.0\t47.1\t46.0\t51.0\t46.0\t65.0\n-8.0\t86.0\t85.0\t68.5\t67.0\t70.0\t69.0\t81.0\n-10.0\t57.0\t62.0\t49.4\t48.0\t50.0\t49.0\t30.0\n-3.0\t46.0\t50.0\t47.0\t42.0\t52.0\t47.0\t58.0\n-27.0\t65.0\t58.0\t55.9\t51.0\t60.0\t55.0\t39.0\n-7.0\t79.0\t72.0\t77.2\t74.0\t78.0\t77.0\t95.0\n-16.0\t57.0\t55.0\t50.7\t50.0\t51.0\t49.0\t34.0\n-10.0\t72.0\t74.0\t72.3\t70.0\t77.0\t74.0\t91.0\n-29.0\t83.0\t85.0\t77.3\t77.0\t80.0\t79.0\t77.0\n-3.0\t77.0\t73.0\t77.3\t77.0\t81.0\t77.0\t93.0\n-1.0\t52.0\t52.0\t47.4\t44.0\t48.0\t49.0\t39.0\n-25.0\t64.0\t67.0\t67.6\t64.0\t72.0\t67.0\t62.0\n-23.0\t49.0\t45.0\t45.1\t45.0\t49.0\t44.0\t35.0\n-2.0\t52.0\t46.0\t47.2\t46.0\t51.0\t49.0\t41.0\n-13.0\t62.0\t66.0\t60.6\t60.0\t62.0\t60.0\t57.0\n-23.0\t81.0\t71.0\t77.0\t75.0\t81.0\t76.0\t86.0\n-13.0\t65.0\t70.0\t69.3\t66.0\t72.0\t69.0\t79.0\n-15.0\t55.0\t58.0\t49.9\t46.0\t52.0\t49.0\t53.0\n-8.0\t72.0\t72.0\t77.1\t76.0\t78.0\t77.0\t65.0\n-12.0\t74.0\t74.0\t75.4\t74.0\t77.0\t77.0\t71.0\n-3.0\t63.0\t65.0\t64.5\t63.0\t68.0\t65.0\t49.0\n-18.0\t68.0\t77.0\t58.8\t55.0\t59.0\t57.0\t39.0\n-25.0\t60.0\t59.0\t50.9\t49.0\t51.0\t49.0\t35.0\n-2.0\t44.0\t45.0\t45.7\t41.0\t50.0\t44.0\t61.0\n-21.0\t51.0\t53.0\t50.5\t49.0\t54.0\t52.0\t46.0\n-24.0\t57.0\t53.0\t54.9\t54.0\t56.0\t56.0\t72.0\n-27.0\t85.0\t79.0\t77.3\t73.0\t78.0\t79.0\t79.0\n-4.0\t51.0\t49.0\t49.0\t44.0\t54.0\t51.0\t44.0\n-7.0\t66.0\t63.0\t62.9\t62.0\t67.0\t64.0\t78.0\n-4.0\t63.0\t69.0\t56.5\t54.0\t59.0\t56.0\t45.0\n-24.0\t51.0\t60.0\t50.8\t47.0\t53.0\t50.0\t46.0\n-8.0\t63.0\t64.0\t62.5\t60.0\t65.0\t61.0\t73.0\n-15.0\t75.0\t79.0\t71.0\t66.0\t76.0\t69.0\t64.0\n-14.0\t49.0\t55.0\t47.0\t43.0\t47.0\t46.0\t58.0\n-1.0\t68.0\t73.0\t56.0\t54.0\t59.0\t55.0\t41.0\n-17.0\t62.0\t60.0\t59.1\t57.0\t63.0\t59.0\t62.0\n-18.0\t71.0\t67.0\t70.2\t67.0\t75.0\t69.0\t77.0\n-26.0\t41.0\t42.0\t45.2\t45.0\t48.0\t46.0\t58.0\n-17.0\t57.0\t60.0\t65.0\t62.0\t65.0\t65.0\t55.0\n-20.0\t55.0\t57.0\t49.8\t47.0\t54.0\t48.0\t30.0\n-18.0\t35.0\t35.0\t45.2\t44.0\t46.0\t46.0\t36.0\n-17.0\t71.0\t75.0\t70.3\t66.0\t73.0\t70.0\t84.0\n-26.0\t59.0\t61.0\t51.1\t48.0\t56.0\t53.0\t65.0\n-22.0\t53.0\t51.0\t50.6\t46.0\t51.0\t50.0\t59.0\n-26.0\t69.0\t71.0\t71.9\t67.0\t74.0\t72.0\t70.0\n-11.0\t71.0\t74.0\t75.3\t74.0\t79.0\t75.0\t71.0\n-30.0\t48.0\t48.0\t45.4\t44.0\t46.0\t44.0\t42.0\n-9.0\t68.0\t74.0\t74.9\t70.0\t79.0\t76.0\t60.0\n-21.0\t70.0\t76.0\t70.8\t68.0\t75.0\t71.0\t57.0\n-2.0\t54.0\t58.0\t51.6\t47.0\t54.0\t52.0\t37.0\n-20.0\t53.0\t51.0\t50.4\t48.0\t55.0\t51.0\t43.0\n-9.0\t67.0\t72.0\t72.6\t68.0\t77.0\t71.0\t78.0\n-26.0\t67.0\t76.0\t67.2\t64.0\t69.0\t69.0\t74.0\n-22.0\t52.0\t52.0\t47.9\t47.0\t48.0\t48.0\t60.0\n-27.0\t52.0\t53.0\t48.2\t48.0\t49.0\t49.0\t53.0\n-12.0\t67.0\t65.0\t69.1\t65.0\t73.0\t70.0\t83.0\n-20.0\t61.0\t58.0\t58.1\t58.0\t59.0\t58.0\t43.0\n-13.0\t74.0\t77.0\t75.6\t74.0\t78.0\t76.0\t56.0\n-7.0\t58.0\t61.0\t52.9\t51.0\t56.0\t51.0\t35.0\n-1.0\t66.0\t67.0\t65.3\t64.0\t70.0\t64.0\t54.0\n-22.0\t55.0\t54.0\t49.3\t46.0\t54.0\t49.0\t58.0\n-1.0\t71.0\t79.0\t67.4\t65.0\t69.0\t66.0\t58.0\n-13.0\t81.0\t77.0\t64.3\t63.0\t67.0\t66.0\t67.0\n-3.0\t75.0\t71.0\t67.7\t64.0\t71.0\t66.0\t55.0\n-12.0\t59.0\t58.0\t57.7\t54.0\t59.0\t57.0\t61.0\n-31.0\t64.0\t68.0\t55.9\t55.0\t59.0\t56.0\t56.0\n-14.0\t43.0\t40.0\t45.4\t45.0\t48.0\t45.0\t49.0\n-5.0\t75.0\t80.0\t77.3\t75.0\t81.0\t78.0\t71.0\n-4.0\t87.0\t74.0\t62.3\t59.0\t65.0\t64.0\t61.0\n-31.0\t48.0\t57.0\t45.5\t42.0\t48.0\t47.0\t57.0\n-21.0\t48.0\t52.0\t47.8\t43.0\t51.0\t46.0\t57.0\n-10.0\t74.0\t71.0\t75.1\t71.0\t77.0\t76.0\t95.0\n-15.0\t54.0\t49.0\t53.6\t49.0\t58.0\t52.0\t70.0\n-19.0\t77.0\t89.0\t59.0\t59.0\t63.0\t59.0\t61.0\n-14.0\t66.0\t60.0\t60.2\t56.0\t64.0\t60.0\t78.0\n-15.0\t59.0\t59.0\t58.3\t58.0\t61.0\t60.0\t40.0\n+0\t1\n+143.762620712\t-0.330941870584\n+-88.5787166225\t1.08055532812\n+-82.8452345578\t0.272541389247\n+72.4951388149\t-0.26868660527800003\n+11.805182128\t1.0360467096600001\n+-63.9354970901\t-0.101485840571\n+126.32584079600001\t-0.35999834017899995\n+23.0341392692\t0.5185404651359999\n+67.6714937696\t-0.115688051547\n+47.39275848810001\t-0.7850965413680001\n'
b
diff -r 537c6763c018 -r 96f9b73327f2 test-data/feature_selection_result09
--- a/test-data/feature_selection_result09 Fri Jul 13 03:55:31 2018 -0400
+++ b/test-data/feature_selection_result09 Sat Aug 04 12:35:10 2018 -0400
b
b'@@ -1,262 +1,11 @@\n-month\tday\ttemp_2\ttemp_1\taverage\tforecast_noaa\tforecast_acc\tforecast_under\tfriend\tweek_Fri\tweek_Mon\tweek_Sat\tweek_Sun\tweek_Tues\n-9.0\t19.0\t68.0\t69.0\t69.7\t65.0\t74.0\t71.0\t88.0\t0.0\t1.0\t0.0\t0.0\t0.0\n-4.0\t14.0\t60.0\t59.0\t58.1\t57.0\t63.0\t58.0\t66.0\t0.0\t0.0\t0.0\t0.0\t0.0\n-7.0\t30.0\t85.0\t88.0\t77.3\t75.0\t79.0\t77.0\t70.0\t0.0\t0.0\t1.0\t0.0\t0.0\n-5.0\t15.0\t82.0\t65.0\t64.7\t63.0\t69.0\t64.0\t58.0\t0.0\t0.0\t0.0\t1.0\t0.0\n-1.0\t18.0\t54.0\t50.0\t47.5\t44.0\t48.0\t49.0\t58.0\t0.0\t1.0\t0.0\t0.0\t0.0\n-1.0\t25.0\t48.0\t51.0\t48.2\t45.0\t51.0\t49.0\t63.0\t0.0\t1.0\t0.0\t0.0\t0.0\n-11.0\t25.0\t49.0\t52.0\t48.6\t45.0\t52.0\t47.0\t41.0\t1.0\t0.0\t0.0\t0.0\t0.0\n-7.0\t20.0\t73.0\t78.0\t76.7\t75.0\t78.0\t77.0\t66.0\t0.0\t0.0\t0.0\t0.0\t0.0\n-12.0\t17.0\t39.0\t35.0\t45.2\t43.0\t47.0\t46.0\t38.0\t0.0\t0.0\t1.0\t0.0\t0.0\n-12.0\t8.0\t42.0\t40.0\t46.1\t45.0\t51.0\t47.0\t36.0\t0.0\t0.0\t0.0\t0.0\t0.0\n-12.0\t28.0\t42.0\t47.0\t45.3\t41.0\t49.0\t44.0\t58.0\t0.0\t0.0\t0.0\t0.0\t0.0\n-7.0\t17.0\t76.0\t72.0\t76.3\t76.0\t78.0\t77.0\t88.0\t0.0\t0.0\t0.0\t1.0\t0.0\n-7.0\t7.0\t69.0\t76.0\t74.4\t73.0\t77.0\t74.0\t72.0\t0.0\t0.0\t0.0\t0.0\t0.0\n-12.0\t15.0\t40.0\t39.0\t45.3\t45.0\t49.0\t47.0\t46.0\t0.0\t0.0\t0.0\t0.0\t0.0\n-6.0\t27.0\t71.0\t78.0\t72.2\t70.0\t74.0\t72.0\t84.0\t0.0\t1.0\t0.0\t0.0\t0.0\n-5.0\t31.0\t64.0\t71.0\t67.3\t63.0\t72.0\t68.0\t85.0\t0.0\t0.0\t0.0\t0.0\t1.0\n-1.0\t20.0\t54.0\t48.0\t47.7\t44.0\t52.0\t49.0\t61.0\t0.0\t0.0\t0.0\t0.0\t0.0\n-8.0\t10.0\t73.0\t72.0\t77.0\t77.0\t78.0\t77.0\t68.0\t0.0\t0.0\t0.0\t0.0\t0.0\n-3.0\t23.0\t56.0\t57.0\t54.7\t50.0\t58.0\t55.0\t70.0\t0.0\t0.0\t0.0\t0.0\t0.0\n-12.0\t24.0\t45.0\t40.0\t45.1\t44.0\t47.0\t46.0\t39.0\t0.0\t0.0\t1.0\t0.0\t0.0\n-1.0\t19.0\t50.0\t54.0\t47.6\t47.0\t49.0\t48.0\t53.0\t0.0\t0.0\t0.0\t0.0\t1.0\n-11.0\t6.0\t65.0\t58.0\t53.2\t52.0\t57.0\t55.0\t71.0\t0.0\t0.0\t0.0\t1.0\t0.0\n-4.0\t17.0\t60.0\t68.0\t58.6\t58.0\t62.0\t59.0\t54.0\t0.0\t0.0\t0.0\t1.0\t0.0\n-10.0\t29.0\t60.0\t65.0\t55.3\t55.0\t59.0\t55.0\t65.0\t0.0\t0.0\t1.0\t0.0\t0.0\n-2.0\t1.0\t48.0\t47.0\t48.8\t46.0\t49.0\t49.0\t51.0\t0.0\t1.0\t0.0\t0.0\t0.0\n-12.0\t12.0\t44.0\t44.0\t45.6\t43.0\t50.0\t45.0\t42.0\t0.0\t1.0\t0.0\t0.0\t0.0\n-5.0\t30.0\t64.0\t64.0\t67.1\t64.0\t70.0\t66.0\t69.0\t0.0\t1.0\t0.0\t0.0\t0.0\n-10.0\t23.0\t59.0\t62.0\t57.1\t57.0\t58.0\t59.0\t67.0\t0.0\t0.0\t0.0\t1.0\t0.0\n-9.0\t30.0\t68.0\t66.0\t65.7\t64.0\t67.0\t65.0\t74.0\t1.0\t0.0\t0.0\t0.0\t0.0\n-9.0\t12.0\t77.0\t70.0\t71.8\t67.0\t73.0\t73.0\t90.0\t0.0\t1.0\t0.0\t0.0\t0.0\n-11.0\t2.0\t59.0\t57.0\t54.2\t54.0\t58.0\t55.0\t70.0\t0.0\t0.0\t0.0\t0.0\t0.0\n-11.0\t17.0\t55.0\t50.0\t50.5\t46.0\t51.0\t50.0\t57.0\t0.0\t0.0\t0.0\t0.0\t0.0\n-3.0\t3.0\t58.0\t55.0\t51.8\t49.0\t54.0\t50.0\t71.0\t0.0\t0.0\t0.0\t0.0\t0.0\n-11.0\t21.0\t57.0\t55.0\t49.5\t46.0\t51.0\t49.0\t67.0\t0.0\t1.0\t0.0\t0.0\t0.0\n-12.0\t27.0\t42.0\t42.0\t45.2\t41.0\t50.0\t47.0\t47.0\t0.0\t0.0\t0.0\t0.0\t1.0\n-4.0\t24.0\t64.0\t65.0\t60.1\t57.0\t61.0\t60.0\t41.0\t0.0\t0.0\t0.0\t1.0\t0.0\n-5.0\t20.0\t64.0\t63.0\t65.6\t63.0\t70.0\t64.0\t73.0\t1.0\t0.0\t0.0\t0.0\t0.0\n-1.0\t16.0\t49.0\t48.0\t47.3\t45.0\t52.0\t46.0\t28.0\t0.0\t0.0\t1.0\t0.0\t0.0\n-12.0\t7.0\t40.0\t42.0\t46.3\t44.0\t51.0\t46.0\t62.0\t0.0\t0.0\t0.0\t0.0\t0.0\n-1.0\t7.0\t44.0\t51.0\t46.2\t45.0\t49.0\t46.0\t38.0\t0.0\t0.0\t0.0\t0.0\t0.0\n-9.0\t24.0\t67.0\t64.0\t68.0\t65.0\t71.0\t66.0\t64.0\t0.0\t0.0\t1.0\t0.0\t0.0\n-8.0\t30.0\t79.0\t75.0\t74.6\t74.0\t76.0\t75.0\t63.0\t0.0\t0.0\t0.0\t0.0\t1.0\n-1.0\t11.0\t50.0\t52.0\t46.7\t42.0\t48.0\t48.0\t39.0\t0.0\t1.0\t0.0\t0.0\t0.0\n-6.0\t9.0\t85.0\t67.0\t68.6\t66.0\t73.0\t69.0\t80.0\t0.0\t0.0\t0.0\t0.0\t0.0\n-9.0\t22.0\t67.0\t68.0\t68.7\t65.0\t70.0\t69.0\t56.0\t0.0\t0.0\t0.0\t0.0\t0.0\n-3.0\t25.0\t53.0\t54.0\t55.0\t53.0\t57.0\t57.0\t42.0\t1.0\t0.0\t0.0\t0.0\t0.0\n-10.0\t24.0\t62.0\t62.0\t56.8\t52.0\t61.0\t57.0\t70.0\t0.0\t1.0\t0.0\t0.0\t0.0\n-7.0\t16.0\t77.0\t76.0\t76.1\t76.0\t78.0\t75.0\t61.0\t0.0\t0.0\t1.0\t0.0\t0.0\n-7.0\t1.0\t74.0\t73.0\t73.1\t71.0\t75.0\t72.0\t93.0\t1.0\t0.0\t0.0\t0.0\t0.0\n-11.0\t18.0\t50.0\t52.0\t50.3\t50.0\t53.0\t50.0\t35.0\t1.0\t0.0\t0.0\t0.0\t0.0\n-9.0\t3.0\t75.0\t70.0\t73.9\t71.0\t75.0\t73.0\t68.0\t0.0\t0.0\t1.0\t0.0\t0.0\n-8.0\t2.0\t73.0\t77.0\t77.4\t75.0\t80.0\t79.0\t62.0\t0.0\t0.0\t0.0\t0.0\t1.0\n-4.0\t5.0\t69.0\t60.0\t56.6\t52.0\t58.0\t56.0\t72.0\t0.0\t0.0\t0.0\t0.0\t1.0\n-3.0\t13.0\t55.0\t52.0\t53.3\t50.0\t55.0\t53.0\t54.0\t0.0\t0.0\t0.0\t1.0\t0.0\n-8.0\t28.0\t81.0\t79.0\t75.0\t71.0\t77.0\t76.0\t85.0\t0.0\t0.0\t0.0\t1.0\t0.0\n-4.0\t9.0\t77.0\t76.0\t57.2\t53.0\t61.0\t57.0\t74.0\t0.0\t0.0\t1.0\t0.0\t0.0\n-5.0\t26.0\t66.0\t66.0\t66.5\t64.0\t70.0\t65.0\t85.0\t0.0\t0.0\t0.0\t0.0\t0.0\n-10.0\t10.0\t68.0\t57.0\t61.8\t58.0\t64.0\t61.0\t62.0\t0.0\t1.0\t0.0\t0.0\t0.0\n-4.0\t10.0\t76.0\t66.0\t57.4\t57.0\t60.0\t57.0\t60.0\t0.0\t0.0\t0.0\t1.0\t0.0\n-10.0\t19.0\t60'..b'\n-2.0\t15.0\t55.0\t58.0\t49.9\t46.0\t52.0\t49.0\t53.0\t0.0\t1.0\t0.0\t0.0\t0.0\n-8.0\t8.0\t72.0\t72.0\t77.1\t76.0\t78.0\t77.0\t65.0\t0.0\t1.0\t0.0\t0.0\t0.0\n-7.0\t12.0\t74.0\t74.0\t75.4\t74.0\t77.0\t77.0\t71.0\t0.0\t0.0\t0.0\t0.0\t1.0\n-10.0\t3.0\t63.0\t65.0\t64.5\t63.0\t68.0\t65.0\t49.0\t0.0\t1.0\t0.0\t0.0\t0.0\n-4.0\t18.0\t68.0\t77.0\t58.8\t55.0\t59.0\t57.0\t39.0\t0.0\t1.0\t0.0\t0.0\t0.0\n-2.0\t25.0\t60.0\t59.0\t50.9\t49.0\t51.0\t49.0\t35.0\t0.0\t0.0\t0.0\t0.0\t0.0\n-1.0\t2.0\t44.0\t45.0\t45.7\t41.0\t50.0\t44.0\t61.0\t0.0\t0.0\t1.0\t0.0\t0.0\n-2.0\t21.0\t51.0\t53.0\t50.5\t49.0\t54.0\t52.0\t46.0\t0.0\t0.0\t0.0\t1.0\t0.0\n-3.0\t24.0\t57.0\t53.0\t54.9\t54.0\t56.0\t56.0\t72.0\t0.0\t0.0\t0.0\t0.0\t0.0\n-7.0\t27.0\t85.0\t79.0\t77.3\t73.0\t78.0\t79.0\t79.0\t0.0\t0.0\t0.0\t0.0\t0.0\n-2.0\t4.0\t51.0\t49.0\t49.0\t44.0\t54.0\t51.0\t44.0\t0.0\t0.0\t0.0\t0.0\t0.0\n-10.0\t7.0\t66.0\t63.0\t62.9\t62.0\t67.0\t64.0\t78.0\t1.0\t0.0\t0.0\t0.0\t0.0\n-4.0\t4.0\t63.0\t69.0\t56.5\t54.0\t59.0\t56.0\t45.0\t0.0\t1.0\t0.0\t0.0\t0.0\n-2.0\t24.0\t51.0\t60.0\t50.8\t47.0\t53.0\t50.0\t46.0\t0.0\t0.0\t0.0\t0.0\t0.0\n-10.0\t8.0\t63.0\t64.0\t62.5\t60.0\t65.0\t61.0\t73.0\t0.0\t0.0\t1.0\t0.0\t0.0\n-9.0\t15.0\t75.0\t79.0\t71.0\t66.0\t76.0\t69.0\t64.0\t0.0\t0.0\t0.0\t0.0\t0.0\n-1.0\t14.0\t49.0\t55.0\t47.0\t43.0\t47.0\t46.0\t58.0\t0.0\t0.0\t0.0\t0.0\t0.0\n-4.0\t1.0\t68.0\t73.0\t56.0\t54.0\t59.0\t55.0\t41.0\t1.0\t0.0\t0.0\t0.0\t0.0\n-10.0\t17.0\t62.0\t60.0\t59.1\t57.0\t63.0\t59.0\t62.0\t0.0\t1.0\t0.0\t0.0\t0.0\n-6.0\t18.0\t71.0\t67.0\t70.2\t67.0\t75.0\t69.0\t77.0\t0.0\t0.0\t1.0\t0.0\t0.0\n-12.0\t26.0\t41.0\t42.0\t45.2\t45.0\t48.0\t46.0\t58.0\t0.0\t1.0\t0.0\t0.0\t0.0\n-5.0\t17.0\t57.0\t60.0\t65.0\t62.0\t65.0\t65.0\t55.0\t0.0\t0.0\t0.0\t0.0\t1.0\n-11.0\t20.0\t55.0\t57.0\t49.8\t47.0\t54.0\t48.0\t30.0\t0.0\t0.0\t0.0\t1.0\t0.0\n-12.0\t18.0\t35.0\t35.0\t45.2\t44.0\t46.0\t46.0\t36.0\t0.0\t0.0\t0.0\t1.0\t0.0\n-9.0\t17.0\t71.0\t75.0\t70.3\t66.0\t73.0\t70.0\t84.0\t0.0\t0.0\t1.0\t0.0\t0.0\n-2.0\t26.0\t59.0\t61.0\t51.1\t48.0\t56.0\t53.0\t65.0\t1.0\t0.0\t0.0\t0.0\t0.0\n-2.0\t22.0\t53.0\t51.0\t50.6\t46.0\t51.0\t50.0\t59.0\t0.0\t1.0\t0.0\t0.0\t0.0\n-6.0\t26.0\t69.0\t71.0\t71.9\t67.0\t74.0\t72.0\t70.0\t0.0\t0.0\t0.0\t1.0\t0.0\n-7.0\t11.0\t71.0\t74.0\t75.3\t74.0\t79.0\t75.0\t71.0\t0.0\t1.0\t0.0\t0.0\t0.0\n-12.0\t30.0\t48.0\t48.0\t45.4\t44.0\t46.0\t44.0\t42.0\t1.0\t0.0\t0.0\t0.0\t0.0\n-7.0\t9.0\t68.0\t74.0\t74.9\t70.0\t79.0\t76.0\t60.0\t0.0\t0.0\t1.0\t0.0\t0.0\n-6.0\t21.0\t70.0\t76.0\t70.8\t68.0\t75.0\t71.0\t57.0\t0.0\t0.0\t0.0\t0.0\t1.0\n-3.0\t2.0\t54.0\t58.0\t51.6\t47.0\t54.0\t52.0\t37.0\t0.0\t0.0\t0.0\t0.0\t0.0\n-2.0\t20.0\t53.0\t51.0\t50.4\t48.0\t55.0\t51.0\t43.0\t0.0\t0.0\t1.0\t0.0\t0.0\n-9.0\t9.0\t67.0\t72.0\t72.6\t68.0\t77.0\t71.0\t78.0\t1.0\t0.0\t0.0\t0.0\t0.0\n-9.0\t26.0\t67.0\t76.0\t67.2\t64.0\t69.0\t69.0\t74.0\t0.0\t1.0\t0.0\t0.0\t0.0\n-1.0\t22.0\t52.0\t52.0\t47.9\t47.0\t48.0\t48.0\t60.0\t1.0\t0.0\t0.0\t0.0\t0.0\n-11.0\t27.0\t52.0\t53.0\t48.2\t48.0\t49.0\t49.0\t53.0\t0.0\t0.0\t0.0\t1.0\t0.0\n-6.0\t12.0\t67.0\t65.0\t69.1\t65.0\t73.0\t70.0\t83.0\t0.0\t0.0\t0.0\t1.0\t0.0\n-10.0\t20.0\t61.0\t58.0\t58.1\t58.0\t59.0\t58.0\t43.0\t0.0\t0.0\t0.0\t0.0\t0.0\n-7.0\t13.0\t74.0\t77.0\t75.6\t74.0\t78.0\t76.0\t56.0\t0.0\t0.0\t0.0\t0.0\t0.0\n-11.0\t7.0\t58.0\t61.0\t52.9\t51.0\t56.0\t51.0\t35.0\t0.0\t1.0\t0.0\t0.0\t0.0\n-10.0\t1.0\t66.0\t67.0\t65.3\t64.0\t70.0\t64.0\t54.0\t0.0\t0.0\t1.0\t0.0\t0.0\n-11.0\t22.0\t55.0\t54.0\t49.3\t46.0\t54.0\t49.0\t58.0\t0.0\t0.0\t0.0\t0.0\t1.0\n-6.0\t1.0\t71.0\t79.0\t67.4\t65.0\t69.0\t66.0\t58.0\t0.0\t0.0\t0.0\t0.0\t0.0\n-5.0\t13.0\t81.0\t77.0\t64.3\t63.0\t67.0\t66.0\t67.0\t1.0\t0.0\t0.0\t0.0\t0.0\n-6.0\t3.0\t75.0\t71.0\t67.7\t64.0\t71.0\t66.0\t55.0\t1.0\t0.0\t0.0\t0.0\t0.0\n-4.0\t12.0\t59.0\t58.0\t57.7\t54.0\t59.0\t57.0\t61.0\t0.0\t0.0\t0.0\t0.0\t1.0\n-3.0\t31.0\t64.0\t68.0\t55.9\t55.0\t59.0\t56.0\t56.0\t0.0\t0.0\t0.0\t0.0\t0.0\n-12.0\t14.0\t43.0\t40.0\t45.4\t45.0\t48.0\t45.0\t49.0\t0.0\t0.0\t0.0\t0.0\t0.0\n-8.0\t5.0\t75.0\t80.0\t77.3\t75.0\t81.0\t78.0\t71.0\t1.0\t0.0\t0.0\t0.0\t0.0\n-5.0\t4.0\t87.0\t74.0\t62.3\t59.0\t65.0\t64.0\t61.0\t0.0\t0.0\t0.0\t0.0\t0.0\n-12.0\t31.0\t48.0\t57.0\t45.5\t42.0\t48.0\t47.0\t57.0\t0.0\t0.0\t1.0\t0.0\t0.0\n-1.0\t21.0\t48.0\t52.0\t47.8\t43.0\t51.0\t46.0\t57.0\t0.0\t0.0\t0.0\t0.0\t0.0\n-7.0\t10.0\t74.0\t71.0\t75.1\t71.0\t77.0\t76.0\t95.0\t0.0\t0.0\t0.0\t1.0\t0.0\n-3.0\t15.0\t54.0\t49.0\t53.6\t49.0\t58.0\t52.0\t70.0\t0.0\t0.0\t0.0\t0.0\t1.0\n-4.0\t19.0\t77.0\t89.0\t59.0\t59.0\t63.0\t59.0\t61.0\t0.0\t0.0\t0.0\t0.0\t1.0\n-10.0\t14.0\t66.0\t60.0\t60.2\t56.0\t64.0\t60.0\t78.0\t1.0\t0.0\t0.0\t0.0\t0.0\n-4.0\t15.0\t59.0\t59.0\t58.3\t58.0\t61.0\t60.0\t40.0\t1.0\t0.0\t0.0\t0.0\t0.0\n+0\n+143.762620712\n+-88.5787166225\n+-82.8452345578\n+72.4951388149\n+11.805182128\n+-63.9354970901\n+126.32584079600001\n+23.0341392692\n+67.6714937696\n+47.39275848810001\n'
b
diff -r 537c6763c018 -r 96f9b73327f2 test-data/feature_selection_result12
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/feature_selection_result12 Sat Aug 04 12:35:10 2018 -0400
b
@@ -0,0 +1,11 @@
+0 1
+143.762620712 -1.1796457192799998
+-88.5787166225 -2.5710918402200003
+-82.8452345578 -0.168636324107
+72.4951388149 0.991068834926
+11.805182128 -0.7096855607860001
+-63.9354970901 0.9841122108220001
+126.32584079600001 0.35353444883900004
+23.0341392692 1.03188231893
+67.6714937696 -0.8214378651719999
+47.39275848810001 -0.0942409319417
b
diff -r 537c6763c018 -r 96f9b73327f2 test-data/pipeline01
b
Binary file test-data/pipeline01 has changed
b
diff -r 537c6763c018 -r 96f9b73327f2 test-data/pipeline02
b
Binary file test-data/pipeline02 has changed
b
diff -r 537c6763c018 -r 96f9b73327f2 test-data/pipeline03
b
Binary file test-data/pipeline03 has changed
b
diff -r 537c6763c018 -r 96f9b73327f2 test-data/pipeline04
b
Binary file test-data/pipeline04 has changed
b
diff -r 537c6763c018 -r 96f9b73327f2 test-data/pipeline05
b
Binary file test-data/pipeline05 has changed
b
diff -r 537c6763c018 -r 96f9b73327f2 test-data/pipeline06
b
Binary file test-data/pipeline06 has changed
b
diff -r 537c6763c018 -r 96f9b73327f2 test-data/pipeline07
b
Binary file test-data/pipeline07 has changed
b
diff -r 537c6763c018 -r 96f9b73327f2 test-data/pipeline08
b
Binary file test-data/pipeline08 has changed
b
diff -r 537c6763c018 -r 96f9b73327f2 test-data/searchCV01
b
Binary file test-data/searchCV01 has changed